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Analytic Determinacy

Notation. Fix a bijection i 7→ si from ω → ω<ω such that if si ⊆ sj , then i ≤ j. (This implies that
lh(si) ≤ i.) Let T ⊆ (ω × ω)<ω be a tree, x ∈ ωω, and s ∈ ω<ω. Then we let

Ts := {t ∈ ω<ω ; (s�lh(t), t) ∈ T},

Tx := {t ∈ ω<ω ; (x�lh(t), t) ∈ T} =
⋃
n∈N

Tx�n,

Ks := {i ≤ lh(s) ; si ∈ Ts}, and

Kx := {i ∈ ω ; si ∈ Tx} =
⋃
n∈N

Kx�n.

We note that Ts is a tree of finite height (every element t ∈ Ts has length ≤ lh(s)) and that Ks is a finite
set. We observe that Tx = {si ; i ∈ Kx} (but, in general, Ts % {si ; i ∈ Ks}).

We remember that if A ∈ Π1
1, then there is a tree T on ω × ω such that

x ∈ A if and only if (Tx,%) is wellfounded

if and only if (Tx, <KB) is wellordered

if and only if there is an order preserving map from (Tx, <KB) to (ω1, <)

where <KB is the Kleene-Brouwer order on ω<ω. For any s ∈ ω<ω, we write <s for the order induced by
the Kleene-Brouwer order on ω<ω on Ks, i.e., i <s j if and only if si <KB sj . Note that since Ks is finite,
(Ks, <s) is a (finite) wellorder.

Let S be any tree on ω and κ be an uncountable cardinal. A function g : ω → κ is called a KB-code for
S if for all i and j such that si, sj ∈ S, we have that si <KB sj ↔ g(i) < g(j). Clearly, there is an order
preserving map from (S,<KB) to (ω1, <) if and only if there is a KB-code for S, so we can add the following
equivalence to the above characterisation of Π1

1 sets:

x ∈ A if and only if there is a KB-code for Tx

Shoenfield’s Theorem. We first prove a tree representation theorem for Π1
1 sets.

Theorem 1 (Shoenfield). If κ is uncountable, then every Π1
1 set is κ-Suslin.

P r o o f. Let A ∈ Π1
1 and let T be a tree on ω × ω such that x ∈ A if and only if there is a KB-code for

Tx. Let M be the set of all partial functions from ω into κ with finite domain. Note that |M | = κ, so it is
sufficient to show that A is M -Suslin. If s ∈ ω<ω and u ∈ M<ω such that lh(h) ≤ lh(s), we say that u is
coherent with s if

(1) for all i < lh(u), we have that dom(ui) = Ks�i,
(2) for all i < lh(u), u(i) is an order preserving map from (Ks�i, <KB) into (κ,<), and
(3) for i ≤ j, we have that ui ⊆ uj .

We now define the Shoenfield tree on ω×M by T̂ := {(s, u) ; u is coherent with s} and claim that A = p[T̂ ]:

“⊆”: If x ∈ A, then let g : ω → κ be a KB-code for Tx and define u(i) := g�Kx�i. By definition, u�n is

coherent with x�n for all n, and so (x, u) ∈ [T̂ ].

“⊇”: If x ∈ p[T̂ ], find u ∈Mω such that (x, u) ∈ [T̂ ]; this means that for each n, u�n is coherent with x�n.
As noted above, we have that Tx = {si ; i ∈ Kx} = {si ; ∃n(i ∈ dom(u(n))}. We define û :=

⋃
{u(i) ; i ∈ ω}.

By coherence, û is a function from Kx to κ; now we define

g : ω → κ : n 7→
{
û(n) if n ∈ Kx and

0 otherwise.



We claim that g is a KB-code for Tx whence x ∈ A: Suppose not, then there are i and j such that si, sj ∈ Tx
and si <KB sj 6↔ g(i) < g(j). Since i, j ∈ Kx, find n large enough such that i, j ∈ Kx�n. By definition
g�Kx�n = u(n). But this means that u(n) is not an order preserving map from (Kx�n, <KB) into (κ,<),
violating condition (3) of coherence. q.e.d

Measurable Cardinals. Let X be a set. A non-empty family U ⊆ ℘(X) is called a ultrafilter over X if
for any A,B ⊆ X, we have that

(1) if A,B ∈ U , then A ∩B ∈ U ,
(2) if A ∈ U and B ⊇ A, then B ∈ U , and
(3) if A /∈ U , then X\A ∈ U .

