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Abstract. Definable stationary sets, and specifically, ordinal definable ones,

play a significant role in the study of canonical inner models of set theory and

the class HOD of hereditarily ordinal definable sets. Fixing a certain notion
of definability and an uncountable cardinal, one can consider the associated

family of definable closed unbounded sets. In this paper, we study the extent

to which such families can approximate the full closed unbounded filter, and
their dependence on the defining complexity. Focusing on closed unbounded

subsets of a cardinal κ which are Σ1-definable in parameters from Hκ and

ordinal parameters, we show that the ability of such closed unbounded sets
to well approximate the closed unbounded filter on κ can highly vary, and

strongly depends on key properties of the underlying universe of set theory.

1. Introduction

The concepts of closed unbounded and stationary subsets capture many of the
key aspects of the combinatorics of cardinals of uncountable cofinalities. Recent
developments in the study of canonical inner models of set theory provide strong
motivations for analyzing the definability, specifically, the ordinal definability, of
these objects. In particular, the notion of a ω-strongly measurable cardinal κ in
HOD, introduced by Woodin (see [21, Definition 189]) to measure local failures of
the inner model HOD to approximate the set-theoretic universe V , is equivalent to
the fact that the restriction of the closed unbounded filter on {α < κ | cof(α) = ω}
to HOD identifies with the intersection of a small number of ordinal definable
normal measures on κ in HOD (see [2, Lemma 2.4]). Since, in HOD, many of
the sets in this intersection do not contain a closed unbounded subset, it follows
that there are many subsets of the cardinal κ that are HOD-stationary (i.e., that
meet every closed unbounded subset of κ that is an element of HOD), but are not
stationary subsets of κ in V .

Motivated by this observation, the purpose of the work presented in this paper
is to study the extent to which hierarchies of definable closed unbounded subsets of
an uncountable cardinal κ can approximate the full closed unbounded filter on κ,
where the different hierarchies are given in terms of the complexity of the defining
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formulas (e.g., Σn-formulas1 for some natural number n) and the set of parameters
allowed in these formulas (e.g., ordinal parameters or parameters contained in Hκ).
Since ordinal definable sets of ordinals can be represented as the unique solutions of
Σ2-formulas with ordinal parameters (see the proof of [9, Lemma 13.25] for details)
and closed unbounded subsets of uncountable cardinals κ that are definable by Σ0-
formulas with ordinals and elements of Hκ can be shown to have a very simple,
eventually periodic structure,2 the first place to expect different phenomena is with
Σ1-definable closed unbounded sets. In order to motivate the definitions and results
contained in this paper, we start by presenting two settings in which Σ1-definable
closed unbounded sets give an optimal approximation to the collection of all closed
unbounded sets:

• In Gödel’s constructible universe L, every subset (and, in particular, every
closed unbounded subset) of an infinite cardinal κ is the unique solution of
a Σ1-formula with parameters from κ+. This follows directly from the fact
that every such subset is the η-th element in the canonical well-ordering of
L for some η < κ+, and transitive models of “ZFC− + V = L” containing
an ordinal η can uniformly compute the initial segment of order-type η+1
of this well-ordering.

• Martin’s Maximum MM implies that every closed unbounded subset of ω1

contains a closed unbounded subset that is the unique solution of a Σ1-
formula that only uses the ordinal ω1 and real numbers as parameters.
This statement follows directly from results of Woodin that show that MM
implies admissible club guessing (see [20, Theorems 3.16, 3.17 & 3.19]).

In addition, results that will be contained in a sequel to this paper show that
for every uncountable cardinal κ satisfying κ<κ = κ, there is cofinality-preserving
forcing extension V [G] of the ground model V in which there exists a subset E of κ
such that every closed unbounded subset of κ contains a closed unbounded subset
that is the unique solution of a Σ1-formula that only uses the set E and ordinals
less than κ+ as parameters.

In contrast to these settings, the results of this paper will isolate several canonical
contexts in which collections of Σ1-definable closed unbounded sets fail to approx-
imate the closed unbounded filter. In order to formulate these results, we now
specify the notions of definability used in this paper.

Definition 1.1. A class Γ is definable by a formula φ(v0, . . . , vn) and parameters
y0, . . . , yn−1 if

Γ = {x | φ(x, y0, . . . , yn−1)}.

Throughout this paper, we study the definability of certain sets of ordinals.
Given such a set E, we will mostly consider the questions that ask whether the set
{E} is definable (in the sense of Definition 1.1) by certain formulas with parameters
coming from a given class. Note that this form of definability differs from the
statement that the set E itself is definable (again in the sense of Definition 1.1)

1See [9, p. 183].
2More precisely, it is possible to use [14, Lemma 2.3] to show that, if φ(v0, . . . , vn) is a Σ0-

formula, κ is an uncountable cardinals and z0, . . . , zn−1 ∈ Hκ ∪ Ord with the property that

C = {α < κ | φ(α, z0, . . . , zn−1)} is a closed unbounded subset of κ, then there exists a set N of
natural numbers such that C ∩ [λ, λ + ω) = {λ + n | n ∈ N} holds for coboundedly many limit

ordinals λ < κ.
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in the given way. While the former implies the latter, it is easy to see that the
converse implication fails for the set ω1 of all countable ordinals and definability by
Σ1-formulas without parameters.

We now introduce the main concepts studied in this paper:

Definition 1.2. Let n be a natural number, let κ be a uncountable cardinal and
let S be a subset of κ.

(1) Given a class R, the subset S is Σn(R)-stationary in κ if C ∩ S ̸= ∅ holds
for every closed unbounded subset C of κ with the property that the set
{C} is definable by a Σn-formula with parameters in R ∪ {κ}.

(2) The subset S is Σn-stationary in κ if it is Σn(∅)-stationary in κ.
(3) Given a class R, the subset S is Σn(R)-stationary in κ if it is Σn(R∪Hκ)-

stationary in κ.
(4) The subset S is Σn-stationary in κ if it is Σn(∅)-stationary in κ.

Trivially, all stationary subsets of a given uncountable cardinal κ are Σn(R)-
stationary in κ for every parameter class R and every natural number n. As indi-
cated by Definition 1.2, our focus in this paper will be on natural classes R such
as Ord, Hκ, Hµ for some µ < κ, and their combinations. We therefore view the
existence of non-stationary Σn(R)-stationary sets as a measure for the discrepancy
between the collection of Σn(R)-definable closed unbounded subsets and the col-
lection of all closed unbounded subsets. Our results will isolate several settings in
which highly non-stationary sets (such as singletons, or sets of successor cardinals
below a limit cardinal) are stationary for rich collections of definable sets. In partic-
ular, even in the case of singular cardinals of countable cofinality, where stationarity
coincides with coboundedness, we will present canonical examples of such cardinals
in which sparse subsets are Σn(R)-stationary. The proofs of all these results reveal
that, in the given settings, that the considered collections of Σn(R)-definable closed
unbounded subsets and Σn(R)-stationary sets possess many of structural features
provable for the collections of closed unbounded and stationary subsets of regular
uncountable cardinals. Below, we list six of our main results that best illustrate
the phenomenon described above:

• If κ is a Ramsey cardinal, then every unbounded subset of κ that consists
of cardinals is Σ1-stationary (Theorem 4.2).

