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Abstract. We investigate families of subsets of ω with almost disjoint refinements in
the classical case as well as with respect to given ideals on ω.

We prove the following generalization of a result due to J. Brendle: If V ⊆ W are
transitive models, ωW1 ⊆ V , P(ω)∩V 6= P(ω)∩W , and I is an analytic or coanalytic ideal
coded in V , then there is an I-almost disjoint refinement of I+ ∩ V in W .

We study the existence of perfect I-almost disjoint families, and the existence of
I-almost disjoint refinements in which any two distinct sets have finite intersection.

We introduce the notion of mixing real (motivated by the construction of an almost
disjoint refinement of [ω]ω ∩ V after adding a Cohen real to V ) and discuss logical impli-
cations between the existence of mixing reals in forcing extensions and classical properties
of forcing notions.

1. Introduction. Let us begin with our motivations which led us to
work on almost disjoint refinements and their generalizations. First of all,
the following easy fact seems to be somewhat surprising (see also Proposi-
tion 1.9):

Fact 1.1. If H ⊆ [ω]ω (= {X ⊆ ω : |X| = ω}) is of size < c, then H

has an almost disjoint refinement {AH : H ∈ H}, that is, (i) AH ∈ [H]ω for
every H ∈ H, and (ii) |AH ∩AK | < ω for every H 6= K from H.

The following theorem due to B. Balcar and P. Vojtáš is probably the
most well-known general result on the existence of almost disjoint refine-
ments.

Theorem 1.2 (see [BaV80]). Every ultrafilter on ω has an almost dis-
joint refinement.
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B. Balcar and T. Pazák, and independently J. Brendle, proved the fol-
lowing theorem:

Theorem 1.3 (see [BaP10], [Sk08]). Assume that V ⊆W are transitive
models and P(ω) ∩ V 6= P(ω) ∩W . Then [ω]ω ∩ V has an almost disjoint
refinement in W (where by transitive model we mean a transitive model of
a “large enough” finite fragment of ZFC ).

One of our main results is a generalization of this theorem in the context
of “nice” ideals on ω, that is, we change the notion of smallness in the setting
above by replacing finite with element of an ideal I.

In order to formulate our generalization and to give a setting for other
related results, we have to introduce some notation and appropriate versions
of classical notions.

Let I be an ideal on a countably infinite set X. We always assume that
[X]<ω = {Y ⊆ X : |Y | < ω} ⊆ I and X /∈ I. Denote by I+ = P(X) \ I the
family of I-positive sets, and by I∗ = {X \ A : A ∈ I} the dual filter of I.
If Y ∈ I+ then let I�Y = {A ∈ I : A ⊆ Y } = {B ∩ Y : B ∈ I} be the
restriction of I to Y (which is an ideal on Y ). If X is clear from the context,
then the ideal of finite subsets of X will be denoted by Fin.

Definition 1.4. We say that a non-empty family A ⊆ I+ is I-almost
disjoint (I-AD) if A ∩B ∈ I for any distinct A,B ∈ A. A family A ⊆ I+ is
(I,Fin)-AD if |A ∩B| < ω for any distinct A,B ∈ A.

Definition 1.5. Let H ⊆ I+. We say that a family A = {AH : H ∈ H}
is an I-AD refinement (I-ADR) of H if (i) AH ⊆ H, AH ∈ I+ for every H,
and (ii) AH0 ∩ AH1 ∈ I for any distinct H0, H1 ∈ H (in paticular, A is an
I-AD family). If I = Fin we simply say AD refinement (ADR).

We say that a family A = {AH : H ∈ H} is an (I,Fin)-AD refinement
((I,Fin)-ADR) of H if (i) holds and (ii)′ |AH0 ∩ AH1 | < ω for any distinct
H0, H1 ∈ H.

Notice that an ideal on a countably infinite X can be regarded as a subset
of the Polish space 2X ' 2ω by using a bijection between X and ω. Thus,
it makes sense to talk about Borel, analytic, etc. ideals and about certain
descriptive properties of ideals, such as the Baire property or meagerness
(it is easy to see that these properties do not depend on the choice of the
bijection). In the past three decades the study of certain definable (e.g.
Borel, analytic, coanalytic, etc.) ideals has become a central topic in set
theory. It turned out that they play an important role in combinatorial set
theory, and in the theory of cardinal invariants of the continuum as well as
the theory of forcing (see e.g. [Ma91], [So99], [F00], [Hr11] and many other
publications).

Now we can formulate our generalization of Theorem 1.3:
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Theorem 1.6. Assume that V ⊆ W are transitive models, ωW1 ⊆ V ,
P(ω) ∩ V 6= P(ω) ∩W , and I is an analytic or coanalytic ideal coded in V .
Then there is an I-ADR of I+ ∩ V in W .

We say that an ideal I on X (where |X| = ω) is everywhere meager if I�Y
is meager in P(Y ) for every Y ∈ I+. In particular, analytic and coanalytic
ideals are everywhere meager because their restrictions are also analytic and
coanalytic, respectively, hence have the Baire property, and we can apply the
following well-known characterization theorem (due to Sierpiński (1)↔(2),
and Talagrand (2)↔(3); for the proofs see e.g. [BrJ95, Thms. 4.1.1–4.1.2]).

Theorem 1.7. Let I be an ideal on ω. Then the following are equivalent:
(1) I has the Baire property, (2) I is meager, and (3) there is a partition
{Pn : n ∈ ω} of ω into finite sets such that {n ∈ ω : Pn ⊆ A} is finite for
each A ∈ I.

From now on, when working with partitions of a set, we always assume
that every element of the partition is non-empty. From this theorem we can
also deduce the following corollary:

Corollary 1.8. If I is a meager ideal, then there is a perfect (I,Fin)-
AD family. In particular, if I is everywhere meager, then there are perfect
(I,Fin)-AD families on every X ∈ I+.

Proof. It is easy to define a perfect AD family A on ω (e.g. consider the
branches of 2<ω in P(2<ω)). Fix a partition (Pn)n∈ω of ω into finite sets
such that {n ∈ ω : Pn ⊆ A} is finite for every A ∈ I. For each A ∈ A let
A′ =

⋃
{Pn : n ∈ A} ∈ I+, and let A′ = {A′ : A ∈ A}. Then |A′ ∩ B′| < ω

for any distinct A,B ∈ A, hence A′ is an (I,Fin)-AD family. The function
P(ω)→ P(ω), A 7→ A′ is injective and continuous, hence A′ is perfect.

Concerning the reverse implications in Corollary 1.8, in Section 5 we
prove the following:

(a) The existence of a perfect (I,Fin)-AD family does not imply that I is
meager (Example 5.1). Moreover, if b = c then there is an non-meager
ideal I such that there are perfect (I,Fin)-AD families on every X ∈ I+

(Theorem 5.2). Here c stands for the continuum and b for the bounding
number, that is, b = min{|F | : F ⊆ ωω is ≤∗-unbounded} where f ≤∗ g
iff the set {n ∈ ω : f(n) > g(n)} is finite.

(b) There is an ideal I such that every I-AD family is countable but I is
nowhere maximal, that is, I�X is not a prime ideal for any X ∈ I+ (in
particular, there are infinite I-AD families); and it is independent from
ZFC whether such an ideal can be chosen as Σ∼

1
2 (Proposition 5.3).

Corollary 1.8 has an easy but important application. Clearly, if I is an
ideal on ω then there is a family (e.g. I+) of size c which does not have any
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I-ADR’s. Conversely, we have the following very special case of results from
[BHM75] and [BaSV81]:

Proposition 1.9. If I is an everywhere meager ideal and H ∈ [I+]<c,
then H has an I-ADR.

Proof. Let H = {Hα : α < κ}. Applying Corollary 1.8, we can fix an
I-AD family A = {Aξ : ξ < κ+} on H0 and for every β < κ let Tβ =
{ξ < κ+ : Hβ ∩Aξ ∈ I+}; furthermore let R = {β < κ : |Tβ| ≤ κ} (we know
that 0 /∈ R). By induction on α ∈ κ \R we can pick a

ξα ∈ Tα \
(⋃
β∈R

Tβ ∪ {ξα′ : α′ ∈ α \R}
)

because |Tα| = κ+ and |
⋃
{Tβ : β ∈ R}| ≤ κ, and let Eα = Hα ∩ Aξα ∈ I+.

Then the family {Eα : α ∈ κ \ R} is an I-ADR of {Hα : α ∈ κ \ R}. We
can continue the procedure on {Hβ : β ∈ R} because Eα ∩Hβ ∈ I for every
α ∈ κ \R and β ∈ R.

