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19 Computable Isomorphism 
By the way, Yurii has opened a website accessible to everyone at 

http://staff.science.uva.nl/~jkhomski/recursion.html 

19.1 Definition. A property P of sets is computably invariant if for every 
computable permutation f (of ω), X ∈ P implies f [X] ∈ P. 

1ω is a computable permutation, and the computable permutations are 
closed under inversion and composition. 

19.2 Examples. Computably invariant are: 
(i) being c.e.; 
(ii) cardinality; 
(iii) being computable; 
and not computably invariant are: 
(iv) containing 2; 
(v) containing the even numbers; 
(vi) being an index set. 

19.3 Definition. Sets A and B are computably isomorphic, notation A ≡ B, if 
there exists a computable permutation p such that p[A] = B. 

Computable isomorphism is an equivalence relation; its equivalence 
classes are called computable isomorphism types. 

The following is an effective analogue of the Schröder-Bernstein Theo-
rem. 

19.4 Myhill’s Isomorphism Theorem. A ≡ B if and only if A ≡1 B. 

Proof. (⇒) Trivial. 
(⇐) Assume f 1-reduces A to B, and g 1-reduces B to A. We construct a suit-
able permutation h as the union of a chain of decidable finite functions hs , 
s ∈ ω. We set out from h0 = 0⁄ . 

Suppose hs has been constructed, it is 1-1, and 

∀u ∈ Dom hs (u ∈ A ⇔ hs(u) ∈ B). 

Let s be even, say s = 2x. If x ∈ Dom hs , hs+1 = hs . Otherwise, {x} ∪ 
Dom hs has more elements than Ran hs , so we can define hs+1(x) to be the 
first element of the sequence f(x), f(hs

–1f(x)), f(hs
–1f(hs

–1f(x))),… that does 
not belong to Ran hs . 

If s be odd, say s = 2y + 1, we proceed in the same way, but in the other 
direction, doing nothing if y ∈ Ran hs, putting it in otherwise and using g to 
find a corresponding element for the domain of hs+1.  

The proof shows more. 
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19.5 Corollary. Let (An)n∈ω  and (Bn)n∈ω  be partitions of ω into infinite 
sets, and f and g computable injections such that for all n, f[An] ⊆ Bn and 
g[Bn] ⊆ An. Then there exists a computable permutation h such that for all 
n, h[An] = Bn. 

20 Acceptable numberings 
Let P be the class of p.c. functions of one variable. A numbering of the 

p.c. functions is a surjection ρ: ω —–» P. The numbering ϕ used thus far is 
the standard or canonical numbering. A numbering ρ is acceptable if there 
are computable functions f and g such that for all x, ϕf(x) = ρx and ρg(x) = ϕx . 

Acceptable Numbering Theorem (Rogers). For any acceptable numbering 
ρ of the p.c. functions, there exists a computable permutation h such that for 
all e, ρh(e) = ϕe . 

Proof. Part exercise, part promise.  

Homework. Make sure you understand the exercise part of the proof of the 
Acceptable Numbering Theorem. Hand in: 1.6.9 (inacceptable numberings). 

21 Σ1 forms 
The projection of a relation R ⊆ ω × ω is the set {x | ∃yRxy}. Σ1 is the 

class of projections of computable relations. A Σ1 (normal) form for a set is 
a presentation as such a projection. 

21.1 Normal Form Theorem for c.e. sets. A set is c.e. if and only if it is 
(in) Σ1. 

Proof. (⇒) If A is c.e., then A = We for some index e, and 

x ∈ A ⇔ ∃s x ∈ We,s. 

(⇐) If R is computable, and A = {x | ∃yRxy}, define: ψ(x) ~– µyRxy. Then A 
= Domψ.  

22.2 Definition. If A = We, we call e a Σ1-index or a c.e.-index for A. 

22.3 Quantifier Contraction Theorem. A ∈ Σ1 iff there are n ∈ ω and an 
(n + 2)-ary computable relation R such that 

x ∈ A ⇔ ∃y0… ynRxy0…yn. 

Proof. Define a binary computable relation S by 

Sxy ⇔ R(x, (y)0…(y)n). 

Then x ∈ A ⇔ ∃ySxy.  

An n-ary relation R is c.e. if {〈y1,…, yn〉| Ry1…yn} is c.e. By what we 
have just seen, this is equivalent to the existence of a computable relation S 
such that Ry1…yn ⇔ ∃zSy1…ynz. We also have: 



 17 

22.4 Corollary. The projection of a c.e. relation is c.e. 

The Quantifier Contraction Theorem is very useful for showing sets to be 
c.e. For example, 
(1) K = {x | ∃s x ∈ Wx,s}. 
(2) K0 = {x | ∃s π1x ∈ Wπ1x,s}. 
(3) K1 = {x | ∃s∃y y ∈ Wx,s}. 
(4) Ranϕe = {y | ∃s∃x y = ϕe,s(x)}. 
(5) ϕe itself, as a relation, is c.e.: it is {(y, x)| ∃s y = ϕe,s(x)}. 

22.5 Uniformization Theorem. For every c.e. relation R, there exists a p.c. 
function ψ such that 

ψ(–x)↓ ⇔ ∃yRy–x ⇔ R(ψ(–x), –x). 

Proof. Since R is c.e., there exists a computable relation S such that Ry–x ⇔ 
∃zSy–xz. Define: ψ(–x) ~– (µu .S((u)0, –x, (u)1)0.  

The function ψ is called a selector function. Observe that an index for ψ 
can be computed (it can be found uniformly) from any given c.e. index of R. 
Moreover, if R actually is a unary function, then ψ = R. 

 
 
 