• If κ is a (possibly singular) limit of measurable cardinals, then every un-
bounded subset of κ that consists of cardinals is Σ1(Ord)-stationary (The-
orem 4.7).

• If ωω is a Jónsson cardinal, then every unbounded subset of {ωn | n < ω}
is Σ1-stationary in ωω (Theorem 4.14).

• It is equiconsistent with the existence of a measurable cardinal that every
unbounded subset of {ωn | n < ω} is Σ1(Ord)-stationary in ωω (Theorem
5.3).

• It is equiconsistent with the existence of a Mahlo cardinal that there is a
regular cardinal µ for which the singleton {µ} is Σ1(Hµ)-stationary in µ+

(Theorem 5.12).
• While it is provable that for every set A of cardinality less than the reaping
number r3 and every singular cardinal κ of countable cofinality, there are
disjoint Σ1(A)-stationary subsets of κ (Proposition 2.9), it is equiconsistent

3See Definition 2.8 below.
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with the existence of a measurable cardinal that there is a singular cardinal
κ of countable cofinality such that for every subset A of Hκ of cardinality
r, there are are disjoint Σ1(A)-stationary subsets of κ (Corollary 5.11).

We now briefly outline the structure of this paper: In Section 2, we prove prelim-
inary results about the theory of Σn(R)-stationary sets using mostly combinatorial
arguments. In addition, we introduce an auxiliary property of Σn-undefinability of
an ordinal, which plays a key role in the result of the paper. In Section 3, we examine
Σ1-definability in the Dodd-Jensen core model, and prove several results regarding
Σ1-stationary sets in KDJ . Section 4 is devoted to showing that Σ1-stationarity
is weak in the presence of sufficiently large cardinals (e.g., measurable cardinals or
stably measurable cardinals), or at small cardinals with strong partition properties
(e.g., when ωω is Jónsson). In Section 5, we build on the results about KDJ as well
as on forcing results with large cardinals, to prove several equiconsistency results
about of weakness of Σ1(Ord)-definable closed unbounded sets. In Section 6, we
conclude the paper by listing some problems left open by our results.

2. Preliminaries about Σn-Stationary sets

In this section, we start to develop the theory of Σn(R)-stationary sets for natural
classes R.

2.1. A proper hierarchy. In order to motivate the below results, we start our
investigations of Σn(R)-stationary sets by presenting a setting in which these sets
form a properly descending hierarchy in the parameter n.

Theorem 2.1. Assume that the GCH holds. Then for every uncountable regular
cardinal κ and every cardinal θ satisfying θ = θκ, there is a uniformly definable
partial order Pκ,θ such that forcing with Pκ,θ preserves cofinalities and, if G is
Pκ,θ-generic over V , then, in V [G], for every natural number n > 0 and every set
A of cardinality less than θ with the property that the set {A} is definable by a
Σ2-formula with parameters in A, there is a subset of κ that is Σn(A)-stationary
in κ and not Σn+1(A)-stationary in κ.

Note that the definability assumptions on the parameter set A stated in the
above theorem are satisfied in the case where θ = κ++ and A = Hκ ∪ κ+. We
therefore directly get the following corollary whose statement should be compared
with the two settings discussed in Section 1, in which all Σ1(κ

+)-stationary subsets
of an uncountable cardinal κ are stationary.

Corollary 2.2. If the GCH holds, then for every uncountable regular cardinal κ,
there is a uniformly definable cofinality preserving partial order Pκ with the property
that whenever G is Pκ-generic over V and n > 0 is a natural number, then, in V [G],
there is a subset of κ that is Σn(κ

+)-stationary in κ and not Σn+1(κ
+)-stationary

in κ. □

The above result is a consequence of the following two observations that might
be of independent interest:

Proposition 2.3. Let n > 0 be a natural number, let κ be an uncountable cardinal
with P(κ) ⊆ HOD and let A be a set with the property that the set {A} is definable
by a Σn+1-formula with parameters in A. If there is a non-stationary subset of κ
that is Σn(A)-stationary in κ, then there is a subset of κ that is Σn(A)-stationary
in κ and not Σn+1(A)-stationary in κ.
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Proof. Let E be the least non-stationary subset of κ in the canonical well-ordering
of HOD that is Σn(A)-stationary in κ. Since the collection of all initial segments of
the canonical well-ordering of HOD is definable by a Σ2-formula without parameters
and the collection C(n) of all ordinals λ with Vλ ≺Σn

V is definable by a Πn-formula
without parameters (see [1, Section 1]), we know that the set {E} is definable by
a Σn+1-formula with parameters in A. Let C denote the least closed unbounded
subset of κ in the canonical well-ordering of HOD that is disjoint from E. But then
we know that the set {C} is also definable by a Σn+1-formula with parameters in
A, and therefore C witnesses that E is not Σn+1(A)-stationary in κ. □

Proposition 2.4. Let κ be an uncountable cardinal with κ<κ = κ, let θ > κ be a
cardinal with θκ = θ, let G be Add(κ, θ)-generic over V and let C be a collection
of closed unbounded subsets of κ of cardinality less than θ in V [G]. Then, in V[G],
there exists a non-stationary subset E of κ with the property that C ∩ E ̸= ∅ holds
for all C ∈ C.