This proposition motivates the following:

Question 1.10. Let I be an everywhere meager ideal and H ∈ [I+]<c.
Does H have an (I,Fin)-ADR?

In Section 6, we answer this question (at least consistently): Assume
MAκ and let I be an everywhere meager ideal; then every H ∈ [I+]≤κ has
an (I,Fin)-ADR (Theorem 6.1).

We also define new notions of mixing and injective mixing reals, and
investigate connections between adding (injective) mixing reals and classical
properties of forcing notions (such as adding Cohen/random/splitting/domi-
nating reals and the Laver/Sacks properties).

Definition 1.11. Let P be a forcing notion. We say that an f ∈ ωω∩V P
is a mixing real over V if |f [X] ∩ Y | = ω for any X,Y ∈ [ω]ω ∩ V . If f is
one-to-one, then we call it an injective mixing real or mixing injection.

Mixing reals can be seen as “infinite splitting parititions” (see Propo-
sition 7.1): There is a mixing real in V P (over V ) iff there is a partition
(Yn)n∈ω ∈ V P of ω into infinite sets such that ∀X ∈ [ω]ω∩V ∀n |X∩Yn| = ω.
Recall that a set S ⊆ ω is a splitting real over V if |X ∩ S| = |X \ S| = ω
for every X ∈ [ω]ω ∩ V ; in other words, P = {S, ω \ S} is a partition of ω
such that ∀X ∈ [ω]ω ∩ V ∀Y ∈ P |X ∩ Y | = ω. Therefore, mixing reals are
strong variants of splitting reals.

Why are mixing reals relevant to almost disjoint refinements? Fix an AD
family A = {Aα : α < c} in V , and let {Xα : α < c} be an enumeration
of [ω]ω in V . If f ∈ ωω ∩ V P is a mixing injection over V , then the family
{f [Aα] ∩Xα : α < c} ∈ V P is an ADR of [ω]ω ∩ V .

In Proposition 7.2 we prove the following. Let P be a forcing notion.
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(i) If P adds random reals, then it adds mixing reals.
(ii) If P adds dominating reals, then it adds mixing reals.
(iii) If P adds Cohen reals, then it adds mixing injections.
(iv) If P adds mixing injections, then it adds unbounded reals.
(v) If P has the Laver property, then it does not add injective mixing reals.

Our paper is organized as follows. In Section 2 we recall some notation
and classical results of descriptive set theory we will need later.

The next two sections are focused on descriptive aspects of nice ideals and
almost disjoint refinements. In Section 3 we present a plethora of examples
of Borel and projective ideals on ω. In Section 4 we prove Theorem 1.6 by
modifying Brendle’s proof of Theorem 1.3.

The next two sections contain combinatorial results. In Section 5 we
study the reverse implications in Corollary 1.8. In Section 6 we answer (con-
sistently) Question 1.10.

In Section 7 we study the notions of mixing and injective mixing reals.
In this section we will heavily use standard facts about forcing notions; for
the details see [BrJ95].

Finally, in Section 8, we list some open questions concerning our results.

2. Descriptive set theory and ideals. As usual, Σ∼
0
α,Π∼

0
α will stand

for the αth level of the Borel hierarchy while we denote by Σ∼
1
n,Π∼

1
n the levels

of the projective hierarchy. If r is a real, the appropriate relativized versions
are denoted by Σ0

α(r),Π0
α(r), etc. For the ambiguous classes we write ∆∼

i
α

and ∆i
α(r).

Suppose that I is an ideal on a set X. As mentioned before, if X is
countable, then we can talk about complexity of ideals: I is Fσ, Σ∼

0
α, Π∼

1
n,

etc. if I ⊆ P(X) ' 2X is an Fσ, Σ∼
0
α, Π∼

1
n, etc. set in the usual compact

Polish topology on 2X . If we fix a bijection between ω and X, we can define
the collection of Σ0

α(r),Π0
α(r), etc. subsets of 2X as well. If X = ωn and

∆ = {(n,m) ∈ ω2 : m ≤ n}, [ω]n, 2<ω, ω<ω,Q (= {rational numbers}) then
we will always assume that the bijection is the usual, recursive one.

For example, Fin = [ω]<ω is an Fσ ideal, Z = {A ⊆ ω : |A ∩ n|/n → 0}
is Fσδ, and Conv = {A ⊆ Q∩ [0, 1] : A has only finitely many accumulation
points} is Fσδσ, etc. (see more examples in Section 3). Similarly, we can
associate descriptive complexity to any X ⊆ P(ω), and we can also talk
about the Baire property and measurability of subsets of P(ω). Clearly, if
Y ∈ I+ then I�Y belongs to the same Borel or projective class in P(Y ) as I

in P(ω) (simply because I�Y is a continuous preimage of I).

For a family H ⊆ P(X) we will denote by id(H) the ideal generated by
the sets in H. We say that an ideal I on a countably infinite set X is
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• tall if every infinite subset of X contains an infinite element of I;
• a P-ideal if for every sequence An ∈ I (n ∈ ω), there is an A ∈ I such that
An ⊆∗ A, that is, |An \A| < ω for every n.

We will need the following two fundamental results of descriptive set
theory (see e.g. [J03]):

Theorem 2.1 (Shoenfield Absoluteness Theorem). If V ⊆W are tran-
sitive models, ωW1 ⊆ V , and r ∈ ωω ∩ V , then Σ1

2(r) formulas are absolute
between V and W .

Corollary 2.2. If X ⊆ P(ω) is an analytic or coanalytic set in the pa-
rameter r ∈ ωω, then the statement “X is an ideal” is absolute for transitive
models V ⊆W with ωW1 ⊆ V and r ∈ V .

Proof. Let ϕ(x, r) be a Σ1
1(r) or Π1

1(r) definition of X (r ∈ ωω). Then
the statement “X is an ideal” is the conjunction of the following formulas:
(i) ∀a ∈ Fin ϕ(a, r), (ii) ∀x, y (x * y or ¬ϕ(y, r) or ϕ(x, r)), and (iii) ∀x, y
(¬ϕ(x, r) or ¬ϕ(y, r) or ϕ(x ∪ y, r)). In particular, “X is an ideal” is Π1

2(r)
and hence we can apply the Shoenfield Absoluteness Theorem.

Theorem 2.3 (Mansfield–Solovay Theorem). If A * L[r] is a Σ1
2(r) set,

then A contains a perfect subset.

Other than the notions and results above, we will use descriptive-set-
theoretic tools such as Γ-completeness, Γ-hardness, etc. which can all be
found in [K95].

Let Tree = {T ⊆ ω<ω : T is a tree} be the usual Polish space of all trees
on ω (a closed subset of P(ω<ω)) and as usual, denote by [T ] = {x ∈ ωω :
∀n x�n ∈ T} the body of T , i.e. the set of all branches of T .

3. Examples of Borel and projective ideals. There are many classi-
cal examples of Borel ideals. Here we present some of those that have easily
understandable definitions, and the reader can see that these examples are
motivated by a wide variety of backgrounds. For the important role of these
ideals, especially in characterization results, see [Hr11].

Some Fσ ideals

Summable ideals. Let h : ω → [0,∞) be a function such that
∑

n∈ω h(n)
=∞. The summable ideal associated to h is

Ih =
{
A ⊆ ω :

∑
n∈A

h(n) <∞
}
.

It is easy to see that a summable ideal Ih is tall iff limn→∞ h(n) = 0, and that
summable ideals are Fσ P-ideals. The classical summable ideal is I1/n = Ih
where h(n) = 1/(n+1), or h(0) = 1 and h(n) = 1/n if n > 0. We know that
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there are tall Fσ P-ideals which are not summable ideals: Farah’s example
[F00, Example 1.11.1] is the following:

IF =

{
A ⊆ ω :

∑
n<ω

min
{
n, |A ∩ [2n, 2n+1)|

}
n2

<∞
}
.

The eventually different ideals are

ED =
{
A ⊆ ω × ω : lim sup

n→∞
|(A)n| <∞

}
where (A)n = {k ∈ ω : (n, k) ∈ A}, and EDfin = ED�∆ where ∆ = {(n,m) ∈
ω × ω : m ≤ n}. Note that ED and EDfin are not P-ideals.

The van der Waerden ideal is

W = {A⊆ω : A does not contain arbitrarily long arithmetic progressions}.
Van der Waerden’s well-known theorem says that W is a proper ideal. Again,
W is not a P-ideal. For some set-theoretic results about this ideal see e.g.
[Fl09] and [Fl10].