We say that an ultrafilter is non-trivial if it does not contain any finite sets and if κ is any cardinal, it is
called κ-complete if it is closed under intersections of size < κ. Note that ω-completeness follows from (1).
A non-trivial κ-complete ultrafilter cannot contain any sets of size < κ.
[If |A| = λ < κ, then for each a ∈ A, {a} /∈ U , so by (3), X\{a} ∈ U , but then by κ-completeness, X\A =

⋂
{X\{a} ; a ∈ A} ∈

U . If now A ∈ U , then ∅ = A ∩X\A ∈ U . Contradiction to non-triviality.]

An uncountable cardinal κ is called measurable if there is a κ-complete non-trivial ultrafilter on κ. The
Axiom of Choice implies that there are non-trivial ultrafilters on ω; as mentioned, they are ω-complete, so
ℵ0 technically satisfies the conditions of the definition. The existence of uncountable measurable cardinals
cannot be proved in ZFC and is a so-called large cardinal axiom. More precisely, if MC stands for “there is
a measurable cardinal”, then for every model M |= ZFC + MC, I can find a submodel N ⊆ M such that
N |= ZFC + ¬MC.

Being measurable has interesting consequences for the combinatorics on κ. We are going to use one of
them in our proof of analytic determinacy. As usual, we denote by [κ]n the set of n-element subsets of κ. A
function f : [κ]n → ω is called an n-colouring and a set H is called homogeneous for f if f�[H]n is constant.
We call f a finite colouring if it is an n-colouring for some natural number n ∈ N.

Theorem 2 (Rowbottom). If κ is measurable, then for every countable set {fs ; s ∈ S} of finite colourings,
there is a set H of size κ that is homogeneous for all colourings fs.

In our proof of analytic determinacy, we are only going to use Rowbottom’s Theorem, no other properties
of measurable cardinals; so, for our purposes, one could take the statement of Rowbottom’s Theorem as the
assumption for analytic determinacy in the next section.

Analytic Determinacy. If Γ is a boldface pointclass, then Det(Γ) is equivalent to Det(Γ̆). Thus, analytic
determinacy and co-analytic determinacy are equivalent.

Theorem 3 (Martin, 1969/70). If there is a measurable cardinal, then every co-analytic set is determined.

P r o o f. Let κ be a measurable cardinal and A ∈ Π1
1. We aim to show that the game G(A) is determined.

By (the proof of) Shoenfield’s Theorem, we know that there is a tree T̂ on ω ×M such that A = p[T̂ ].
(Remember that M was the set of partial functions from ω to κ with finite domain.) We are going to define

a (determined) game Gaux(T̂ ) based on the Shoenfield tree and show that a winning strategy for either player

in Gaux(T̂ ) can be transformed into a winning strategy for the same player in the original game G(A). This
proves the theorem.

In the auxiliary game, player I plays elements of ω ×M and player II plays elements of ω as follows:

I x0, u0 x2, u1 x4, u2 x6, u3 · · ·
II x1 x3 x5 x7 · · ·

We obtain a sequence x ∈ ωω with x(n) := xn and a sequence u ∈ Mω with u(n) := un. Player I wins

Gaux(T̂ ) if (x, u) ∈ [T̂ ]. Note that Gaux(T̂ ) is a closed game on ω ×M , thus by the Gale-Stewart Theorem,
it is determined.

Let us make a number of observations about the relationship between the original game G(A) and the

auxiliary game Gaux(T̂ ). We call the moves ui auxiliary moves. If p is a position in the auxiliary game (i.e.,
a finite sequence of elements of ω and elements of M in the right order), then we can define a position p∗

2



in the original game by forgetting about the auxiliary moves. This allows us to consider strategies τ for
player II in the original game as strategies in the auxiliary game: if p is a position in the auxiliary game, we
let τ∗(p) := τ(p∗), i.e., just forget about the auxiliary moves and play as if you were playing in the original
game.