Proof. By our assumptions, we can find a generic extension M of V such that
C ∈ M ⊊ V[G] and V[G] is a non-trivial Add(κ, θ)-generic extension of M . Let
H ∈ V[G] be Add(κ, 1)-generic over M , let X denote the subset of κ corresponding
to H and set E = X \ Lim(X). Genericity then ensures that E intersects every
unbounded subset of κ in M . In particular, we know that C∩E ̸= ∅ holds for every
C ∈ C. Finally, since E is disjoint from Lim(X), we know that E is a non-stationary
subset of κ in V[G]. □

A combination of these two observations now directly yields the desired consis-
tency proof:

Proof of Theorem 2.1. Assume that the GCH holds. Given an uncountable regular
cardinal κ and a cardinal θ satisfying θ = θκ, we define Pκ,θ to be the two-step

iteration Add(κ, θ)∗Q̇, where Q̇ is the canonical Add(κ, θ)-name for the <θ+-closed
partial order that codes P(κ) into the GCH-pattern above θ+ (see, for example,

[7]). Let G ∗ H be (Add(κ, θ) ∗ Q̇)-generic over V . Fix a natural number n >
0 and a set A ∈ V [G,H] of cardinality less than θ with the property that, in
V [G,H], the set {A} is definable by a Σ2-formula with parameters in A. Since
P(P(κ))V [G] = P(P(κ))V [G,H] and, in V [G,H], there are less than θ-many closed
unbounded subsets C of κ with the property that the set {C} is definable by a
Σn-formula with parameters in A ∪ {κ}, an application of Proposition 2.4 shows
that, in V [G,H], there is a non-stationary subset of κ that is Σn(A)-stationary in

κ. But our setup ensures that P(κ)V [G] = P(κ)V [G,H] ⊆ HODV [G,H] and hence
Proposition 2.3 allows us to conclude that, in V [G,H], there is a subset of κ that
is Σn(A)-stationary in κ and not Σn+1(A)-stationary in κ. □

In a sequel to this paper, we will provide analogous results about the properness
of the hierarchy of Σn(A)-stationary sets for singular cardinals.

2.2. Combinatorial arguments. We now continue by analyzing basic structural
features of the collection of all Σn(A)-stationary sets. All results presented in
this section are purely combinatorial, in the sense that they only rely on count-
ing arguments. We nevertheless decided to phrase them in such a way that they
make statements about collections of definable subsets. These formulations moti-
vate several of our later results that will show that, in general, we cannot relax
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the stated assumptions on the sizes of parameter sets. We start our analysis by
comparing Σn(A)-stationarity with standard stationarity and isolating settings in
which counting arguments ensure the existence of Σn(A)-stationary sets that are
not stationary.

Proposition 2.5. If κ is a cardinal of uncountable cofinality, A is a set of car-
dinality at most cof(κ) and n is a natural number, then there is an unbounded,
non-stationary subset of κ that is Σn(A)-stationary in κ.

Proof. Let ⟨Cα | α < cof(κ)⟩ be an enumeration of all closed unbounded subsets C
of κ with the property that the set {C} is definable by a Σn-formula with parameters
in A ∪ {κ}. In addition, define C to be a diagonal intersection of these sets with
respect to some strictly increasing continuous sequence of order type cof(κ) in κ.
Set S = C \ Lim(C). Then S is an unbounded and non-stationary subset of κ.
Moreover, we have C ∩ S ̸= ∅ whenever C is a closed unbounded subset of κ with
the property that the set {C} is definable by a Σn-formula with parameters in
A ∪ {κ}. □

The results of this paper show that the implication in the above proposition can
fail if we consider sets of parameters of cardinality cof(κ)

+
. In the case of regular

cardinals, the examples given in Section 1 about L and underMM provide examples
of such failures. For singular cardinals κ of uncountable cofinality, Corollary 3.4
below will show that, in the Dodd-Jensen core model, stationarity coincides with
Σ1(P(cof(κ)))-stationarity, and therefore also with Σ1-stationarity in κ. Moreover,
5.2, shows that when κ is singular of uncountable cofinality, the existence of Σ1-
stationarity subset of κ that is not stationary is equiconsistent with the existence
of cof(κ) many measurable cardinals. In the case of singular cardinals of countable
cofinalities, Theorem 5.3 will give an analogous equiconsistency result. We start
with a quick combinatorial argument.

Proposition 2.6. If κ is a singular cardinal of countable cofinality, A is a set of
cardinality less than κω and n is a natural number, then there is an unbounded
subset of κ that is Σn(A)-stationary in κ and whose complement in κ is unbounded
in κ.

Proof. Since the set [κ]ω contains an almost disjoint family of cardinality κω that
consists of unbounded subsets of κ, we can find an element b ∈ [κ]ω that is un-
bounded in κ and has the property that no infinite subset of b is definable by a
Σn-formula with parameters in A ∪ {κ}. Then κ \ b is Σn(A)-stationary in κ and
the complement of this set in κ is unbounded in κ. □

We continue by comparing the structural properties of Σn(A)-stationary sets
with those of standard stationary sets. Our first focus in this comparison will be
the question of the existence of disjoint Σn(A)-stationary sets at various uncount-
able cardinals. In the case of cardinals of uncountable cofinality, the fact that
all stationary sets are Σn(A)-stationary already ensures the existence of such sets.
The next result strengthens this conclusion by showing that a version of Solovay’s
Theorem on the splitting of stationary sets holds for Σn(A)-stationary sets.

Proposition 2.7. Suppose that κ is a cardinal of uncountable cofinality, A is a set
of cardinality cof(κ) with A ∩ κ cofinal in κ, n < ω, and S is a Σn(A)-stationary
subset of κ. Then there exists a partition ⟨Sα | α < cof(κ)⟩ of S into Σn(A)-
stationary subsets.
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Proof. Since A∩ κ is unbounded in κ, we know that there are cof(κ)-many Σn(A)-
definable closed unbounded subsets of κ. Let ⟨Cα | α < cof(κ)⟩ be an enumeration of
all closed unbounded subsets C of κ with the property that the set {C} is definable
by a Σn-formula with parameters in A ∪ {κ}. Since the assumption that A ∩ κ is
unbounded in κ implies that Cα∩S is unbounded in κ for all α < cof(κ), we can find
a strictly increasing sequence ⟨σα | α < cof(κ)⟩ of elements of S with the property
that σ≺α0,α1≻ ∈ Cα1

for all α0, α1 < cof(κ), where ≺·, ·≻ : Ord×Ord −→ Ord
denotes the Gödel pairing function. If we now pick a partition ⟨Sα | α < cof(κ)⟩ of
S with the property that {σα,β | β < cof(κ)} ⊆ Sα holds for all α < cof(κ), then
each Sα is Σn(A)-stationary in κ. □

In the case of cardinals of countable cofinality, the existence of disjoint Σn(A)-
stationary sets turns out to be closely connected to the reaping number r.

Definition 2.8. r is the least cardinality of a subset A of [ω]ω with the property
that for every b ∈ [ω]ω, there is a ∈ A such that either a \ b or a ∩ b is finite.

We will later show that, in general, the conclusion of the following proposition
cannot be extended to sets of parameters of cardinality r (see Corollaries 3.6 and
5.11 below).

Proposition 2.9. Let κ be a singular cardinal of countable cofinality, let A be a
set of cardinality less than r and let n be a natural number. Then there exists a
subset E of κ with the property that both E and κ \ E are Σn(A)-stationary in κ.

The proof of this proposition relies on the equivalence provided by the next
lemma:

Lemma 2.10. The following statements are equivalent for every infinite cardinal
θ:

(1) θ < r.
(2) For every singular cardinal κ of countable cofinality and every subset A of

[κ]ω that consists of cofinal subsets of κ and has cardinality at most θ, there
exists a subset E of κ such that for every a ∈ A, both a ∩ E and a \ E are
infinite.

