DIFFERENTIALGEOMETRIE

Lösung für Aufgabe (A33) c)

Hier ist eine korrekte Lösung für die Aufgabe (A33) c) unter der Zusatzannahme, dass g eine Riemannsche Metrik ist.

Sei also (M,g) eine Riemannsche Mannigfaltigkeit und $f:M\to\mathbb{R}$ eine glatte Funktion mit $\|\operatorname{grad} f\|\equiv 1$. Wir betrachten einen Punkt $x\in M$ und die (lokale) Integralkurve $\gamma:(-\epsilon,\epsilon)\to M$ von grad f mit $\gamma(0)=x$. Offenbar gilt dann für alle $0< s<\epsilon$

$$L(\gamma|_{[0,s]}) = \int_0^1 \|\dot{\gamma}(t)\| \, dt = \int_0^s 1 \, dt = s.$$

Im Folgenden ist noch wichtig, dass dies auch die Differenz der Funktionswerte $f(\gamma(s)) - f(\gamma(0))$ ist.

Wir wollen zeigen, dass der Abstand von x zu $y=\gamma(s)$ mindestens f(y)-f(x) ist, so dass $\gamma|_{[0,s]}$ eine kürzeste Verbindung zwischen diesen Punkten und somit eine Geodätische sein muss. Dazu betrachten wir eine beliebige andere Kurve $\delta:[0,1]\to M$ mit $\delta(0)=x$ und $\delta(1)=y$, und zeigen, dass sie mindestens Länge s besitzt. Für jedes $t\in[0,1]$ wissen wir einerseits

$$g(\dot{\delta}(t), \operatorname{grad}_{\delta(t)} f) \le ||\dot{\delta}(t)|| \cdot ||\operatorname{grad}_{\delta(t)} f|| = ||\dot{\delta}(t)||,$$

weil g Riemannsch ist und $\|\operatorname{grad} f\| \equiv 1$ gilt, und andererseits

$$g(\dot{\delta}(t), \operatorname{grad}_{\delta(t)} f) = df(\dot{\delta}(t))$$

nach Definition des Gradientenvektorfeldes. Also folgt

$$L(\delta) = \int_0^1 \|\dot{\delta}(t)\| \, dt \ge \int_0^1 g(\dot{\delta}(t), \operatorname{grad}_{\delta(t)} f) dt = \int_0^1 df(\dot{\delta}(t)) \, dt = \int_0^1 \frac{d}{dt} (f \circ \delta)(t) \, dt = f(y) - f(x),$$

und dies war genau unsere Behauptung.