The random graph ideal is

Ran = id({homogeneous subsets of the random graph})
where the random graph (ω,E), E ⊆ [ω]2, is up to isomorphism uniquely
determined by the following property: If A,B ∈ [ω]<ω are non-empty and
disjoint, then there is an n ∈ ω \ (A ∪ B) such that {{n, a} : a ∈ A} ⊆ E
and {{n, b} : b ∈ B} ∩ E = ∅. A set H ⊆ ω is (E-)homogeneous if [H]2 ⊆ E
or [H]2 ∩ E = ∅. The ideal Ran is not a P-ideal.

The ideal of graphs with finite chromatic number is

Gfc = {E ⊆ [ω]2 : χ(ω,E) < ω}.
It is not a P-ideal.

Solecki’s ideal. Let CO(2ω) be the family of clopen subsets of 2ω (it is
easy to see that |CO(2ω)| = ω), and let Ω = {A ∈ CO(2ω) : λ(A) = 1/2}
where λ is the usual product measure on 2ω. The ideal S on Ω is generated
by {Ix : x ∈ 2ω} where Ix = {A ∈ Ω : x ∈ A}. It is not a P-ideal.

Some Fσδ ideals

Density ideals. Let (Pn)n∈ω be a sequence of pairwise disjoint finite sub-
sets of ω and let ~µ = (µn)n∈ω be a sequence of measures concentrated on Pn
such that lim supn→∞ µn(ω) > 0. The density ideal generated by ~µ is

Z~µ =
{
A ⊆ ω : lim

n→∞
µn(A) = 0

}
.

A density ideal Z~µ is tall iff max{µn({i}) : i ∈ Pn}
n→∞−−−→ 0, and density

ideals are Fσδ P-ideals. The density zero ideal

Z =
{
A ⊆ ω : lim

n→∞
|A ∩ n|/n = 0

}
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is a tall density ideal. Indeed, let Pn = [2n, 2n+1) and µn(A) = |A ∩ Pn|/2n.
Then it is easy to see that I1/n ( Z, and Szemerédi’s famous theorem implies
that W ⊆ Z (see [Sz75]). The stronger statement W ⊆ I1/n is a still open
Erdős prize problem.

The ideal of nowhere dense subsets of the rationals is

Nwd = {A ⊆ Q : int(A) = ∅}
where int(·) stands for the interior operation on subsets of the reals, and A
is the closure of A in R. Nwd is not a P-ideal.

The trace ideal of the null ideal. Let N be the σ-ideal of subsets of 2ω with
measure zero (with respect to the usual product measure). The Gδ-closure
of a set A ⊆ 2<ω is [A]δ = {x ∈ 2ω : ∃∞ n x�n ∈ A}, a Gδ subset of 2ω. The
trace of N is defined by

tr(N) =
{
A ⊆ 2<ω : [A]δ ∈ N

}
.

It is a tall Fσδ P-ideal.

Some tall Fσδσ (non-P-)ideals. The ideal Conv is generated by those
infinite subsets of Q ∩ [0, 1] which are convergent in [0, 1], in other words

Conv = {A ⊆ Q ∩ [0, 1] : |accumulation points of A (in R)| < ω}.
Another example is the Fubini product of Fin by itself:

Fin⊗ Fin = {A ⊆ ω × ω : ∀∞ n ∈ ω |(A)n| < ω}.
Some non-tall ideals. Here we mention an important Fσ ideal:

Fin⊗ {∅} = {A ⊆ ω × ω : ∀∞ n ∈ ω (A)n = ∅},
and its Fσδ brother (a density ideal)

{∅} ⊗ Fin = {A ⊆ ω × ω : ∀n ∈ ω |(A)n| < ω}.
Applying the Baire Category Theorem, it is easy to see that there are

no Gδ (i.e. Π∼
0
2) ideals and we already presented many Fσ (i.e. Σ∼

0
2) ideals. In

general, we have Borel ideals at arbitrarily high levels of the Borel hierarchy:

Theorem 3.1 (see [C85] and [C88]). There are Σ∼
0
α- and Π∼

0
α-complete

ideals for every α ≥ 3.

For ideals on the ambiguous levels of the Borel hierarchy see [E94].
We also present some (co)analytic examples.

Theorem 3.2 (see [Z90, p. 321]). For every x ∈ ωω let Ix = {s ∈ ω<ω :
x�|s| � s} where ≤ is the coordinatewise ordering on every ωn. Then the
ideal on ω<ω generated by {Ix : x ∈ ωω} is Σ∼

1
1-complete.

Theorem 3.3. The ideal of graphs without infinite complete subgraphs,

Gc = {E ⊆ [ω]2 : ∀X ∈ [ω]ω [X]2 * E},
is a Π∼

1
1-complete (in P([ω]2)), tall, non-P-ideal.
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Proof. Tallness is trivial. If we define En = {{k,m} : k ≤ n, m 6= k} ∈ Gc

and En ⊆∗ E ⊆ [ω]2 for every n, then E contains a complete subgraph (see
also [Me09]), hence Gc is not a P-ideal.

Let WF = {T ∈ Tree : [T ] = ∅} be the Π∼
1
1-complete set of well-founded

trees. Furthermore, let Tree′ be the family of those trees T such that (i) every
t ∈ T is strictly increasing, and (ii) if {t ∈ T : n ∈ ran(t)} 6= ∅ then it has
a ⊆-minimal element (n ∈ ω). Then it is not hard to see that Tree′ is also
closed in P(ω<ω), hence Polish. Finally, let WF′ = {T ∈ Tree′ : [T ] = ∅};
clearly, it is also Π1

1.

We will construct Wadge reductions WF ≤W WF′ ≤W Gc.

WF ≤W WF′: Fix an order preserving isomorphism j between ω<ω and
a T0 ∈ Tree′. More precisely, for a t = (k0, k1, . . . , km−1) ∈ ω<ω let j(t) =
(p1
k0
, p1
k0
p2
k1
, . . . , p1

k0
p2
k1
. . . pmkm−1

) where pi denotes the ith prime number.

Then j is one-to-one, order preserving, and T0 = j[ω<ω] is a tree containing
strictly increasing sequences. To show that T0 satisfies (ii), assume that
n ∈ ran(j(t)) for some n ∈ ω and t ∈ ω<ω. Then, by the definition of j, n =
p1
k0
p2
k1
. . . pmkm−1

where s = (k0, k1, . . . , km−1) ≤ t, and if n ∈ ran(j(t′)) for

some t′ ∈ ω<ω then s ≤ t′, hence j(s) is ⊆-minimal in {h ∈ T0 : n ∈ ran(h)}.
The map Tree → Tree′, T 7→ j[T ] is a continuous reduction of WF

to WF′. Continuity is trivial, as is the fact that [T ] = ∅ iff [j[T ]] 6= ∅, in
other words, T ∈WF iff j[T ] ∈WF′.

WF′ ≤W Gc: For every T ∈ Tree′ let ET =
⋃
{[ran(t)]2 : t ∈ T}. We

show that the function T 7→ ET is continuous. If u, v ∈ [[ω]2]<ω are disjoint
then it is easy to see that the preimage of the basic clopen set [u, v] =
{E ⊆ [ω]2 : u ⊆ E, v ∩ E = ∅} ⊆ P([ω]2) is

{T ∈ Tree′ : (∀{x, y} ∈ u ∃t ∈ T x, y ∈ ran(t))

and (∀t ∈ T v ∩ [ran(t)]2 = ∅)}.

Although, as the collection of the sets satisfying the second part of the
condition is a countable intersection of clopen sets, this set seems to be
closed (and it is enough to prove that Gc is Π∼

1
1-complete), actually, it is

open in Tree′: Let m = max(∪v) + 1. Then the set {T ∈ Tree′ : ∀t ∈ T
v ∩ [ran(t)]2 = ∅} is the intersection of Tree′ and the clopen (in P(ω<ω)) set

[∅, {t ∈ m≤m : t is strictly increasing and v ∩ [ran(t)]2 6= ∅}].

The function T 7→ ET is a reduction of WF′ to Gc: Clearly, if T ∈ Tree′

and x ∈ [T ] then X = ran(x) ∈ [ω]ω shows that ET /∈ Gc (i.e. [X]2 ⊆ E).
Conversely, if [X]2 ⊆ ET and X = {k0 < k1 < · · · }, then for every n there is
a tn ∈ T such that kn, kn+1 ∈ ran(tn); we can assume that tn is minimal in
{s ∈ T : kn+1 ∈ ran(s)}. This implies that t0 ⊆ t1 ⊆ t2 ⊆ · · · is an infinite
chain in T .