(3) There is a singular cardinal κ of countable cofinality with the property that
for every subset A of [κ]ω that consists of cofinal subsets of κ and has
cardinality at most θ, there exists a subset E of κ such that for every a ∈ A,
both a ∩ E and a \ E are infinite.

Proof. First, assume that (1) holds and (2) fails. Then there is a singular cardinal κ
of countable cofinality and a subset A of [κ]ω such that A consists of cofinal subsets
of κ, |A| ≤ θ and for every subset E of κ, there is a ∈ A such that either a ∩ E or
a \ E is finite. Let ⟨κn | n < ω⟩ be a strictly increasing sequence that is cofinal in
κ with κ0 = 0. Given a ∈ A, define

ba = {n < ω | a ∩ [κn, κn+1) ̸= ∅} ∈ [ω]ω.

Since |A| < r, we can now find c ∈ [ω]ω with the property that for all a ∈ A, both
ba \ c and ba ∩ c are infinite. Set

E =
⋃
n∈c

[κn, κn+1).
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By our assumptions, there is a ∈ A with the property that either a \E or a ∩E is
finite. But this implies that either ba \ c or ba ∩ c is finite, a contradiction.

Now, assume that (3) holds and (1) fails. Then there is a singular cardinal κ of
countable cofinality with the property that for every subset A of [κ]ω that consists
of cofinal subsets of κ and has cardinality at most θ, there exists a subset E of
κ such that for every a ∈ A, both a ∩ E and a \ E are infinite. Fix A ⊆ [ω]ω of
cardinality r such that for every b ∈ [ω]ω, there exists a ∈ A with the property that
either a \ b or a∩ b is finite. Pick a s strictly increasing sequence ⟨κn | n < ω⟩ that
is cofinal in κ and, given a ∈ A, define ba = {κn | n ∈ a} ∈ [κ]ω. Since ba is cofinal
in κ for all a ∈ A, we can now find a subset E of κ such that for every a ∈ A, both
ba ∩ E and ba \ E are infinite. Set c = {n < ω | κn ∈ E} ∈ [ω]ω. If a ∈ A, then
both a \ c and a ∩ c are infinite, contradicting our assumptions on A. □

Proof of Proposition 2.9. Let κ be a singular cardinal of countable cofinality, let
A be a set of cardinality less than r and let n > 0 be a natural number. Then
there exists a subset A′ of [κ]ω of cardinality less than r that consists of cofinal
sequences and has the property that for every closed unbounded subset C of κ such
that the set {C} is definable by a Σn-formula with parameters in A ∪ {κ}, there
exists a ∈ A′ with a ⊆ C. Using Lemma 2.10, we can now find a subset E of κ such
that for every a ∈ A, both a \E and a∩E are infinite. Then both E and κ \E are
Σn(A)-stationary in κ. □

We close this section by comparing another aspect of the behavior of station-
ary sets with its counterpart in the definable context. While the collection of all
closed unbounded subsets of a cardinal of uncountable cofinality is closed under in-
tersections and therefore all of these subsets are stationary, these implications can
obviously fail at a singular cardinal of countable cofinality, where all unbounded
sets of order type ω are closed unbounded and stationarity coincides with cobound-
edness. The following lemma completely characterizes the settings in which these
implications also hold in the definable context:

Lemma 2.11. Given a class A and a natural number n > 0, the following state-
ments are equivalent for every singular cardinal κ of countable cofinality:

(1) There is a cofinal function c : ω −→ κ that is definable by a Σn-formula
with parameters in A ∪ {κ}.

(2) There are disjoint closed unbounded subsets C0 and C1 of κ with the prop-
erty that the sets {C0} and {C1} are both definable by Σn-formulas with
parameters in A ∪ {κ}.

(3) There are closed unbounded subsets C0 and C1 of κ with C0 ∩ C1 bounded
in κ and the property that the sets {C0} and {C1} are both definable by
Σn-formulas with parameters in A ∪ {κ}.

Proof. First, we assume that there is a cofinal function c : ω −→ κ that is definable
by a Σn-formula with parameters in A ∪ {κ}. Define C0 = {c(n) + ω | n < ω} and
C1 = {c(n) + ω + 1 | n < ω}. Then C0 and C1 are disjoint closed unbounded in
κ, and the sets {C0} and {C1} are definable by Σn-formulas with parameters in
A ∪ {κ}. In the other direction, assume that there are closed unbounded subsets
C0 and C1 of κ with C0 ∩ C1 bounded in κ and the property that the sets {C0}
and {C1} are both definable by Σn-formulas with parameters in A∪{κ}. We define
µ = max(C0∩C1) < κ and let c : ω −→ κ denote the unique function with c(0) = µ
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and

c(2k + 2− i) = min(Ci \ (c(2k + 1− i) + 1))

for all k < ω and i < 2. The Σn-Recursion Theorem then implies that c is definable
by a Σn-formula with parameters in A ∪ {κ}. Moreover, we know that c is cofinal
in κ, because otherwise µ < supk<ω c(k) ∈ C0 ∩ C1. □

Using an argument similar to the one of the previous Lemma, we obtain the fol-
lowing corollary, which will later allow us to show that definable closed unbounded
sets behave nicely in various settings.

Corollary 2.12. Let κ be a singular cardinal of countable cofinality, let A be a
class and let n > 0 be a natural number with the property that there exists a subset
of κ that is Σn(A)-stationary in κ and consists of cardinals. Then the collection of
all closed unbounded subsets C of κ with the property that the set {C} is definable
by a Σn-formula with parameters in A ∪ {κ} is closed under intersections. □

2.3. The Σn-undefinability property. We introduce a notion that will allow
us to show that various non-stationary sets of cardinals E ⊆ κ of an uncountable
cardinal κ are Σn-stationary.

Definition 2.13. Given uncountable cardinals µ < κ, an ordinal γ ≥ κ and a nat-
ural number n, we say that the cardinal κ has the Σn(µ, γ)-undefinability property
if no ordinal α in the interval [µ, κ) has the property that the set {α} is definable
by a Σn-formula with parameters in the set Hµ ∪ {κ, γ}. Moreover, we say that κ
has the Σn(µ)-undefinability property if it has the Σn(µ, κ)-undefinability property.

The next lemma shows how this undefinability property is connected to Σn-
stationarity:

Lemma 2.14. Given uncountable cardinals µ < κ, an ordinal γ ≥ κ and a natural
number n > 0, if the cardinal κ has the Σn(µ, γ)-undefinability property, then the
set {µ} is Σn(Hµ ∪ {γ})-stationary in κ.

