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HE ASURABLE (CARDINALS

0.A.6 Filters and ideals Definition 14.1. An ordinal £ > w is measurable if there is a k-complete,
. x . e e e
non-principal ultrafilter on x.

A filter on a set X # () is a non-empty collection of subsets of X closed

under intersections and supersets, i.e., If D is a k-complete, non-principal ultrafilter on a set X, its characteristic
e ABeF=ANnBEeF, function p: 2(X) — 2 satisfies:
e Ace FANACBCX= BelF. (88a) w(0) =0,
A filter is proper if @ ¢ F, and it is principal if it is the collection of all (88b) pu(iz}) =0 for all z € X,
supersets of some B C X, i.e. it is of the foom {AC X | B C A}. (88¢) It (Un{;-} }[“) — Zm{_r 1(Xa) for all v < k and pairwise
A proper filter on X which is maximal under disjoint X, C X and a < 7,
£ inclusion is called an ultrafilter on X.
un A filter F is k- -complete if it is closed under intersections of < & elements, and, conversely, any p satisfying (m (]M) and 83c)) 1s the characteristic
e, if for any v < x and any choice of A, € F, then [),,_, As € F. Note that function of a k-complete, non-principal ultrafilter on X. A function pu as
W this definition makes sense for all ordinals &k > 2. dlthmlg,h it is most useful above is a probability measure on X in the sense of Section [8.A} (88¢) is
‘hen x is a cardinal. Whenever F' is an ultrafilter, this can be restated as a strengthening of o-additivity and it is called s-additivity, while (88b) is
follows: if v < x and .., Aa € F, then A, € F for some o < 7. Dually, an dubbed in this context non-triviality rather than continuity. Therefore s is
ideal 1s k-complete if it is closed under < k-unions or. equivalently, if its dual measurable just in case there is a k-complete, non-trivial measure p: 2(x) —
filter is k-complete. Thus every filter and ideal is w-complete, and a filter {0,1}.

(ideal) is wy-complete just in case it is closed under countable intersections "" V) IQ
(unions). Often w;-completeness is called o-completeness. LO,C"U"CS Y\ & y" ) we av€ hwo N%
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As usual, we denote by [k]" the set of n-element subsets of x. A

function f : [k]" — w is ¢ allerl an n-colouring and a set H is called omogeneous for [ if f[[H|" is constant.
o — e —————————————————————————————————.
We call nite colouring if it is an n-colouring for some natural number n € N. VON0 CH ROMAA l Q

m Theorem 2 (Rowbottom). If x is measurable, then for every countable set {fs; s € S} of finite colourings,
there is a set H of size x that is homogeneous for all L:U]{Jurings )

.} [1°—>10 ot H size D Yt lmmﬁe«(ewg

“Thasreeu (Bouwuse '\J> \J %w;wfio o waﬁoeu e:; e




13 The Shoenfield Absoluteness Theorem

14 A Primer of Large Cardinals

26 Suslin Sets and Cardinals

l WORK IN PROGRESS.
Exercise 26.1 (The Kunen—Martin Theorem). Let R be a_s-Suslip well-

f(]llll(!f‘ll’i relation on IR R = p|T|. Show t'.l'lﬁ.{t Coll(w, k) I+ “p|T] is a DO“ P X c. + ‘ A . F E‘__]

well-founded relation.” Conclude that ||R|| < k.
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Fix a bijection ¢ — s; from w — w=* such that if s; C s;, then ¢ < j. (This implies that C an'md
lh(s;) <1i.) Let T C (w X w)<“ be a tree, z € w¥, and s € w<*. Then we let @ >
s &1 A = F ‘
®xlv — K

. | T, :={t € w<¥; (zlh(t),t) € T

r— U TJ'['M* la

neN A': F I_Tj
K, :={i <lh(s); s; € T}, and
K, = {f Cw; 8§ € Tr]’ = U I{;rfn-

nel

We note that T is a tree of finite height (every element t € T has length < Ih(s)) and that K is a finite
set. We observe that T, = {s;; i € K,} (but, in general, T’ 2 {si;1 € Kg}).
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Fix a bijection i — s; from w — w= such that if s; C s;, then i < j. (This implies that

L |
lh(s;) <i.) Let T C (w x w)=* be a tree, x € w¥“, and s € w=*. Then we let E- A \ —_—_— g *

T, == {t € w™; (s]ih(t),2) € T}, ‘:“'0
T, :={t € w<¥: (z[lh(t),t) € :r}}: U Tt O —m w

nckH

) Ks =11 <Ih(s); 8; € T, }| and &

| Ke= {JEL;;:H,ETJ}ZIE{H””. ,)é-_-_:—_ %i'&“(ﬁ‘)) ?ie‘g j

We note that 1, is a tree of finite height (every element t € 15 has length < lh(s)) and that K, is a finite

set. We observe that T, = {s;; ¢ € K.} (but, in general, T} _—ij {s;;1€ K,}). 'KS <SS O Sd * I-\Q“"-’""‘ﬂ‘ “o “62"‘5.
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