10 B. Farkas et al.

In the following example, we show that a seemingly “very” Π1
2 definition

can also give us a Π∼
1
1-complete ideal.

Theorem 3.4. The ideal

I0 = {A ⊆ ω × ω : ∀X,Y ∈ [ω]ω ∃X ′ ∈ [X]ω ∃Y ′ ∈ [Y ]ω A ∩ (X ′ × Y ′) = ∅}
is a Π∼

1
1-complete (in P(ω × ω)), tall, non-P-ideal.

Proof. Tallness is trivial because injective partial functions from ω to ω
belong to I0. The failure of the P property is also easy: Consider the sets
n×ω ∈ I0. If for some A we have n×ω ⊆∗ A for every n then every vertical
section of A is cofinite, and such a set is clearly I0-positive.

Now we show that I0 is Π∼
1
1, for which the next Claim is clearly enough.

For X,Y ∈ [ω]ω define T ↑(X,Y ) = {(n, k) ∈ X×Y : n < k} and T ↓(X,Y ) =
{(n, k) ∈ X × Y : n > k}.

Claim. A ∈ I0 iff for every infinite X and Y the set A does not contain
T ↑(X,Y ) or T ↓(X,Y ).

Proof of Claim. The “only if” part is trivial. Conversely, assume that
A /∈ I0, i.e. there areX,Y ∈ [ω]ω such that A∩(X ′×Y ′) 6= ∅ for allX ′ ∈ [X]ω

and Y ′ ∈ [Y ]ω. Fix increasing enumerations X = {x0 < x1 < · · · } and
Y = {y0 < y1 < · · · }. By shrinking the sets X and Y , we can assume that
x0 < y0 < x1 < y1 < · · · , in particular X ∩ Y = ∅. Consider the following
coloring c : [ω]2 → 2 × 2: for m < n let c(m,n) = (χA(xm, yn), χA(xn, ym))
where χA(x, y) = 1 iff (x, y) ∈ A.

By Ramsey’s theorem, there is an infinite homogeneous subset S ⊆ ω.
Let S = Z ∪W be a partition into infinite subsets such that the elements of
Z and W alternate in S. Then the elements of the sets X ′ = {xm : m ∈ Z}
and Y ′ = {yn : n ∈W} alternate in ω as well.

Note that S cannot be homogeneous in color (0, 0), since otherwise A ∩
(X ′ × Y ′) = ∅ would hold. Similarly, if S is homogeneous in color (1, 1)
then X ′ × Y ′ ⊂ A and we are done. Now suppose that S is homogeneous in
color (1, 0) (for (0, 1) the same argument works). If xm ∈ X ′, yn ∈ Y ′ and
xm < yn then m < n because Z ∩W = ∅. Hence by the homogeneity of S
we can conclude (xm, yn) ∈ A, so T ↑(X ′, Y ′) ⊆ A.

Now we show that I0 is Π∼
1
1-complete. We will use the fact [K95, 27.B]

that the set

S = {C ∈ K(2ω) : ∀x ∈ C ∀∞ n ∈ ω x(n) = 0}
is Π∼

1
1-complete, where K(2ω) stands for the family of compact subsets of

2ω equipped with the Hausdorff metric, i.e. with the Vietoris topology, we
know that K(2ω) is a compact Polish space.

To finish the proof, we will define a Borel map K(2ω) → P(ω × ω),
C 7→ AC , such that C ∈ S iff AC ∈ I0. Fix an enumeration {sm : m ∈ ω}
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of 2<ω, for every s ∈ 2<ω define [s] = {x ∈ 2ω : s ⊆ x} (a basic clopen
subset of 2ω), and let

AC = {(m,n) : |sm| > n, sm(n) = 1, and [sm] ∩ C 6= ∅}.
For C ∈ S we show that AC ∈ I0. Let X,Y ∈ [ω]ω be arbitrary. If the

set {m ∈ X : [sm] ∩ C = ∅} is infinite then we are done, since

AC ∩ ({m ∈ X : [sm] ∩ C = ∅} × Y ) = ∅.
Otherwise, using the compactness of C we can choose {m0 < m1 < · · · } =
X ′ ∈ [X]ω and a convergent sequence (xi)i∈ω such that xi ∈ [smi ] ∩ C for
every i. If xi → x then x ∈ C ∈ S so x(n) = 0 for every n ≥ n0 for
some n0. If n ∈ Y \ n0 then for every large enough i we have n < |smi | and
smi(n) = x(n) = 0, hence the section {m : (m,n) ∈ AC ∩ (X ′×Y )} is finite.
On the other hand, for a fixed m, if |sm| ≤ n then (m,n) /∈ AC , therefore the
section {n : (m,n) ∈ AC ∩(X ′×Y )} is also finite. By an easy induction, one
can define an X ′′ ∈ [X ′]ω and a Y ′′ ∈ [Y ]ω such that AC ∩ (X ′′ × Y ′′) = ∅.

Now we show that if C 6∈ S then AC 6∈ I0. Let x ∈ C be such that
Y = {n : x(n) = 1} is infinite and let X = {m : x ∈ [sm]}. Now clearly,
if (m,n) ∈ X × Y then (m,n) ∈ AC if and only if n < |sm|. In particular,
for every n ∈ Y the set {m ∈ X : (m,n) 6∈ AC} is finite, and this clearly
implies that the rectangle X × Y witnesses that AC /∈ I0.

Remark 3.5. One can give an alternative proof of Theorem 3.3 by con-
structing a Borel reduction of the set C to Gc.

Theorem 3.6. There exist Σ∼
1
n- and Π∼

1
n-complete tall ideals for every

n ≥ 1.

Proof. First we will construct Σ∼
1
n-complete ideals. Let J be a tall Borel

ideal, A be a perfect J-AD family, and let An be a Σ∼
1
n-complete subset of

the Polish space A. Define In = id(J ∪An), i.e. In is the ideal generated by
J ∪ An. Then In is a tall proper (because An is infinite) ideal. Moreover,
In is Σ∼

1
n because

In = {X ⊆ ω : ∃k ∈ ω ∃(Ai)i<k ∈ Ak
n X \ (A0 ∪A1 ∪ · · · ∪Ak−1) ∈ J}.

In order to see that In is Σ∼
1
n-complete, we remark that if B is a Σ∼

1
n set

in a Polish space X, then it can be reduced to An with a continuous map
f : X → A ⊆ P(ω); furthermore, applying the trivial observation that
An = In ∩A, we conclude that this map is in fact a reduction of B to In as
well.

Now we proceed to Π∼
1
n ideals. We can assume that n > 1 (see the last

two theorems above). Again, there exists a Π∼
1
n-complete set Bn ⊆ A. The

previous argument shows that the ideal I′n = id(J ∪ Bn) is Π∼
1
n-hard, so it

is enough to prove that I′n is Π∼
1
n. To see this, just notice that since A is an
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J-AD-family, if I0 = id(J ∪A) then

X ∈ I0 \ I′n iff X ∈ I0 and ∃A ∈ A \Bn A ∩X ∈ J+.

This implies, as I0 is clearly Σ∼
1
1, that I0 \ I′n is a Σ∼

1
n set, and hence I′n is Π∼

1
n

(here we have used I′n ⊆ I0 and n > 1).

The idea of the above proof can be used to construct Σ∼
0
α-complete ideals

for α ≥ 3 as well.

4. Proof of Theorem 1.6. Applying Corollary 1.8, we can fix perfect
I-AD families AX on every X ∈ I+. The statement “AX is an I-AD family”
is (at most) Π∼

1
2, hence absolute because if AX = [T ] is coded by a perfect

tree T ∈ Tree2 = {T ⊆ 2<ω : T is a tree} then

“AX is an I-AD family” ≡ ∀x, y ∈ [T ] (x ∈ I+ and (x = y or x ∩ y ∈ I)),

where of course we are working on 2ω and (x∩ y)(n) = x(n) · y(n) for all n.
For any X,Y ∈ I+ let B(X,Y ) = {A ∈ AX : A ∩ Y ∈ I+}. Then it is

a continuous preimage of I+ (under AX → P(ω), A 7→ A ∩ Y ), hence if I

is analytic then B(X,Y ) is coanalytic, and similarly if I is coanalytic then
B(X,Y ) is analytic.

Let κ = |cV |W and fix an enumeration {Xα : α < κ} of the set I+ ∩ V
in W . Working in W , we will construct the desired I-AD refinement {Aα :
α < κ} with Aα ⊆ Xα by recursion on κ. During this process, we will also
define a sequence (Bα)α<κ in I+.