Proof. Let C be a closed unbounded subset of κ with the property that the set
{C} is definable by a Σn-formula with parameters in Hµ∪{κ, γ}. Assume, towards
a contradiction, that µ is not an element of C. Set ν = min(C \ µ) > µ. Then
C ∩ µ ̸= ∅, because otherwise ν = min(C) and this would imply that the set {ν} is
definable by a Σn-formula with parameters in Hµ ∪{κ, γ}. This allows us to define
ρ = max(C ∩ µ) < µ. But then ν = min(C \ (ρ+ 1)) and hence {ν} is definable by
a Σn-formula with parameters in Hµ ∪ {κ, γ}, a contradiction. □

The following direct corollary of the above lemma will later allow us to isolate
various examples of Σ1-stationary subsets of cardinals of countable cofinality that
are not stationary (i.e., not cobounded) in the given limit cardinal.

Corollary 2.15. Let κ be a limit cardinal, let γ ≥ κ be an ordinal, let n > 0 be a
natural number and let E be the set of uncountable cardinals µ < κ with the property
that κ has the Σn(µ, γ)-undefinability property for all µ ∈ E. If E is unbounded in
κ, then E is Σn({γ})-stationary in κ. □
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3. Undefinability in the Dodd-Jensen core model

In the following, we establish basic definability and undefinability results dealing
with Dodd-Jensen core model KDJ . These results make use of the presentation of
this model in [5] and [11]. In this setting, a set M is a premouse at an ordinal
µ > ω if M is of the form JU

η and

⟨M,∈, U⟩ |= “U is a normal ultrafilter on µ”.

Moreover, if M is a premouse at µ, then we define the lower part of M to be
the set lp(M) = M ∩ Vµ. Given a premouse M and an ordinal δ, an iteration of
M of length δ is given by a sequence ⟨Mα | α < δ⟩ of premice and a commuting
system ⟨jα,β : Mα −→ Mβ | α ≤ β < δ⟩ of Σ1-elementary embeddings such that the
following statements hold:

• M = M0 and jα,α = idMα
for all α < δ.

• If α+ 1 < δ, Mα = JU
η is a premouse at µ and Mα+1 = JW

ζ is a premouse
at ν, then Mα+1 is the transitive collapse of the ultrapower of Mα using U ,
jα,α+1 is the corresponding ultrapower embedding, jα,α+1(µ) = ν and

W = {[f ]U | f ∈ µMα ∩Mα, {ξ < µ | f(ξ) ∈ U} ∈ U}.

• If γ ∈ Lim ∩ δ, then ⟨Mγ , ⟨jα,γ : Mα −→ Mγ | α < γ⟩⟩ is a direct limit of
⟨⟨Mα | α < γ⟩, ⟨jα,β : Mα −→ Mβ | α ≤ β < γ⟩⟩.

If such an iterations exists, then it is uniquely determined and it is called the δ-
iteration of M . A premouse M is then called a mouse, if δ-iterations of M exist
for all δ ∈ Ord. Note that, since the iterability of a premouse can be checked in
every transitive structure of uncountable ordinal height that contains the mouse and
satisfies a sufficiently strong fragment of ZFC (see [11, Theorem 2.7]), it follows that
the class of all mice is Σ1-definable from every uncountable ordinal. We can now
use such iterations to compare a mouse M = JU

η at some ordinal µ with a mouse

N = JW
ζ at an ordinal ν, in the sense that they allow us to find mice M ′ = JC

η′

and N ′ = JC
ζ′ at the same ordinal ρ and Σ1-elementary embeddings j : M −→ M ′

and i : N −→ N ′ with j(µ) = i(ν) = ρ (see [5, Lemma 1.13]). In our arguments
below, we will frequently make use of results of Dodd and Jensen (see [5, pp. 238-
241]) that show that the Dodd-Jensen core model KDJ is equal to the union of the
constructible universe L and the lower parts lp(M) of all mice M .

We now prove three lemmata that show that various objects that witness the
accessibility of cardinals in KDJ are simply definable.

Lemma 3.1. If κ is an infinite cardinal that is not inaccessible in KDJ , then the

set {HKDJ

κ } is definable by a Σ1-formula with parameter κ.

Proof. Since the GCH holds in KDJ and HKDJ

ℵ0
= Lω, we may assume that either κ

is a successor cardinal in KDJ or κ is singular in KDJ . Moreover, we may assume

that there exists a mouse, because otherwise KDJ = L and {HKDJ

κ } = {Lκ} is
Σ1-definable in the desired way.

Claim. If M is a mouse at some ν > κ such that κ is either a successor cardinal

or a singular cardinal in M , then HKDJ

κ ⊆ M.

Proof of the Claim. Fix x ∈ HKDJ

κ . Then there exists a mouse N0 at some cardinal
µ < κ such that |N0| < κ and x ∈ lp(N0). Let N be the mouse obtained by iterating
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the top measure of N0 κ-many times. Then clearly, we have x ∈ lp(N) and κ is
the critical point of the top measure of N , and is therefore inaccessible in N . The
coiteration of M and N , which can only involve the top measures of the two mice,
results in Σ1-elementary embeddings πM : M −→ M ′ and πN : N −→ N ′, with the
following properties:

• κ is inaccessible in N ′, but not in M ′,
• x ∈ lp(N ′),

• P(κ)M = P(κ)M
′
, and

• one of M ′, N ′ is an initial segment of the other.

It is therefore clear that N ′ must be an initial segment of M ′, from which we
conclude that x ∈ PM ′

(κ) and therefore that x ∈ M . □

As outlined earlier, the assumption that KDJ ̸= L implies that KDJ is equal
to the union of all lower parts of mice. In particular, there exists a mouse M at
an ordinal above κ with the property that κ is either a successor cardinal or a

singular cardinal in M . By the above claim, we know that HKDJ

κ = HM
κ holds for

every mouse M with these properties. By combining this implication with earlier
remarks about the definability of the class of all mice, we can derive the statement
of the lemma. □

Lemma 3.2. If κ is an infinite cardinal, then the set {cof(κ)K
DJ

} is definable by
a Σ1-formula with parameter κ.

Proof. This is trivial in the case κ is not is singular in KDJ . Assuming it is singular,

we know that cof(κ)
KDJ

is the unique ordinal ξ < κ with the property that ξ is

regular in HKDJ

κ and KDJ contains a cofinal function c : ξ −→ κ. Since the class
KDJ is definable by a Σ1-formula with parameter κ (see, for example, the proof of

[14, Lemma 4.13]), we can apply Lemma 3.1 to conclude that the set {cof(κ)K
DJ

}
is also definable by a Σ1-formula with parameter κ. □

Lemma 3.3. If κ is an infinite cardinal and c is the <KDJ -least cofinal function

from cof(κ)
KDJ

to κ in KDJ , then the set {c} is definable by a Σ1-formula with
parameter κ.

