Zahlen und Spiele

Conwayspiele II

Luna Block

nach H.-D. Ebbinghaus et al. "Zahlen", Springer-Verlag.

Gliederung

1. Zur Theorie der Spiele

- 1.1 Gewinnstrategien
- 1.2 Positive und negative Spiele
- 1.3 Eine Einteilung der Spiele

2. Eine halbgeordnete Gruppe äquivalenter Spiele

- 2.1 Das Negative eines Spiels
- 2.2 Die Summe zweier Spiele
- 2.3 Eine Halbordnung der Spiele

3. Spiele und Conwayspiele

- 3.1 Die grundlegenden Abbildungen
- 3.2 Übertragung der für Spiele definierten Relationen und Operationen auf Conwayspiele
- 3.3 Beispiele

Zur Theorie der Spiele

$$X = (S_1 S_0) \rightarrow L_1 \rightarrow R_1$$
 $X = (S_1 S_0) \rightarrow L_1 \rightarrow R_1$
 $X = (S_1 S_0) \rightarrow L_1 \rightarrow R_1$
 $X = (S_1 S_0) \rightarrow L_1 \rightarrow R_1$
 $S = (S_1 S_0) \rightarrow L_1 \rightarrow R_1$
 $S = (S_1 S_0) \rightarrow L_1 \rightarrow R_2$
 $S = (S_1 S_0) \rightarrow L_1 \rightarrow L_1 \rightarrow L_2$
 $S = (S_1 S_0) \rightarrow L$

Gewinnstrategien

Spiel x, Spieler A (A = L oder A = R) Strategie σ für A in x schreibt einen Zug eindeutig vor.

Definition 1.1. σ heiße eine *Gewinnstrategie für L im Spiel x, falls R beginnt*, genau dann, wenn σ eine Strategie für L in x ist und wenn L jede Partie gewinnt, bei der R beginnt, falls L mit der Strategie σ spielt.

Notation. $L \times R$: L hat eine Gewinnstrategie im Spiel x, falls R beginnt. $L \times L$, $R \times L$, $R \times R$ analog.

Gewinnstrategien

Lemma 1.2. Sei x' ein rechtes Vorgängerspiel von x. Es gelte Rx'L. Dann gilt RxR. **Roweis**

Beweis. So > So, Jann Geneinnstrategie wegen Rx'L => RxR

Lemma 1.3. Für jedes rechte Vorgängerspiel x' von x sei Lx'L. Dann gilt LxR.

Beweis. So > So, dann GerinnStrategir Wegen Lx'L =) LxR

Lemma 1.2 dual. Sei x' ein linkes Vorgängerspiel von x. Es gelte Lx'R. Dann gilt LxL. **Lemma 1.3 dual.** Für jedes linke Vorgängerspiel x' von x sei Rx'R. Dann gilt RxL.

Gewinnstrategien

Satz 1.4. (LxR oder RxR) und (LxL oder RxL).

Beweis. Induktionsprinzip für Spiele. Wenn aus der Induktionsvoraussetzung, dass P für jedes Vorgängerspiel x' von x gilt, die Induktionsbehauptung Px folgt, dann hat jedes Spiel x die Eigenschaft P.

Positive und negative Spiele

Definition 2.1. 0 < x genau dann, wenn LxR. "positiv" **Definition 2.2.** x < 0 genau dann, wenn RxL. "negativ" 7+1=(50,...1 hz,0)

Notation. x^L : linkes Vorgängerspiel von x x^R : rechtes Vorgängerspiel von x

N'EO (=) RXL, n'ent 0=X (=) N'ent LXR (=) RXR

Lemma 1.2'. Wenn ein $x^R < 0$, dann nicht 0 < x. **Lemma 1.3'.** Wenn für alle x^R nicht $x^R < 0$, dann 0 < x.

Lemma 1.2 dual'. Wenn ein $0 \le x^L$, dann nicht $x \le 0$.

Lemma 1.3 dual'. Wenn für alle x^L nicht $0 < x^L$, dann x < 0.

Satz 2.3. $0 \le x$ genau dann, wenn für alle x^R nicht $x^R < 0$. **Satz 2.4.** x < 0 genau dann, wenn für alle x^L nicht $0 < x^L$.

Eine Einteilung der Spiele

Satz 1.4'. (LxR und LxL) oder (LxR und RxL) oder (RxR und LxL) oder (RxR und RxL).

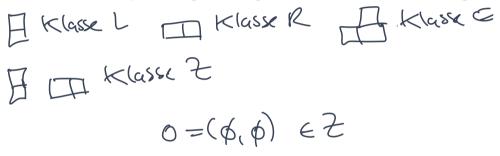
Definition 3.1.