Assume that {Aξ : ξ < α} and (Bξ)ξ<α are found. Let γα be minimal
such that B(Xγα , Xα) contains a perfect set. This property, namely, that
an analytic or coanalytic set H ⊆ P(ω) contains a perfect set, is absolute
because if H is analytic then “H contains a perfect subset” iff “H is un-
countable” is of the form “∀f ∈ P(ω)ω ∃x (x ∈ H and x /∈ ran(f))”, hence
it is Π∼

1
2; and if H is coanalytic then “H contains a perfect set” is of the

form “∃T ∈ Tree2 (T is perfect and ∀x ∈ [T ] x ∈ H)”, hence it is Σ∼
1
2. In

particular, γα ≤ α. We also know that if C is a perfect set coded in V , then
in W it contains κ many new elements: we know it holds for 2ω e.g. because
of the group structure on it, and we can compute new elements of C along
a homeomorphism between C and 2ω fixed in V . Let

Bα ∈ B(Xγα , Xα) \ (V ∪ {Bξ : ξ < α})
be arbitrary, and set Aα = Xα ∩ Bα ∈ I+. We claim that {Aα : α < κ} is
an I-AD family (it is clearly a refinement of I+ ∩ V ). Let α, β < κ, α 6= β.

If γα = γβ = γ then Bα, Bβ ∈ AXγ are distinct, and hence Aα ∩ Aβ ⊆
Bα ∩Bβ ∈ I (actually, we can assume that it is finite).

If γα<γβ, then because of the minimality of γβ, we know thatB(Xγα , Xβ)
does not contain perfect subsets. It is enough to see that B(Xγα , Xβ) is the
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same set in V and W , i.e. if ψ(x, r) is a Σ1
1(r) or Π1

1(r) definition of this set
then ∀x ∈W (ψ(x, r)→ x ∈ V ). Why? Because then Bα /∈ B(Xγα , Xβ) but
Bα ∈ AXγα , hence Aα ∩Aβ ⊆ Bα ∩Xβ ∈ I.

The set K := B(Xγα , Xβ) is analytic or coanalytic and does not contain
perfect subsets (in V or in W ). Applying the Mansfield–Solovay Theorem,
we find that K ⊆ L[r] (r ∈ V ). We also know that (L[r])V ∩ P(ω) =
(L[r])W ∩ P(ω) because ωW1 ⊆ V , hence KV = KW .

Remark 4.1. It is natural to ask the following: Assume that V ⊆ W
are transitive models, W contains new reals, and let C be a perfect set
coded in W . Does C contain at least |cV |W many new elements in W? In
other words: Does |CW \ V |W ≥ |cV |W hold? Surprisingly, the answer is no!
Moreover, there may be a perfect set of ground model reals in the extension
[VW98].

Remark 4.2. What can we say about possible generalizations of The-
orem 1.6? For example, can we weaken the condition on the complexity of
the ideal? In general, this statement is false. Let ϕ(x) be a Σ1

2 definition of
a Σ1

2 (i.e. ∆1
2) prime P-ideal I in L. (How to construct such an ideal? Using a

∆1
2-good well-order ≤ on P(ω), by the most natural recursion, at every stage

extending our family with a ≤-minimal element which can be added with-
out generating P(ω) and also with a ≤-minimal pseudounion of the previous
elements, avoiding universal quantification by applying goodness, we obtain
such an ideal.) We cannot expect that ϕ(x) defines an ideal in general but
we can talk about the generated ideal: x ∈ J iff “∃y ∈ I x ⊆ y”, which is Σ1

2

too. If r is a Sacks real over L, then J is still a prime P-ideal in L[r] (see
[BrJ95, Lemma 7.3.48]), hence J+ ∩ L does not have any J-ADR’s in L[r].

5. On the existence of perfect (I,Fin)-AD families. First of all,
we show that the reverse implication in the first part of Corollary 1.8 does
not hold.

Example 5.1. The assumption that there is a perfect (I,Fin)-AD family
does not imply that I is meager: Fix a prime ideal J on ω. For every partition
P = (Pn)n∈ω of ω into finite sets, fix an XP ∈ [ω]ω such that AP =

⋃
{Pn :

n ∈ XP } ∈ J (notice that J cannot be meager); and let the ideal I on 2<ω

be generated by the sets of the form A′P =
⋃
{2k : k ∈ AP }.

Clearly, the family {{f�n : n ∈ ω} : f ∈ 2ω} of branches of 2<ω is a
perfect AD family. We show that {f�n : n ∈ ω} ∈ I+. Notice that {dom(s) :
s ∈ A′P } = AP ∈ J for every P . Thus, a set of the form Bf = {f�n : n ∈ ω}
cannot be an element of the ideal because {dom(s) : s ∈ Bf} = ω.

To see that I is not meager, assume the contrary; then by Theorem 1.7
there exists a partition Q = (Qn)n∈ω of 2<ω into finite sets such that {n ∈ ω :
Qn ⊆ A} is finite for every A ∈ I. Then there is a partition P = (Pn)n∈ω of ω
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into finite sets such that for every n there is anm withQm ⊆
⋃
{2k : k ∈ Pn}.

We know that A′P ∈ I, a contradiction because A′P contains infinitely many
Qm’s.

What can we say if there are perfect (I,Fin)-AD families on every
X ∈ I+? In this case we have only consistent counterexamples.

Theorem 5.2. Assume that b = c. Then there is a non-meager ideal I
on ω such that there are perfect (I,Fin)-AD families on every X ∈ I+.

Proof. Let [ω]ω = {Xα : α < c} and {partitions of ω into finite sets} =
{Pα = (Pαn )n∈ω : α < c} be enumerations. We will construct the desired
ideal I as an increasing union

⋃
{Iα : α < c} of ideals by recursion on α < c.

At the αth stage we will make sure that

(i) Iα is generated by |α| many elements;
(ii) Pα cannot witness that Iα is meager;
(iii) eitherXα belongs to Iα, or there is a perfect (Iα,Fin)-AD family onXα;
(iv) we do not destroy the (Iβ,Fin)-AD families we may have constructed

at previous stages.

Let I0 = Fin and fix a perfect AD family A0 on X0. At stage α > 0
we already have the ideals Iβ for every β < α; let I<α =

⋃
{Iβ : β < α}.

We also have perfect (I<α,Fin)-AD families Aβ on Xβ ∈ I+
<α for certain

β ∈ Dα ⊆ α.
If we can add Xα to I<α, that is, Aβ ∩ id(I<α ∪ {Xα}) = ∅ for every

β ∈ Dα, then let I′α = id(I<α ∪ {Xα}) and D′α = Dα.
Suppose that we cannot add Xα to I<α, that is, Aβ ∩ id(I<α∪{Xα}) 6= ∅

for some β ∈ Dα. Since I<α is generated by < b = c many sets, it is an
everywhere meager ideal (see [Sm77] or [Bl10, Thm. 9.10]). We can ap-
ply Corollary 1.8 to obtain a perfect (I<α,Fin)-AD family Aα on Xα; let
I′α = I<α, and let D′α = Dα ∪ {α}.

Fix a partition Q = (Qn)n∈ω of ω into finite sets such that {n ∈ ω :
Qn ⊆ A} is finite for every A ∈ I′α (we know that I′α is meager).

Claim. There exist partitions Qβ,B = (Qβ,Bn )n∈ω for every β ∈ D′α and

B ∈ I′α such that A ∩Qβ,Bn \B 6= ∅ for every β ∈ D′α, A ∈ Aβ, B ∈ I′α, and
n ∈ ω.

Proof of Claim. Let β ∈ D′α and B ∈ I′α. We know that Aβ is compact
as a subset of P(ω). Basic open sets in P(ω) are of the form [s, t] = {A ⊆ ω :
s ∩ A = ∅ and t ⊆ A} for disjoint, finite s, t ⊆ ω. Then Aβ ⊆

⋃
{[∅, {n}] :

n ∈ ω \ B} because A \ B is infinite for every A ∈ Aβ. Therefore Aβ ⊆⋃
{[∅, {n}] : n ∈ N0 \ B} for an N0 ∈ ω, in particular, A ∩ N0 \ B 6= ∅ for

every A ∈ Aβ. Let Qβ,B0 = [0, N0). We can proceed by the same argument:
Aβ ⊆

⋃
{[∅, {n}] : n ∈ [N0, ω) \ B}, hence there is an N1 > N0 such that
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Aβ ⊆
⋃
{[∅, {n}] : n ∈ [N0, N1) \ B}, in other words, A ∩ [N0, N1) \ B 6= ∅

for every A ∈ Aβ. Let Qβ,B1 = [N0, N1) etc.