Proof. This is an immediate consequence of the proof of [16, Lemma 2.3], which
shows that the collection of initial segments of the restriction of <KDJ to P(κ) is
definable by a Σ1-formula with parameter κ, and Lemma 3.2 above. □

We now use the above results to show that, in the case of singular cardinals κ of
uncountable cardinality, the statement of Proposition 2.5 cannot be strengthened
in ZFC. We will later improve this result to obtain cof(κ)-many measurable cardi-
nals from the existence of a singular cardinal κ of uncountable cofinality with the
property that there exists a non-stationary Σ1-stationary subset of κ (see Theorem
5.1 and Corollary 5.2 below).

Corollary 3.4. Assume that there is no inner model with a measurable cardinal.

If κ is a singular cardinal of uncountable cofinality and S is Σ1(P(cof(κ)
KDJ

))-
stationary in κ, then S is a stationary subset of κ.

Proof. By our assumption, the results of [4] ensure that κ is a singular cardinal in
KDJ . Using Lemma 3.3, we find a closed unbounded subset C0 of κ of order-type
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cof(κ)
KDJ

with the property that both the set {C0} and the monotone enumeration
of C0 are definable by a Σ1-formula with parameter κ. Given an arbitrary closed
unbounded subset C of κ, we then know that the intersection C ∩ C0 is a closed
unbounded subset and the set {C∩C0} is definable by a Σ1-formula with parameters

in P(cof(κ)
KDJ

)∪{κ}. This shows that every subset of κ that is Σ1(P(cof(κ)
KDJ

))-
stationary in κ is stationary in κ. □

We now derive further consequences of the above lemmata. The results of the
subsequent sections will show that it is possible to use large cardinals to obtain
singular cardinals κ where the negations of all of the listed statements hold.

Corollary 3.5. Assume that there is no inner model with a measurable cardinal.
If κ is a singular cardinal, then the following statements hold:

(1) If α < κ, then the set {α} is not Σ1(α)-stationary in κ.
(2) There is an unbounded subset of κ that consists of cardinals and is not

Σ1-stationary.
(3) There exists a regressive function r : κ −→ κ that is definable by a Σ1-

formula with parameter κ and is not constant on any unbounded subset of
κ.

Proof. Set λ = cof(κ)
KDJ

and let c : λ −→ κ denote the the <KDJ -least cofinal
function from λ to κ in KDJ . By our assumption, the results of [4] imply that λ < κ

and we can use Lemma 3.1 to show that the set HKDJ

κ is definable by a Σ1-formula
with parameter κ. Moreover, Lemma 3.2 and Lemma 3.3 ensure that both the set
{λ} and the function c are definable by a Σ1-formulas with parameter κ.

Now, fix α < κ. If α ≤ λ, then C = (λ, κ) is a closed unbounded subset of κ
that is disjoint from {α} and has the property that the set {C} is definable by a
Σ1-formula with parameter κ. In the other case, if λ < α, then there is ξ < λ with
c(ξ) > α and C = (c(ξ), κ) is a closed unbounded subset of κ disjoint from {α}
with the property that the set {C} is definable by a Σ1-formula with parameters
in α ∪ {κ}.

Next, assume that κ is a limit of limit cardinals in KDJ and define C to be the
closed unbounded set of all ordinals ρ < κ with the property that, in KDJ , the

ordinal ρ is a limit cardinal. Since the set {HKDJ

κ } is definable by a Σ1-formula
with parameter κ, it follows that set {C} is definable in the same way. Now, let E
denote the set of all successor cardinals of singular cardinals smaller than κ. Since
out setup and the results of [4] ensure that all singular cardinals are singular in
KDJ and KDJ computes the successors of these cardinals correctly, we know that
each element of E is the successor of a singular cardinal in KDJ and this shows
that C ∩ E = ∅. In particular, we can conclude that E is an unbounded subset of
κ that consists of cardinals and is not Σ1-stationary.

We now assume that κ is not a limit of limit cardinals in KDJ . Let η denote
the least ordinal below κ with the property that the intverval (η, κ) contains no
ordinals that are limit cardinals in KDJ and we define C to be the set of ordinals
in (η, κ) that are successor ordinals of ordinals that are cardinals in KDJ . Our
assumptions then imply that C is a cofinal subset of κ of order-type ω and this
implies that C is a closed unbounded subset of κ. Moreover, the fact that the set

{HKDJ

κ } is definable by a Σ1-formula with parameter κ ensures that the set {C} is
definable in the same way. If we now define E to be the set of all cardinals in the
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interval (η, κ), then E is unbounded in κ and, since C ∩E = ∅ holds, we know that
E is not Σ1-stationary.

Finally, define r : κ −→ λ to be the unique map with c(α) = 0 for all α < λ and
c(α) = min{ξ < λ | c(ξ) ≥ α} for all λ ≤ α < κ. Then r is regressive and it is not
constant on any unbounded subset of κ. Moreover, our earlier observations show
that r is definable by a Σ1-formula with parameter κ. □

Corollary 3.6. Assume that there is no inner model with a measurable cardinal. If
κ is a singular cardinal of countable cofinality, then the following statements hold:

(1) There are disjoint closed unbounded subsets C0 and C1 of κ with the prop-
erty that the sets {C0} and {C1} are both definable by Σ1-formulas with
parameters in Hκ ∪ {κ}.

(2) There exists a subset A of Hκ of cardinality r such that every subset of κ that
is Σ1(A)-stationary in κ contains a closed unbounded subset C of κ with
the property that the set {C} is definable by a Σ1-formula with parameters
in A ∪ {κ}.

Proof. Set λ = cof(κ)
KDJ

. Our assumptions then imply that λ < κ. Let c : λ −→ κ
denote the <KDJ -least cofinal function in KDJ . Since cof(λ) = ω, we can also
fix a cofinal function d : ω −→ λ. Define C0 = {ω · ((c ◦ d)(i)) | i < ω} and
C1 = {α+ 1 | α ∈ C0}. Then the sets C0 and C1 are disjoint closed unbounded
subsets of κ. Moreover, Lemma 3.3 ensures that the sets {C0} and {C1} are both
definable by Σ1-formulas with parameters κ and d. Finally, pick a subset A of Hκ

of cardinality r such that ω ∪ {d} ⊆ A, A ∩ κ is cofinal in κ and for every b ∈ [ω]ω,
there is a ∈ A ∩ [ω]ω with the property that either a \ b or a ∩ b is finite. Let S be
a subset of κ that is Σ1(A)-stationary in κ. The fact that A∩ κ is unbounded in κ
then implies that the set b = {i < ω | (c ◦ d)(i) ∈ S} is infinite. Hence, there exists
a ∈ A with the property that either a\b or a∩b is finite. Set C = {(c ◦ d)(i) | i ∈ a}.
Then C is closed unbounded in κ and the set {C} is definable by a Σ1-formula with
parameters in A ∪ {κ}. Hence, we know that C ∩ S is unbounded in κ and this
shows that a∩ b is infinite. We can now find k < ω with a \ b ⊆ k and, if we define
D = {(c ◦ d)(i) | k ≤ i ∈ A}, then D is a closed unbounded subset of S and the set
{D} is definable by a Σ1-formula with parameters in A ∪ {κ}. □

We end this section with another results about the definability of initial segments
of the Dodd-Jensen core model that will be used in our characterizations of stably
measurable cardinals below.

