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ANALYTIC DETERMINACY

Notation. Fix a bijection i — s; from w — w<* such that if s; C s;, then ¢ < j. (This implies that
Ih(s;) <i.) Let T C (w x w)<“ be a tree, x € w*, and s € w<“. Then we let

T, == {t €w™; (s|Ih(t),?) € T},

T, = {t € w<¥; (z]lh(t),t) € T} = U Tyins
neN
K, = {Z < 1h(5), 8; € TS}7 and
Ky:={icw;s; €T} =] Kepn-
neN
We note that Ty is a tree of finite height (every element t € T has length < 1h(s)) and that K is a finite
set. We observe that T, = {s;; i € K.} (but, in general, T, 2 {s;; i € K,}).
We remember that if A € IT}, then there is a tree T on w x w such that
x € Aif and only if (T}, 2) is wellfounded
if and only if (T}, <kp) is wellordered

if and only if there is an order preserving map from (7, <kg) to (w1, <)

where <kp is the Kleene-Brouwer order on w<*. For any s € w<%, we write <, for the order induced by
the Kleene-Brouwer order on w<“ on Kj, i.e., i <s j if and only if s; <kp s;. Note that since Kj is finite,
(K5, <s) is a (finite) wellorder.

Let S be any tree on w and k be an uncountable cardinal. A function g : w — & is called a KB-code for
S if for all ¢ and j such that s;,s; € S, we have that s; <gp s; ¢ g(i) < g(j). Clearly, there is an order
preserving map from (5, <kp) to (w1, <) if and only if there is a KB-code for S, so we can add the following
equivalence to the above characterisation of II; sets:

x € A if and only if there is a KB-code for T,

Shoenfield’s Theorem. We first prove a tree representation theorem for H% sets.
Theorem 1 (Shoenfield). If x is uncountable, then every IIi set is x-Suslin.

Proof. Let A € II} and let T be a tree on w x w such that = € A if and only if there is a KB-code for
T,.. Let M be the set of all partial functions from w into x with finite domain. Note that |M| = &, so it is
sufficient to show that A is M-Suslin. If s € w<* and u € M<“ such that lh(h) < lh(s), we say that u is
coherent with s if

(1) for all ¢ < lh(u), we have that dom(u;) = K}y,

(2) for all i < 1lh(u), u(7) is an order preserving map from (Ky;, <xp) into (k, <), and

(3) for i < j, we have that u; C u,.
We now define the Shoenfield tree on w x M by T := {(s,u); u is coherent with s} and claim that A = p[T]:

“C”: If ¢ € A, then let g : w — &k be a KB-code for T, and define u(i) := g[ K. By definition, u[n is

coherent with x|n for all n, and so (z,u) € [T].

O Ifz e p[f], find u € M¥ such that (z,u) € [f], this means that for each n, u[n is coherent with z[n.
As noted above, we have that T, = {s;; i € K} = {s;; In(i € dom(u(n))}. We define © := (J{u(i); i € w}.
By coherence, % is a function from K, to k; now we define

u(n) ifne K, and

grw= K:n’_){ 0 otherwise.



We claim that g is a KB-code for T, whence x € A: Suppose not, then there are ¢ and j such that s;,s; € T,
and s; <k 5; # ¢(i) < g(j). Since i,j € K, find n large enough such that i,j € K;,. By definition
g1 Kz = u(n). But this means that u(n) is not an order preserving map from (K, <ks) into (k, <),
violating condition (3) of coherence. Q.E.D

Measurable Cardinals. Let X be a set. A non-empty family U C o(X) is called a witrafilter over X if
for any A, B C X, we have that

(1) if A, BeU, then ANBeU,

(2) if Ae U and B D A, then B € U, and

(3) if A¢ U, then X\A € U.
We say that an ultrafilter is non-trivial if it does not contain any finite sets and if k is any cardinal, it is
called k-complete if it is closed under intersections of size < x. Note that w-completeness follows from (1).
A non-trivial k-complete ultrafilter cannot contain any sets of size < k.
[If |A] = X < K, then for each a € A, {a} ¢ U, so by (3), X\{a} € U, but then by x-completeness, X\A = ({X\{a}; a € A} €
U. If now A € U, then ¥ = AN X\A € U. Contradiction to non-triviality.]

An uncountable cardinal x is called measurable if there is a k-complete non-trivial ultrafilter on x. The
Axiom of Choice implies that there are non-trivial ultrafilters on w; as mentioned, they are w-complete, so
N, technically satisfies the conditions of the definition. The existence of uncountable measurable cardinals
cannot be proved in ZFC and is a so-called large cardinal aziom. More precisely, if MC stands for “there is
a measurable cardinal”, then for every model M |= ZFC + MC, I can find a submodel N C M such that
N E ZFC + -MC.

Being measurable has interesting consequences for the combinatorics on . We are going to use one of
them in our proof of analytic determinacy. As usual, we denote by [«]" the set of n-element subsets of k. A
function f : [k]™ — w is called an n-colouring and a set H is called homogeneous for f if f[[H]™ is constant.
We call f a finite colouring if it is an n-colouring for some natural number n € N.

Theorem 2 (Rowbottom). If x is measurable, then for every countable set {fs; s € S} of finite colourings,
there is a set H of size x that is homogeneous for all colourings f;.

In our proof of analytic determinacy, we are only going to use Rowbottom’s Theorem, no other properties
of measurable cardinals; so, for our purposes, one could take the statement of Rowbottom’s Theorem as the
assumption for analytic determinacy in the next section.