Now we have the family Q = {Pα} ∪ {Q} ∪ {Qβ,B : β ∈ D′α, B ∈ Cα}
of partitions where Cα ⊆ I′α is a cofinal family, |Cα| ≤ max{|α|, ω}. Since
|Q| < c = b, there is a partition R = (Rm)m∈ω which dominates all of these
partitions, that is, ∀P = (Pn)n∈ω ∈ Q ∀∞m ∃n Pn ⊆ Rm [Bl10, Thm. 2.10].
Let Y =

⋃
{R2n : n ∈ ω} and Iα = id(I′α ∪ {Y }).

Then (i) is clearly satisfied. In order to see (ii) notice that since the
partition Rm was dominating and Pα ∈ Q, for almost every m there exists
an n with Pαn ⊂ R2m. Condition (iii) is also clear if Xα ∈ I′α.

If Xα 6∈ I′α then by definition α ∈ D′α, so to see (iii) and (iv) we have to
show that for every β ∈ D′α the family Aβ is not just an (I′α,Fin)-AD family,
but also an (Iα,Fin)-AD family. In other words, it is enough to check that
for every A ∈ Aβ and B ∈ I′α we have A \ (B ∪ Y ) 6= ∅. Fix such A and B;
we can assume that B ∈ Cα. Then for almost every m, there is an nm such
that Qβ,Bnm ⊆ R2m+1, and by the Claim we know that A ∩ Qβ,Bnm \ B 6= ∅.
Therefore, A \ (B ∪ Y ) is infinite, hence Aβ ∩ Iα = ∅ for every β ∈ D′α.

What can we say about ideals on the second level of the projective hi-
erarchy? Do there always exist perfect or at least uncountable (I,Fin)-AD
families? If all Σ∼

1
2 and Π∼

1
2 sets have the Baire property, then of course yes,

because then Σ∼
1
2 and Π∼

1
2 ideals are meager and we can apply Corollary 1.8.

On the other hand, if I is a Σ1
2 (i.e. ∆1

2) prime ideal (e.g. in L) then every
I-AD family is a singleton.

Similarly, we can construct a Σ1
2 ideal J in L such that there are infinite

J-AD families but all of them are countable: copy the above ideal I to the
elements of a partition {Pn : n ∈ ω} ⊆ [ω]ω of ω, and let J be the generated
ideal.

This last example is very artificial, in the sense that this ideal is con-
structed from maximal ideals in a very “obvious” way, many of its restric-
tions are prime ideals. However, we can construct even more peculiar ideals:

Proposition 5.3. Suppose that there exists a ∆∼
1
n prime ideal on ω for

some n. Then there exists a ∆∼
1
n ideal I such that I is nowhere maximal but

every I-AD family is countable. In particular, there exists such a ∆∼
1
2 ideal

in L.

Proof. Let U be an ultrafilter and define µ : P(ω) → [0, 1] as µ(A) =
limU |A ∩ n|/n where limU stands for the U-limit operation on sequences in
topological spaces, that is, limU(an) = a iff {n ∈ ω : an ∈ V } ∈ U for every
neighborhood V of a. It is easy to see that if {an : n ∈ ω} is compact, then
limU(an)n∈ω exists, in particular, µ is defined on every A ∈ P(ω). It is also
straightforward to show that µ is a finitely additive non-atomic probability
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measure on P(ω), that is, µ(∅) = 0, µ(A ∪B) = µ(A) + µ(B) if A ∩B = ∅,
µ(ω) = 1, and if µ(X) = ε > 0 then for every δ ∈ (0, ε) there is a Yδ ⊆ X
with µ(Yδ) = δ.

Let I = {A ⊆ ω : µ(A) = 0}. Then I is an ideal; it is nowhere maximal
because µ is non-atomic (in particular, there are infinite I-AD families). We
show that every I-AD family is countable. If there was an uncountable I-AD
family A, then An = {A ∈ A : µ(A) > 1/n} would be uncountable for some
n ∈ ω, and therefore among any n elements of An there would be two with
I-positive intersection.

Notice that if U is ∆∼
1
n (n ≥ 2) then I is also ∆∼

1
n because A ∈ I iff ∀k ∈ ω

{n ∈ ω : |A ∩ n|/n < 2−k} ∈ U, and the function A 7→ {n ∈ ω : |A ∩ n|/n <
2−k} is continuous (for every k).

6. On (I,Fin)-ADR’s. In this section, we study Question 1.10.

Theorem 6.1. Assume MAκ and let I be an everywhere meager ideal.
Then every H ∈ [I+]≤κ has an (I,Fin)-ADR.

Proof. Let H = {Hα : α < κ} be an enumeration. Define p ∈ P = P(H)
iff p is a function, dom(p) ∈ [κ]<ω, and p(α) ∈ [Hα]<ω for every α ∈ dom(p);
also declare p ≤ q iff dom(p) ⊇ dom(q), ∀α ∈ dom(q) p(α) ⊇ q(α), and
∀{α, β} ∈ [dom(q)]2 p(α) ∩ p(β) = q(α) ∩ q(β).

Then P is a poset. First of all, we show that P has the ccc. Let {pξ :
ξ < ω1} ⊆ P. Then {dom(pξ) : ξ < ω1} ⊆ [κ]<ω. We can assume that this
family forms a ∆-system, and dom(pξ) = Dξ∪R. There are at most ω many
functions R → Fin, hence we can also assume that there is a q ∈ P such
that pξ�R = q for every ξ < ω1. Clearly, pξ ∪ pζ ∈ P and pξ ∪ pζ ≤ pξ for all
ξ, ζ < ω1.

It is easy to see that for every α < κ the set Dα = {p ∈ P : α ∈ dom(p)}
is dense in P. If G is a {Dα : α < κ}-generic filter, then let FG : κ→ P(ω),
FG(α) =

⋃
{p(α) : p ∈ G}. Clearly, FG(α) ⊆ Hα for every α.

We show that FG(α) ∩ FG(β) is finite for any distinct α, β < κ. Let
p ∈ Dα ∩G, q ∈ Dβ ∩G, and r ∈ G be a common lower bound of them. It
is easy to see that FG(α) ∩ FG(β) = r(α) ∩ r(β).

If somehow we can make sure that FG(α) ∈ I+, then we are done because
{FG(α) : α < κ} will be an (I,Fin)-ADR of H. We show that if G is
(V,P)-generic then FG(α) is a Cohen real in P(Hα) over V . This is enough
because then FG(α) /∈ I�Hα (we know that I�Hα is meager), and to show
that V [FG(α)] |= FG(α) /∈ I�Hα, it is enough to use countably many dense
sets. Why? For every α we can fix a countable family Cα = {Cαn : n ∈ ω}
of closed nowhere dense subsets of P(Hα) which covers I�Hα, and hence we
have countably many dense subsets of the Cohen forcing such that if a filter
is generic for this family then the generic real is not covered by any element
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of Cα. More precisely, we have to translate these dense subsets of the Cohen
forcing to dense subsets in P, which can be done by applying the (inverse of
the) projection P→ C(Hα) defined below.

Fix an α < κ, let C(Hα) = {s : s is a finite partial function from Hα

to 2} where s ≤ t iff s ⊇ t (then C(Hα) adds a Cohen subset of Hα over V ),
and define the map e = eα : P→ C(Hα) as follows:

(i) dom(e(p)) =
⋃
{p(β) ∩Hα : β ∈ dom(p)};

(ii) e(p)(n) = 1 iff n ∈ p(α).

We show that e is a projection (see e.g. [A10, p. 335]), that is,

(1) e is order preserving, onto, and e(∅) = ∅;
(2) ∀p ∈ P ∀s ∈ C(Hα) (s ≤ e(p)→ ∃p′ ≤ p e(p′) = s).

Clearly, e(∅) = ∅. Assume that p ≤ q. Then clearly dom(e(p)) ⊇ dom(e(q)).
If n ∈ dom(e(q)) and n ∈ q(α) ⊆ p(α) then e(q)(n) = e(p)(n) = 1; if
n ∈ dom(e(p)) and n ∈ q(β) \ q(α) for some β 6= α then, as p(α) ∩ p(β) =
q(α) ∩ q(β), we have n ∈ p(β) \ p(α) and hence e(q)(n) = e(p)(n) = 0. This
shows that e is indeed order preserving.