Lemma 4. If player I has a winning strategy in Gaux(T̂ ), then they have a winning strategy in G(A).

P r o o f. Suppose σ is a winning strategy in Gaux(T̂ ) and τ is any strategy for player II in the original

game. As just mentioned, then τ∗ is the version of that strategy in Gaux(T̂ ). Since σ is winning, we know

that σ ∗ τ∗ = (x, u) ∈ [T̂ ]. Define a strategy σ∗ in the original game as follows: while player II plays natural
number moves according to τ , you produce the auxiliary play σ ∗ τ∗ on an auxiliary board. If that auxiliary
game tells you to produce a position p by your next move, then you produce the move p∗ in the original

game. Then σ∗ ∗ τ = x, and thus x ∈ p[T̂ ] = A, so σ∗ is winning. q.e.d

Lemma 5. If player II has a winning strategy in Gaux(T̂ ), then they have a winning strategy in G(A).

P r o o f. Let s ∈ ω<ω. Let ks := |Ks|. If Q ∈ [κ]ks , then there is a unique order preserving map

w : (Ks, <s) → (Q,<). Let us,Qi := w�Ks�i. Then (us,Qi ; i < lh(s)) is coherent with s. Thus, if you fix
some Q ∈ [κ]ks , you can transform a position s in the original game into a position s∗,Q in the auxiliary
game in such a way that the auxiliary moves produce Q as the range and form a sequence coherent with the
position s.

Let now τ be a strategy for player II in the auxiliary game. For each s ∈ ω<ω, we define a ks-colouring
fs : [κ]ks → ω by fs(Q) := τ(s∗,Q): we colour the ks-element subsets of κ by the answer that the strategy
τ gives to the position s augmented via Q in the sense given above. By Rowbottom’s theorem, there is a
set H ⊆ κ of size κ that is homogeneous for all functions fs, i.e., if Q,Q′ ∈ [H]ks , then τ(s∗,Q) = fs(Q) =
fs(Q

′) = τ(s∗,Q′), so the answer of the strategy τ does not depend on the set Q as long as it is a subset
of H. In particular, we can take the simplest imaginable subset of H with ks elements: let QH,s be the set
consisting of the first ks many elements of H.

Now, we define a strategy τH for player II in the original game by τH(s) := τ(s∗,QH,s
). (Note that the

precise choice of the set QH,s is irrelevant in this definition by homogeneity, since fs(QH,s) = fs(Q) for any
Q ∈ [H]ks .)

We prove that if τ was winning in the auxiliary game, then τH is winning in the original game. Suppose
not, so there is a counterstrategy σ such that x := σ ∗ τH ∈ A. This means (since H is uncountable) that
there is an orderpreserving map from (Tx, <KB) to (H,<) giving rise to a KB-code g : ω → H for Tx. Using
the KB-code g, we can now define ui := g�Kx�i and consider the play of the auxiliary game

I x0, u0 x2, u1 x4, u2 x6, u3 · · ·
II x1 x3 x5 x7 · · ·

producing (x, u) ∈ [T̂ ]. We claim that this is a play according to τ , so we need to show that for every i ∈ N,
the play by player II is the τ -answer to the previous position, i.e., x2i+1 = τ(x0, u0, x1, ..., x2i, ui). Fix i ∈ N
and consider Q := ran(ui) ⊆ H. Then we have that (x0, u0, x1, ..., x2i, ui) = (x�2i+ 1)∗,Q. We see that

x2i+1 = τH(x�2i+ 1) (since x was produced by τH)

= τ((x�2n+ 1)∗,QH,s
) (by definition of τH)

= τ((x�2n+ 1)∗,Q) (since the choice of Q doesn’t matter by homogeneity)

= τ(x0, u0, x1, ..., x2i, ui),

so the above play is a play according to τ . But that is a contradiction, since τ was winning for player II,

and so (x, u) /∈ [T̂ ]. q.e.d

Lemmas 4 & 5 together with the fact that Gaux(T̂ ) was determined (since it is a closed game) imply that
G(A) is determined. q.e.d
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