19 Computable Isomorphism
By the way, Yurii has opened a website accessible to everyone at

http://staff.science.uva.nl/~jkhomski/recursion.html

19.1 Definition. A property P of sets is computably invariant if for every
computable permutation f (of w), X € P implies f[X] € P.

1, is a computable permutation, and the computable permutations are

closed under inversion and composition.

19.2 Examples. Computably invariant are:
(1) being c.e.;

(i1) cardinality;

(ii1) being computable;

and not computably invariant are:

(iv) containing 2;

(v) containing the even numbers;

(vi) being an index set.

19.3 Definition. Sets A and B are computably isomorphic, notation A = B, if

there exists a computable permutation p such that p[A] = B.

Computable isomorphism is an equivalence relation; its equivalence
classes are called computable isomorphism types.
The following is an effective analogue of the Schroder-Bernstein Theo-

rem.
19.4 Myhill’s Isomorphism Theorem. A = B if and only if A = B.

Proof. (=) Trivial.

(=) Assume f 1-reduces A to B, and g 1-reduces B to A. We construct a suit-
able permutation £ as the union of a chain of decidable finite functions A,
s € w. We set out from hy = 0.

Suppose &g has been constructed, it is 1-1, and
Vu€Domh, (u €EA < hy(u) €EB).
Let s be even, say s = 2x. If x € Domhy, hy,| = h,. Otherwise, {x} U

Dom i has more elements than Ran iy, so we can define Ay (x) to be the
first element of the sequence f(x), f(hylf(x)), f(hyf(hif(x))),... that does
not belong to Ran 4.

If s be odd, say s =2y + 1, we proceed in the same way, but in the other
direction, doing nothing if y € Ran hg, putting it in otherwise and using g to

find a corresponding element for the domain of &g .

The proof shows more.
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19.5 Corollary. Let (A,),e,, and (B,),e,, be partitions of w into infinite
sets, and f and g computable injections such that for all n, fTA,] € B, and
glB,] € A,. Then there exists a computable permutation / such that for all
n, h[A,] =B,,.

20 Acceptable numberings

Let P be the class of p.c. functions of one variable. A numbering of the
p.c. functions is a surjection p: @ —» P. The numbering ¢ used thus far is
the standard or canonical numbering. A numbering p is acceptable if there

are computable functions f'and g such that for all x, @rx) = Pr and Po(x) = Pr-

Acceptable Numbering Theorem (Rogers). For any acceptable numbering

p of the p.c. functions, there exists a computable permutation £ such that for
all e, Mz(e) =@,

Proof. Part exercise, part promise.

Homework. Make sure you understand the exercise part of the proof of the

Acceptable Numbering Theorem. Hand in: 1.6.9 (inacceptable numberings).

21 24 forms
The projection of a relation R € w x w is the set {x| JyRxy}. 3, is the

class of projections of computable relations. A 2 (normal) form for a set is

a presentation as such a projection.

21.1 Normal Form Theorem for c.e. sets. A set is c.e. if and only if it is

(in) X;.

Proof. (=) If Ais c.e., then A = W, for some index e, and
YEAeIsxEW,,

(<) If R is computable, and A = {x| JyRxy}, define: ¥ (x) ~ uyRxy. Then A

= Dom .

22.2 Definition. If A = W,, we call e a Z;-index or a c.e.-index for A.

22.3 Quantifier Contraction Theorem. A € X, iff there are n € w and an

(n + 2)-ary computable relation R such that

XEA < Jyy... y,Rxyg...y,
Proof. Define a binary computable relation S by

Sxy < R(x, (¥)g---(V)p)-
Then x € A < JySxy.

An n-ary relation R is c.e. if {{y,..., y,)| Ry1...,} is c.e. By what we
have just seen, this is equivalent to the existence of a computable relation §
such that Ry, ...y, < JzSy;...y,z. We also have:
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22.4 Corollary. The projection of a c.e. relation is c.e.

The Quantifier Contraction Theorem is very useful for showing sets to be
c.e. For example,
(D) K={xl3sx € W, }.
(2) Ko = {xl 3s mx € Wy, (3.
(3) Ky ={xI3sIyy e W, }.
(4) Ran @, = {yl AsAx y = @, ((©)}.
(5) @, itself, as arelation, is c.e.: itis {(y, V)l s y = @, ((x)}.

22.5 Uniformization Theorem. For every c.e. relation R, there exists a p.c.

function v such that
Y®| = IYRX < R(Y®), %)
Proof. Since R is c.e., there exists a computable relation S such that Ryx <

JzSyxz. Define: y(X) = (uu.S((u)g, X, (1)1)o-

The function v is called a selector function. Observe that an index for ¥
can be computed (it can be found uniformly) from any given c.e. index of R.

Moreover, if R actually is a unary function, then = R.
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