To show that e is onto, we have to assume that Hα ⊆
⋃
{Hβ : β 6= α}

(and without loss of generality we can do so by extending H to be a cover of ω
and adding ω as an element to H). For an s ∈ C(Hα) define p ∈ P as follows:
Fix a finite D ⊆ κ containing α such that dom(s) ⊆

⋃
{Hβ : β ∈ D}, let

dom(p) = D, and define p(α) = s−1(1) and p(β) = {n ∈ Hβ∩Hα : s(n) = 0}.
Then e(p) = s.

To show that e satisfies (2), fix a p ∈ P, an s ∈ C(Hα), and assume that
s ≤ e(p). Define p′ ∈ P as follows: For every n ∈ J = (s \ e(p))−1(0) pick
a γn ∈ κ \ {α} such that n ∈ Hγn . Let dom(p′) = dom(p) ∪ {γn : n ∈ J}
and define p′(α) = p(α) ∪ s−1(1), and if β ∈ dom(p′) \ {α} then p′(β) =
p(β)∪ {n ∈ J : β = γn}. It is straightforward to see that p′ ∈ P, p′ ≤ p, and
e(p′) = s.

We know that if G is (V,P)-generic then e[G] generates a (V,C)-generic
filter G′. Notice that the Cohen real defined from G′ is FG(α), so we are
done.

Unfortunately, at this moment, we do not know whether we really needed
Martin’s Axiom in the previous theorem or whether the theorem holds
in ZFC. We show that if we attempt to construct a counterexample, that is,
say, a tall Borel ideal I and a family H ∈ [I+]<c without an (I,Fin)-ADR,
we have to be careful. Let us define the following cardinal invariants of tall
ideals on ω: The star-additivity of I is

add∗(I) = min{|X| : X ⊆ I and @A ∈ I ∀X ∈ X X ⊆∗ A},
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the Fodor number of I is

F (I) = min{|H| : H ⊆ I+ has no I-ADR},
and the star-Fodor number of I is

F ∗(I) = min{|H| : H ⊆ I+ has no (I,Fin)-ADR}.
Clearly, I is a P-ideal iff add∗(I) > ω. Proposition 1.9 says that F (I) = c

whenever I is everywhere meager; and clearly F ∗(I) ≤ F (I).

Fact 6.2. If add∗(I) < F (I) then add∗(I) < F ∗(I). If add∗(I) = F (I)
then F (I) = F ∗(I).

Proof. Assume that H = {Hα : α < κ} ⊆ I+ where κ = add∗(I) < F (I).
First fix an I-ADR {Aα : α < κ} of H (Aα ⊆ Hα). Then for every α < κ fix
a Bα ∈ I such that Aα ∩Aβ ⊆∗ Bα for every β < α, and let A′α = Aα \Bα.
Then {A′α : α < κ} is an (I,Fin)-ADR of H. The second statement can be
proved by the same argument.

In particular, if I is an everywhere meager P-ideal and F ∗(I) < c, then
F ∗(I) < F (I), hence add∗(I) < F (I) and so ω1 ≤ add∗(I) < F ∗(I) < c,
therefore c ≥ ω3.

7. Mixing reals. In this section, we study two closely related properties
of forcing notions, one of which is slightly stronger than “[ω]ω ∩ V has an
ADR in V P”.

First of all, let us recall the following definition from the introduction:
Let P be a forcing notion. We say that an f ∈ ωω ∩ V P is a mixing real over
V if |f [X]∩ Y | = ω for all X,Y ∈ [ω]ω ∩ V . (Clearly, it is enough to require
that f [X] ∩ Y 6= ∅ for all X,Y ∈ [ω]ω ∩ V .) If such an f is one-to-one, then
we call it an injective mixing real or a mixing injection.

We already mentioned that mixing reals can be seen as “infinite splitting
partitions” (see the proof below), and that if P adds a mixing injection then
it is easy to find an ADR of [ω]ω ∩ V in V P.

Proposition 7.1. Let P be a forcing notion. Then the following are
equivalent:

(i) There is a mixing real f ∈ ωω ∩ V P over V .
(ii) There is an f ∈ ωω ∩ V P such that f [X] = ω for all X ∈ [ω]ω ∩ V .
(iii) There is a partition (Yn)n∈ω of ω into infinite sets in V P such that

∀X ∈ [ω]ω ∩ V ∀n |X ∩ Yn| = ω.
(iii)′ There is a partition (Yn)n∈ω of ω into infinite sets in V P such that

∀X ∈ [ω]ω ∩ V ∀n X ∩ Yn 6= ∅.
Proof. (ii)→(i) and (iii)↔(iii)′ are trivial. (ii)↔(iii)′ is justified by letting

Yn = f−1(n) (and vice versa). To verify (i)→(ii), fix a partition (Cn)n∈ω of
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ω into infinite sets in V and let g : ω → ω, g�Cn ≡ n. If f is a mixing real
over V , then h = g ◦ f has the required property.

Proposition 7.2. Let P be a forcing notion.

(i) If P adds random reals then it adds mixing reals.
(ii) If P adds dominating reals then it adds mixing reals.
(iii) If P adds Cohen reals then it adds mixing injections.
(iv) If P adds mixing injections then it adds unbounded reals.
(v) If P has the Laver property then it does not add injective mixing reals.

Proof. (i) Let λ be the usual probability measure on ωω, that is, λ is
uniquely determined by the values λ([s]) = 2−s(0)−s(1)−···−s(n−1)−n where
s : n → ω and [s] = {f ∈ ωω : s ⊆ f}. If Nλ = {A ⊆ ωω : λ(A) = 0},
then it is well-known that Borel(ωω)/Nλ is forcing equivalent to the random
forcing. It is enough to see that the set AX,Y = {f ∈ ωω : |f [X]∩Y | < ω} is
a null set in ωω for all X,Y ∈ [ω]ω: AX,Y =

⋃
n∈ω{f ∈ ωω : f [X] ∩ Y ⊆ n}

and if X = {xk : k ∈ ω} and n ∈ ω then {f : f [X] ∩ Y ⊆ n} = {f : ∀k
f(xk) ∈ n ∪ (ω \ Y )}. Clearly,

∑
{2−m−1 : m ∈ n ∪ (ω \ Y )} = ε < 1 and

hence λ({f : f [X] ∩ Y ⊆ n}) ≤ limk→∞ ε
k = 0.

(ii) Trivial modification of the proof of the fact (see e.g. [Hb12, Fact
20.1]) that adding a dominating real implies adding a splitting real works
here as well: adding a dominating real is equivalent to adding a dominating
partition (Pn)n∈ω of ω into finite sets [Bl10, Thm. 2.10], that is, for every
partition (Qm)m∈ω ∈ V of ω into finite sets, ∀∞ n ∃m Qm ⊆ Pn. Now any
infinite partition of ω consisting of unions of infinitely many Pn’s satisfies
(iii) from Proposition 7.1.

(iii) We can talk about injective Cohen reals. Simply consider the forcing
notion (Inj,⊇) where Inj = {s ∈ ω<ω : s is one-to-one}, or the forcing
notion (Borel(INJ) \M(INJ),⊆) where INJ = {f ∈ ωω : f is one-to-one} is
a nowhere dense closed subset of ωω and M(INJ) is the meager ideal on this
Polish space. It is not difficult to see that these forcing notions are forcing
equivalent to the Cohen forcing (moreover, INJ is homemomorphic to ωω).

If c is an injective Cohen real over V , then c is mixing: For any X,Y
in [ω]ω, the set A′X,Y = AX,Y ∩ INJ =

⋃
n∈ω

{
f ∈ INJ : f [X] ∩ Y ⊆ n

}
is

meager because {f ∈ INJ : f [X] ∩ Y ⊆ n} is closed and nowhere dense in
INJ.

(iv) Let f ∈ INJ∩ V P be a mixing injection and assume on the contrary
that there is a strictly increasing g ∈ ωω ∩ V such that f, f−1 < g (where of
course f−1 < g means that f−1(k) < g(k) for every k ∈ ran(f)).

We define X = {xk : k ∈ ω}, Y = {yk : k ∈ ω} ∈ [ω]ω in V as follows:
x0 = 0, y0 = g(0), xn = max{g(yk) : k < n}, and yn = g(xn). Suppose that
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f(xk) = yl for some k, l ∈ ω. If k ≤ l then

f(xk) < g(xk) = g
(

max
m<k

g(ym)
)
≤ g
(

max
m<l

g(ym)
)

= xl < g(xl) = yl,

a contradiction. If k > l then

xk = f−1(yl) < g(yl) ≤ max{g(ym) : m < k} = xk,

which is again impossible. Thus, f [X] ∩ Y = ∅, so f cannot be a mixing
injection.