Lemma 3.7. Let κ be an uncountable cardinal and let E ∈ KDJ be a subset of κ.
If κ is regular in KDJ and E is a bistationary subset of κ in KDJ , then the set

{HKDJ

κ } is definable by a Σ1-formula with parameter E.

Proof. Since the class KDJ is definable by a Σ1-formula with parameter κ in V , we
may assume that V = KDJ holds. Moreover, we may assume that there exists a

mouse, because otherwise we have KDJ = L and {HKDJ

κ } = {Lκ} is definable by a
Σ1-formula with parameter E. 2 The desired statement is then a direct consequence
of the following observation:

Claim. If M is a mouse with E ∈ lp(M), then Hκ ⊆ M.

Proof of the Claim. Assume, towards a contradiction, that there is an x ∈ Hκ \M.
Then there is a mouse N0 with |N0| < κ and x ∈ lp(N0). As above, this allows us
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to find a mouse N at κ with x ∈ lp(N). Let π0 : M −→ M ′ and π1 : N −→ N ′ be
the Σ1-elementary embeddings obtained by coiterating M and N , i.e., either M ′ is
an initial segment of N ′ or N ′ is an initial segment of M ′. Since HM

κ = HM′

κ and
x ∈ lp(N) \ M , we now know that M ′ is an initial segment of N ′. This implies

that E ∈ P(κ)M = P(κ)M
′ ⊆ P(κ)N

′
= P(κ)N . Since the given N -ultrafilter on

κ is equal to the restriction of the closed unbounded filter on κ to P(κ)N , we can
conclude that E either contains a closed unbounded subset of κ or is disjoint from
such a subset. This contradicts the bistationarity of E. □

This claim now shows that Hκ is the unique set B with the property that there
exists a mouse M with E ∈ lp(M) and B = HM

κ . This directly yields the desired
Σ1-definition of {Hκ}. □

4. Large cardinals and Σ1-stationary sets

In Section 2, we already gave examples of two important features of Σ1(A)-
stationary sets. First, the collection of these sets can be substantially larger than
the collection of ordinary stationary sets. Second, this collection can possess struc-
tural features that resemble the behavior of stationary sets. We start by proving
results for large cardinals and then extend these results to limits of large cardi-
nals (not necessarily regular). Finally, we show that it is possible to derive similar
consequences from Ramsey-theoretic properties that may hold on smaller cardinal.

4.1. Stably measurable cardinals. The following large cardinal property, in-
troduced by Welch in [19], turns out to be closely connected to Σ1-undefinability
considerations.

Definition 4.1 (Welch). An uncountable regular cardinal κ is stably measurable if
there exists are

• transitive set M with Hκ ∪ {κ} ⊆ M ≺Σ1 Hκ+ ,
• a transitive set N with M ∪ <κN ⊆ N , and
• a normal, weakly amenable N -ultrafilter F on κ with the property that
⟨N,∈, F ⟩ is iterable.

In [17], Sharpe and Welch defined an uncountable cardinal κ to be iterable if
for every subset A of κ, there is a transitive model M of ZFC− of cardinality κ
with A, κ ∈ M and a weakly amenable M-ultrafilter U on κ such that ⟨M,∈, U⟩
is ω1-iterable. It is easy to see that all iterable cardinals are stably measurable.
Moreover, all Ramsey cardinals are iterable (see [17, Lemma 5.2]) and this shows
that all measurable cardinals are stably measurable. In the other direction, [19,
Corollary 1.18] shows that, if κ is a stably measurable cardinal, then a# exists for
every set of ordinals a in Hκ. Motivated by Corollary 3.5, we proceed towards the
following result:

Theorem 4.2. Let κ be a stably measurable cardinal.

(1) If µ < κ is an uncountable cardinal, then the singleton {µ} is Σ1(Hµ)-
stationary in κ.

(2) If E is an unbounded subset of κ that consists of cardinals, then E is Σ1-
stationary in κ.

(3) If S is a Σ1-stationary subset of κ and r : κ −→ κ is a regressive function
that is definable by a Σ1-formula with parameters in Hκ ∪ {κ}, then r is
constant on a Σ1-stationary subset of S.
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Using Lemma 2.14 and Corollary 2.15, the first two statements of Theorem 4.2
directly follow from the next lemma:

Lemma 4.3. If κ is a stably measurable cardinal, then κ has the Σ1(µ)-undefinability
property for every uncountable cardinal µ < κ.

Proof. Assume, towards a contradiction, that there is a Σ1-formula φ(v0, v1, v2), an
uncountable cardinal µ < κ, an ordinal α in the interval [µ, κ) and z ∈ Hµ such that
α is the unique ordinal ξ with the property that φ(ξ, κ, z) holds. Pick a transitive
set M with Hκ ∪ {κ} ⊆ M ≺Σ1 Hκ+ , a transitive set N with M ∪ <κN ⊆ N and a
weakly amenable N -ultrafilter F on κ with the property that ⟨N,∈, F ⟩ is iterable.
Now, pick an elementary submodel ⟨X,∈, F0⟩ of ⟨N,∈, F ⟩ of cardinality less than
µ with tc({z}) ∪ {κ, α} ⊆ X, and let π : X −→ N0 denote the corresponding
transitive collapse. Then π(z) = z and π(α) < π(κ) < µ ≤ α. Moreover, if we set
U = π[F0], then U is a weakly amenable N0-ultrafilter on π(κ) and [10, Theorem
19.15] implies that ⟨N0,∈, U⟩ is iterable. This yields a transitive set N1 and an

elementary embedding j : N0 −→ N1 with j(π(κ)) = κ and j ↾ HN0

π(κ) = id
H

N0
π(κ)

.