- (a) Spiel x gehört zur Klasse L, falls LxR und LxL.
- **(b)** Spiel x gehört zur Klasse **R**, falls RxR und RxL.
- (c) Spiel x gehört zur Klasse E, falls RxR und LxL.
- (d) Spiel x gehört zur Klasse **Z**, falls LxR und RxL.

Bemerkung 3.2. Jedes Spiel liegt in genau einer der Klassen L, R, E, Z.

Eine Einteilung der Spiele

Definition 3.3. Zwei Spiele sind *gleichwertig*, wenn sie in derselben Klasse liegen.



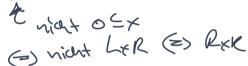
Eine Einteilung der Spiele

Bemerkung 3.4.

RXL LXR

- (a) $x \in \mathbf{Z}$ genau dann, wenn $x \le 0$ und $0 \le x$.
- **(b)** $x \in L$ genau dann, wenn $0 \le x$ und $x \nleq 0$. "echt positive Spiele"
- (c) $x \in \mathbb{R}$ genau dann, wenn $x \le 0$ und $0 \not\le x$. "echt negative Spiele"
- (d) $x \in E$ genau dann, wenn $x \nleq 0$ und $0 \nleq x$.

Bemerkung 3.5.
$$0 \in \mathbb{Z}$$
.
Satz 3.6. $0 \le 0$.



Eine halbgeordnete Gruppe äquivalenter Spiele

Das Negative eines Spiels

Definition 4.1. Sei $x = (S, s_0, \rightarrow_L, \rightarrow_R)$ ein Spiel.

Dann sei das Negative des Spiels

$$- \times = (S, s_0, \rightarrow_R, \rightarrow_L).$$

Bemerkung 4.2.

(a) -
$$(-x) = x$$
.

(b)
$$-0 = 0$$
.

Bemerkung 4.3. Wenn $0 \le x$, dann $-x \le 0$.

Bemerkung 4.3 dual. Wenn $x \le 0$, dann $0 \le -x$.

Die Summe zweier Spiele

Definition 5.1. Seien $x_1 = (S_1, s_{01}, \rightarrow_{L1}, \rightarrow_{R1}), x_2 = (S_2, s_{02}, \rightarrow_{L2}, \rightarrow_{R2})$ Spiele.

Dann sei die Summe

$$x_1 + x_2 = (S, s_0, \rightarrow_L, \rightarrow_R)$$

mit

$$S = S_1 \times S_2, s_0 = (s_{01}, s_{02})$$

sowie

$$(s_1, s_2) \to_L (s'_1, s'_2)$$

genau dann, wenn

$$(s_1
ightarrow_{L1} s_1' ext{ und } s_2 = s_2') ext{ oder } (s_1 = s_1' ext{ und } s_2
ightarrow_{L2} s_2')$$

und

$$(s_1, s_2) \to_R (s'_1, s'_2)$$

genau dann, wenn

$$(s_1 \to_{R1} s_1' \text{ und } s_2 = s_2') \text{ oder } (s_1 = s_1' \text{ und } s_2 \to_{R2} s_2').$$

Die Summe zweier Spiele

Bemerkung 5.2. - (x + y) = -x - y (= -x + (-y)).

Satz 5.3.

- (a) 0 < x x und x x < 0.
- **(b)** Wenn $0 \le x$ und $0 \le y$, dann $0 \le x + y$.
- (c) Wenn $0 \le x + y$ und $y \le 0$, dann $0 \le x$.

- (a) R begint in x-x, Lüberiumt jedy tong van R'in andear Komponente => L(x-x)R (=) 0 = x-x
- (b) 0 = x 1 0 = y =) LxR 1 lyR R beginnt in x+y, L Zient in desalbus (Komponente wie R wit Gewinnstrategic =) L(x+y) R

Bemerkung Isomorphie 1. x + y ist isomorph zu y + x.

Bemerkung Isomorphie 2. (x + y) + z ist isomorph zu x + (y + z).

Bemerkung Isomorphie 3. Seien x und y isomorph.

- (a) Wenn LxR, dann LyR.
- (b) Wenn RxR, dann RyR.
- (c) Wenn RxL, dann RyL.
- (d) Wenn LxL, dann LyL.

Definition 6.1. $x \le y$ genau dann, wenn $0 \le y - x$.

$$=(\phi,\phi)$$

Satz 6.2. $0 \le y - 0$ genau dann, wenn $0 \le y$.

Beweis.

Satz 3.6.
$$0 \le 0$$
.

Satz 4.2. (b)
$$-0 = 0$$
.

Satz 5.3. (b) Wenn
$$0 \le x$$
 und $0 \le y$, dann $0 \le x + y$.

Satz 5.3. (c) Wenn
$$0 \le x + y$$
 und $y \le 0$, dann $0 \le x$.

Satz 6.3.

- (a) Wenn $x \le y$, dann $y \le -x$.
- (b) Wenn $x \le y$, dann $x + z \le y + z$.