(v) Fix a sequence (an)n∈ω ∈ ωω ∩ V satisfying an+1− an > (n+ 2)2n+1

and a0 > 1. Assume that p 
 ḟ ∈ INJ. Let ġ be a P-name for a function on ω
such that p 
 ġ(n) = ḟ ∩ (an×an) = {(k, l) ∈ an×an : f(k) = l} for every n
(in particular, p 
 “ġ(n) is an injective partial function from an to an”).
Then p 
 ġ ∈

∏
n∈ω P(an × an), hence, applying the Laver property of our

forcing notion to the name ġ for a function from ω to [ω × ω]<ω, we find a

q ≤ p and a “slalom” S : ω →
[
[ω × ω]<ω

]<ω
in V which catches ġ, that is,

S(n) ⊆ P(an × an), |S(n)| ≤ 2n, and q 
 ġ(n) ∈ S(n) for every n. Without
loss of generality we can assume that all elements of S(n) are injective partial
functions an → an.

Working in V , we will define sets X = {xn : n ∈ ω}, Y = {yn : n ∈ ω} in
[ω]ω by recursion on n so that q 
 ḟ [X] ∩ Y = ∅.

Let x0 ∈ a0 be arbitrary. We know that there is a y0 ∈ a0 such that
(x0, y0) /∈

⋃
S(0) (a function cannot cover {(x0, k) : k < a0}).

Assume that we already have Xn = {xk : k ≤ n} and Yn = {yk : k ≤ n}
such that (Xn × Yn) ∩

⋃
k≤n

⋃
S(k) = ∅. There is an xn+1 ∈ an+1 \ an such

that

{s(xn+1) : s ∈ S(n+ 1), xn+1 ∈ dom(s)} ∩ Yn = ∅.

Why? If for every m ∈ an+1 \ an there is an sm ∈ S(n + 1) such that
sm(m) ∈ Yn then there is a set H ∈ [an+1\an]n+2 such that sm = s does not
depend on m ∈ H (because |an+1\an| > (n+2)2n+1 and |S(n+1)| ≤ 2n+1).
But it would mean that H ⊆ dom(s) and |s[H]| ≤ |Yn| = n + 1, which is a
contradiction because s is injective.

We also want to fix a yn+1 ∈ an+1 \ an such that yn+1 6= s(xk) for any
k ≤ n+ 1, s ∈ S(n+ 1) if xk ∈ dom(s). The set of forbidden values is of size
at most 2n+1(n+ 2) hence there is such a yn+1.

In the diagram below, we summarize the logical implications between
classical properties of forcing notions and the ones we defined above. We
will show that arrows without a ∗ are strict (i.e. not equivalences), and that
there are no other implications between these properties. The question mark
means that we do not know whether the implication holds (but the reverse
implication is false). Of course, C stands for the Cohen forcing, B is the
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random forcing, and to keep the diagram small, we did not put “P adds
. . . ” and “P has the . . . ” before the properties we deal with.

C-reals dom. reals

inj. mixing >

∗

>

unb. reals
>

B-reals > mix. reals
∨>

∗
> spl. reals

¬Laver prop.
∨

>

>

¬Sacks prop.
∨

?

>

The non-trivial non-implications in the diagram are the following:

• ¬Laver prop. 9 splitting reals (1). The infinitely equal forcing EE is
ωω-bounding, preserves P-points (hence cannot add splitting reals),
and 
EE“2ω ∩V is a null set” [BrJ95, Lemmas 7.4.13–7.4.15]. Further,
EE cannot have the Laver property because otherwise it would have
the Sacks property as well but then it could not force 2ω ∩ V to be of
measure zero (this follows from e.g. [BrJ95, Thm. 2.3.12]).

• unbounded reals 9 splitting reals: The Miller forcing [BrJ95, 7.3.E].
• spl. reals9 ¬Sacks prop.: The Silver forcing adds splitting reals [Hb12,

Lemma 2.3] and it is straightforward to show that it satisfies the Sacks
property.

We list the remaining questions in the next section.

8. Related questions. We already presented Σ∼
1
n- and Π∼

1
n-complete

ideals but our construction was pretty artificial.

Question 8.1. Can we define “natural” Σ∼
1
n- and Π∼

1
n-complete ideals?

Question 8.2. Assume that V,W and I are as in Theorem 1.6. Does
there exist an (I,Fin)-ADR of I+ ∩ V in W? Or at least an I-ADR {AX :
X ∈ I+ ∩ V } ∈ W such that for any distinct X,Y ∈ I+ ∩ V (using the
notation from the proof of Theorem 1.6) there is a BX,Y ∈ I ∩ V such that
AX ∩AY ⊆ BX,Y ?

Question 8.3. Does there exist a non-meager ideal I (in ZFC ) such
that there are perfect (I,Fin)-AD families on every X ∈ I+?

(1) Notice that showing “¬Sacks prop. 9 splitting reals” is easier as the Miller forcing
is a natural counterexample (for details see [BrJ95, 7.3.E]).
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In Proposition 5.3, assuming that there is a ∆∼
1
2 ultrafilter, we constructed

a ∆∼
1
2 ideal I such that every I-AD family is countable but I is nowhere

maximal.

Question 8.4. Is it consistent that there are no ∆∼
1
2 ultrafilters but there

is a Σ∼
1
2 ideal I such that every I-AD family is countable but I is nowhere

maximal?

A remark to Question 8.4: We know [BrJ95, Thm. 9.3.9(2)] that if there
are no dominating reals over L[r] for any r ∈ ωω, then there is a Σ1

2 un-
bounded hence non-meager filter. If every ∆∼

1
2 set is Lebesgue measurable

or has the Baire property, then there are no ∆∼
1
2 ultrafilters. For instance,

these conditions hold in the Cohen and random models over V = L [BrJ95,
Thm. 9.2.1]. In these models a non-meager Σ1

2 ideal I must be nowhere max-
imal (otherwise a restriction of I would be a ∆1

2 prime ideal). It would be
interesting to know the possible sizes of I-AD families in these models.

Question 8.5. Is it consistent that for some (tall) Borel (P-)ideal I a
family H ∈ [I+]<c does not have an (I,Fin)-ADR (i.e. F ∗(I) < c)?

Question 8.6. Does adding mixing injections imply adding Cohen reals?

Question 8.7. Does the Sacks property of a forcing notion imply that
it does not add mixing reals?

Proposition 7.1 motivates the following notion: Let n ≥ 2. We say that a
forcing notion adds an n-splitting partition if there is a partition (Yk)k<n of
ω into infinite sets in V P such that |X ∩Yk| = ω for every X ∈ [ω]ω ∩V and
k < n. In particular, adding 2-splitting partitions is the same as adding split-
ting reals, and adding ω-splitting (infinite splitting) partitions is equivalent
to adding mixing reals.

It is easy to see that if P adds a splitting real then the n-stage iteration
of P adds a 2n-splitting partition. In fact, splitting reals and n-splitting
partitions cannot be separated in terms of cardinal invariants. Let us denote
by sn (2 ≤ n < ω) the least size of a family Sn of partitions of ω into n
many infinite sets such that

(∗) ∀X ∈ [ω]ω ∃P = (Pk)k<n ∈ Sn ∀k < n |X ∩ Pk| = ω.

Of course, this definition makes sense for n = ω as well, but sω stands for
an already defined and studied cardinal invariant. To avoid confusion, let us
denote this cardinal by smix.

Then sn = s = s2 for every 2 ≤ n < ω. For the non-trivial direction, as-
sume that we have a family S of splitting partitions of size s and consider all
possible “(n− 1)-long iterated nestings” of these partitions. For example, if
n = 3 then to every pair (P = (P0, P1), Q = (Q0, Q1)) of partitions from S we
associate a partition of ω into three infinite sets as follows: Let e0 : ω → Q0
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be the increasing bijection and take the partition (e0[P0], e0[P1], Q1). We
obtain sn−1 = s many partitions of ω into n infinite sets, the family Sn of
these partitions satisfies (∗), and hence sn ≤ s.

Question 8.8. Does adding n-splitting partitions (2 ≤ n < ω) imply
adding (n+ 1)-splitting partitions?

Question 8.9. Is it true that smix = s? Does adding splitting reals (or n-
splitting partitions for every n) imply adding mixing reals? What can we say
about the Silver forcing? (It is straightforward to see that it adds n-splitting
partitions for every n.)
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