Analytic Determinacy. If T is a boldface pointclass, then Det(T) is equivalent to Det(I'). Thus, analytic
determinacy and co-analytic determinacy are equivalent.

Theorem 3 (Martin, 1969/70). If there is a measurable cardinal, then every co-analytic set is determined.

Proof. Let x be a measurable cardinal and A € TI;. We aim to show that the game G(A) is determined.
By (the proof of) Shoenfield’s Theorem, we know that there is a tree 7 on w x M such that A = p[T].
(Remember that M was the set of partial functions from w to x with finite domain.) We are going to define
a (determined) game Gaux(T) based on the Shoenfield tree and show that a winning strategy for either player
in Gaux(f) can be transformed into a winning strategy for the same player in the original game G(A). This
proves the theorem.

In the auxiliary game, player I plays elements of w x M and player II plays elements of w as follows:

L | xo,uo T2, U1 T4, U2 Te, U3
1I €Tq T3 I5 T
We obtain a sequence x € w® with z(n) := z,, and a sequence v € M¥ with u(n) := u,. Player I wins

I~

Gaux(T) if (z,u) € [T]. Note that Gaux(T) is a closed game on w x M, thus by the Gale-Stewart Theorem,
it is determined.

Let us make a number of observations about the relationship between the original game G(A) and the
auxiliary game Gaux(f). We call the moves w; auziliary moves. If p is a position in the auxiliary game (i.e.,
a finite sequence of elements of w and elements of M in the right order), then we can define a position p*
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in the original game by forgetting about the auxiliary moves. This allows us to consider strategies 7 for
player II in the original game as strategies in the auxiliary game: if p is a position in the auxiliary game, we
let 7.(p) := 7(p*), i.e., just forget about the auxiliary moves and play as if you were playing in the original
game.

~

Lemma 4. If player I has a winning strategy in G,ux(7T'), then they have a winning strategy in G(A).

Proof. Suppose ¢ is a winning strategy in Gaux(f) and 7 is any strategy for player II in the original
game. As just mentioned, then 7, is the version of that strategy in Gaux(f). Since ¢ is winning, we know
that o * 7, = (z,u) € [f] Define a strategy ¢* in the original game as follows: while player II plays natural
number moves according to 7, you produce the auxiliary play o * 7, on an auxiliary board. If that auxiliary
game tells you to produce a position p Ey your next move, then you produce the move p* in the original

game. Then o* x 7 = z, and thus « € p[T] = A, so ¢* is winning. Q.E.D

Lemma 5. If player II has a winning strategy in Gaux(T), then they have a winning strategy in G(A).

Proof. Let s € w<*. Let ks := |K|. If Q € [x]", then there is a unique order preserving map
w: (Ky, <s) = (Q,<). Let uf® := wKy. Then (uP?; i < Ih(s)) is coherent with s. Thus, if you fix
some @ € [H]k'—*, you can transform a position s in the original game into a position s, ¢ in the auxiliary
game in such a way that the auxiliary moves produce @ as the range and form a sequence coherent with the
position s.

Let now 7 be a strategy for player II in the auxiliary game. For each s € w<“, we define a k4-colouring
fs  [K]* — w by f4(Q) := 7(s+.0): we colour the ky-element subsets of k by the answer that the strategy
T gives to the position s augmented via @ in the sense given above. By Rowbottom’s theorem, there is a
set H C & of size k that is homogeneous for all functions fs, i.e., if Q,Q’ € [H]*, then 7(s.q) = fs(Q) =
fs(Q") = 7(s4,q), so the answer of the strategy 7 does not depend on the set @ as long as it is a subset
of H. In particular, we can take the simplest imaginable subset of H with k, elements: let Qs be the set
consisting of the first ks many elements of H.

Now, we define a strategy 7p for player II in the original game by 74(s) := 7(s.,g,..). (Note that the
precise choice of the set Qg s is irrelevant in this definition by homogeneity, since fs(Qm,s) = fs(Q) for any
Q€ [H]*)

We prove that if 7 was winning in the auxiliary game, then 75 is winning in the original game. Suppose
not, so there is a counterstrategy o such that x := o * 7y € A. This means (since H is uncountable) that
there is an orderpreserving map from (T,., <kp) to (H, <) giving rise to a KB-code ¢ : w — H for T,. Using
the KB-code g, we can now define u; := g[K,}; and consider the play of the auxiliary game

L | 2o, uo T2, U Ty, Uz Tg, U3
II T T3 s T7
producing (z,u) € [ﬂ We claim that this is a play according to 7, so we need to show that for every ¢ € N,

the play by player II is the T-answer to the previous position, i.e., x2;41 = 7(20, U0, 1, .., 24, t;). Fix i € N
and consider @ := ran(u;) C H. Then we have that (zg,uo, %1, ..., T2i, ;) = (£]2i 4+ 1), . We see that

Toj11 = TH({E [22 + ].) (since  was produced by Tg)
= T((l‘ [2n + 1)*7QH,5) (by definition of 75 )
= T((J? f2’fb + 1)*,Q) (since the choice of Q doesn’t matter by homogeneity)

= T(x07u0; X1, -"7x2i7ui)7

so the above play is a play according to 7. But that is a contradiction, since 7 was winning for player II,
and so (z,u) ¢ [T]. Q.E.D

-~

Lemmas 4 & 5 together with the fact that G,ux(T) was determined (since it is a closed game) imply that
G(A) is determined. Q.E.D