Satz 6.4. Nie $x^R \le x$ und nie $x \le x^L$.

Beweis.

Lemma 1.2. Sei x' ein rechtes Vorgängerspiel von x. Es gelte Rx'L. Dann gilt RxR.

xe-xk (st ein redites Vorgangerspiel un x-xk xe-xk <0 =) R(xk-xk)L =) R(x-xk)R =) vicht

Satz 6.5. $\times \leq y$ genau dann, wenn (a) nie $y^R \leq x$ und (b) nie $y \leq x^L$.

Beweis.

Sei Niu $Y^R \leq x$ $Y^R \leq x$

Definition 6.6. x = y genau dann, wenn x < y und y < x.

Satz 6.7. < ist eine Halbordnung.

Beweis.

Satz 5.3. (a) 0 < x - x und x - x < 0.

Satz 5.3. (b) Wenn 0 < x und 0 < y, dann 0 < x + y.

Satz 5.3. (c) Wenn 0 < x + y und y < 0, dann 0 < x.

Isomorphie.

4-450

Satz 6.8. Die Klassen gleicher Spiele bilden eine halbgeordnete abelsche Gruppe mit dem Nullelement Z. $\times \subseteq \emptyset$ \wedge $\wedge \subseteq \times = \emptyset$

$$x+0=x$$
 G) $x \le x+0$ 1 $x+0 \le x$
(=) $0 \le x+0-x$ 1 $0 \le x-x-0$
(=) $0 \le (x-x)+0$ 1 $0 \le (x-x)+0$

Spiele und Conwayspiele

Die grundlegenden Abbildungen

Bemerkung 7.1. $(c_s)^L \equiv (c^L)_s$ und $(c_s)^R \equiv (c^R)_s$.

Definition 7.2. $x_c \equiv (\text{Menge der } (x^L)_c, \text{ Menge der } (x^R)_c).$

Bemerkung 7.3. $(x_c)^L \equiv (x^L)_c$ und $(x_c)^R \equiv (x^R)_c$.

Satz 7.4. Für jedes Conwayspiel c gilt $c_{sc} \equiv c$.

Beweis.

Induktionsprinzip für Conwayspiele. Wenn aus der Induktionsvoraussetzung, dass Px' für jedes linke oder rechte Element x' eines beliebigen Conwayspiels x, die Induktionsbehauptung Px folgt, dann hat jedes Conwayspiel x die Eigenschaft P.

Die grundlegenden Abbildungen

Bemerkung 7.1.
$$(c_s)^L \equiv (c^L)_s$$
 und $(c_s)^R \equiv (c^R)_s$.
Bemerkung 7.3. $(x_c)^L \equiv (x^L)_c$ und $(x_c)^R \equiv (x^R)_c$.

Satz 7.5. Für jedes Spiel x gilt $x = x_{cs}$. $(=> \times \leq \times < \leq \times \times)$ **Beweis.**

Induktionsprinzip für Spiele.

Satz 6.5. $x \le y$ genau dann, wenn (a) nie $y^R \le x$ und (b) nie $y \le x^L$. Satz 6.4. Nie $x^R \le x$ und nie $x \le x^L$.

$$X \subseteq X_{CS} \stackrel{(=)}{=}$$
 $\stackrel{(=)}{\text{lie}} X_{CS} \stackrel{(=)}{=} X_{CS} \stackrel{(=)}{=}$

Übertragung der für Spiele definierten Relationen und Operationen auf Conwayspiele

Definition 8.1. $c \le c'$ genau dann, wenn $c_s \le c'_s$.

Definition 8.2. c = c' genau dann, wenn $c \le c'$ und $c' \le c$.

Definition 8.3. - c \equiv (- c_s) $_c$.

Definition 8.4. $c_1 + c_2 \equiv (c_{1s} + c_{2s})_c$.

Satz 8.5. $c \le c'$ genau dann, wenn (a) nie $c'^R \le c$ und (b) nie $c' \le c^L$.

Beweis.

Satz 6.5.
$$x \le y$$
 genau dann, wenn (a) nie $y^R \le x$ und (b) nie $y \le x^L$.
 $C \in C^1 \subseteq C_S \subseteq C^1 \subseteq C_S \subseteq C_S \cap C$

Übertragung der für Spiele definierten Relationen und Operationen auf Conwayspiele

Satz 8.6. - c \equiv (Menge der - (c^R) , Menge der - (c^L)).

Satz 8.7. $c_1 + c_2 \equiv (\text{Menge der } (c_1^L + c_2) \cup \text{Menge der } (c_1 + c_2^L), \text{ Menge der } (c_1^R + c_2) \cup \text{Menge der } (c_1 + c_2^R)).$

Satz 8.8. Die Klassen gleicher Conwayspiele bilden in Bezug auf \leq , -, + eine halbgeordnete abelsche Gruppe.

Beispiele