Symplectic Geometry

Problem Set 1

1. Prove that a 2-form ω on a 2*n*-dimensional real vector space V is symplectic if and only if

$$\omega^n = \underbrace{\omega \wedge \cdots \wedge \omega}_{n \text{ times}} \neq 0.$$

2. Recall that for a linear subspace W of a symplectic vector space (V, ω) we defined the ω -orthogonal complement as

$$W^{\perp} := \{ v \in V : \omega(u, v) = 0 \text{ for all } u \in W \}.$$

- a) Prove that $\dim W + \dim W^{\perp_{\omega}} = \dim V!$
- **b)** Prove that W is a symplectic subspace if and only if $(W, \omega|_W)$ is a symplectic vector space if and only if $V = W \oplus W^{\perp_{\omega}}!$
- c) More generally, prove that the quotient space $W/(W \cap W^{\perp})$ always inherits a symplectic structure from V.
- **3.** Prove that a linear subspace W of codimension 1 in a symplectic vector space (V, ω) is always coisotropic!
- 4. Prove that the standard euclidean scalar product $g(.,.)_{st}$, the standard complex structure J_{st} and the standard symplectic form ω_{st} on \mathbb{R}^{2n} are related by

$$g_{\rm st}(u,v) = \omega_{\rm st}(u,J_{\rm st}v).$$

- 5. Prove that given two Lagrangian subspaces $L_0, L_1 \subset (V, \omega)$ of a symplectic vector space such that $L_0 \cap L_1 = \{0\}$ (i.e. L_0 and L_1 are transverse), there exists a symplectic basis $(e_1, \ldots, e_n, f_1, \ldots, f_n)$ for V such that $L_0 = \operatorname{span}(e_1, \ldots, e_n)$ and $L_1 = \operatorname{span}(f_1, \ldots, f_n)$.
- **6.** Give examples of elements of $SL(4, \mathbb{R})$ which are not elements of $Sp(4, \mathbb{R})!$

- 7. We have seen in class that the eigenvalues of a symplectic matrix come in quadrupels λ , λ^{-1} , $\bar{\lambda}$ and $\bar{\lambda}^{-1}$. Since a 2 × 2 symplectic matrix has at most two eigenvalues, these four values cannot all be distinct in this case. Prove that for $A \in \text{Sp}(2, \mathbb{R})$
 - Tr A > 2 if and only if both eigenvalues are real, positive and different from 1,
 - $-2 \leq \text{Tr } A \leq 2$ if and only if both eigenvalues are on the unit circle, and
 - Tr A < -2 if and only if both eigenvalues are real, negative and different from -1.
- 8. Prove that $Sp(2, \mathbb{R})$ is diffeomorphic to the open solid torus $S^1 \times \mathbb{R}^2$!