Since our setup ensures that φ(α, κ, z) holds in N , we now know that φ(π(α), κ, z)
holds in N1. By Σ1-upwards absoluteness, this shows that φ(π(α), κ, z) holds in V,
contradicting the uniqueness of α. □

We now work towards a proof of the third part of Theorem 4.2. The starting
point for this is a result of Welch (see [19, Theorem 1.26]) proving that stably
measurable cardinal have the Σ1-club property introduced in [14], i.e., if κ is a
stably measurable cardinal and E is a subset of κ with the property that the set
{E} is definable by a Σ1-formula with parameters in Hκ∪{κ}, then either E or κ\E
contains a closed unbounded subset of κ. This result directly implies that if κ is a
stably measurable cardinal and r : κ −→ κ is a regressive function that is definable
by a Σ1-formula with parameters in Hκ ∪ {κ}, then for every ordinal α < κ, there
is a closed unbounded subset Cα of κ with the property that Cα is either contained
in r−1{α} or disjoint from r−1{α}. By forming the diagonal intersection △α<κCα,
it is now easy to see that there is a unique ordinal α∗ < κ with the property that
Cα∗ ⊆ r−1{α∗} and this directly implies that α∗ is the unique ordinal smaller than
κ with the property that r−1{α∗} contains a closed unbounded subset of κ. The
following lemma further strengthens this conclusion:

Lemma 4.4. Let κ be a stably measurable cardinal and let E be a subset of κ that
contains a closed unbounded subset of κ and has the property that the set {E} is
definable by a Σ1-formula with parameters in Hκ ∪ {κ}. Then there exists a closed
unbounded subset C of κ with C ⊆ E and the property that the set {C} is definable
by a Σ1-formula with parameters in Hκ ∪ {κ}.

Proof. Fix a Σ1-formula φ(v0, v1, v2) and an element z of Hκ with the property that
the set {E} is definable by the formula φ(v0, v1, v2) and the parameters κ and z. By
our assumptions on κ, there exists a transitive set M with Hκ∪{κ} ⊆ M ≺Σ1

Hκ+ ,
a transitive set N with M ∪<κN ⊆ N and a normal, weakly amenable N -ultrafilter
F on κ with the property that ⟨N,∈, F ⟩ is iterable. This setup ensures that E ∈ M
and φ(E, κ, z) holds in N . Moreover, the fact that E contains a closed unbounded
subset of κ implies that M contains such a subset of E and, since F is a normal
N -ultrafilter, we can conclude that E is an element of F . Pick an elementary
submodel ⟨X,∈, F0⟩ of ⟨N,∈, F ⟩ of cardinality less than κ with tc({z})∪{κ} ⊆ X,
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and let π : X −→ N0 denote the corresponding transitive collapse. Then π(z) = z
and, if we set U = π[F0], then U is a weakly amenable N0-ultrafilter on π(κ) and
[10, Theorem 19.15] ensures that ⟨N0,∈, U⟩ is iterable. Let

⟨⟨Nα | α ∈ Ord⟩, ⟨jα,β : Mα −→ Mβ | α ≤ β ∈ Ord⟩⟩

denote the linear iteration of ⟨N0,∈, U⟩. Then (j0,κ ◦ π)(κ) = κ, (j0,κ ◦ π)(z) = z,
Σ1-upwards absoluteness implies that φ((j0,κ ◦ π)(E), κ, z) holds in V and hence
(j0,κ ◦ π)(E) = E. Moreover, the fact that E ∈ F ensures that π(E) ∈ U and
therefore (j0,α ◦ π)(κ) ∈ (j0,α+1 ◦ π)(E) ⊆ E for all α < κ. This shows that the
closed unbounded subset C = {(j0,α ◦ π)(κ) | α < κ} of κ is a subset of E. Finally,
the set {C} is definable by a Σ1-formula with parameters κ, N0 and U . □

Proof of Theorem 4.2. The last two lemmata prove the first two assertions of the
theorem. To prove the third assertion, let κ be a stably measurable cardinal, let S
be Σ1-stationary in κ, and let r : κ −→ κ be a regressive function that is definable
by a Σ1-formula with parameters in Hκ ∪ {κ}. Our earlier observations now show
that there is a unique ordinal α < κ with the property that the set r−1{α} contains
a closed unbounded subset of κ. Since the set {r−1{α}} is definable by a Σ1-formula
with parameters in Hκ ∪ {κ}, Lemma 4.4 yields a closed unbounded subset C of κ
with C ⊆ r−1{α} and the property that the set {C} is definable by a Σ1-formula
with parameters in Hκ ∪ {κ}. Then r is constant on C ∩ S and, since κ is an
uncountable regular cardinal, we know that this set is Σ1-stationary in κ. □

We can now show that, in the Dodd–Jensen core model KDJ , stably measurable
cardinals are characterized by the Σ1-stationarity of unbounded sets of cardinals:

Theorem 4.5. If V = KDJ , then the following statements are equivalent for every
cardinal κ > ω1:

(1) The cardinal κ is stably measurable.
(2) The set {Hκ} is not definable by a Σ1-formula with parameters in the set

Hκ ∪ {κ}.
(3) The cardinal κ is a limit cardinal and every unbounded subset of κ that

consists of cardinals is Σ1-stationary in κ.

Proof. First, assume that κ is not stably measurable. Then we can apply [19,
Theorem 2.6] to find a bistationary subset E of κ with the property that the set
{E} is definable by a Σ1-formula with parameters in Hκ ∪ {κ}. Lemma 3.7 then
shows that the set {Hκ} is definable by a Σ1-formula with parameters in Hκ ∪{κ}.

Now, assume that κ is a limit cardinal and the set {Hκ} is definable by a Σ1-
formula with parameters in Hκ ∪ {κ}. Let C denote the set of all limit cardinals
smaller than κ. Our assumption then implies that the set {C} is definable by a
Σ1-formula with parameters in Hκ ∪ {κ}. If C is unbounded in κ, then the set
of all successor cardinals smaller κ is an unbounded subset of κ that consists of
cardinals and is not Σ1-stationary in κ. In the other case, if C is bounded in κ,
then cof(κ) = ω, Lemma 3.3 yields a cofinal function c : ω −→ κ that is definable
by a Σ1-formula with parameter κ and the set D = {c(n) + 1 | n < ω} is closed
unbounded in κ that contains no cardinals and has the property that the set {D}
is definable by a Σ1-formula with parameter κ.

Together with Theorem 4.2, these computations establish all equivalences claimed
in the theorem. □
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Next, we show that stable measurability provides the exact consistency strength
for the existence of limit cardinals with given undefinability property:

Theorem 4.6. The following statements are equiconsistent over ZFC:

(1) There exists a stably measurable cardinal.
(2) There exists a limit cardinal κ with the property that every unbounded subset

of κ that consists of cardinals is Σ1-stationary in κ.

Proof. Assume, towards a contradiction, that there is no inner model with a sta-
bly measurable cardinal and κ is a limit cardinal with the property that every
unbounded subset of κ that consists of cardinals is Σ1-stationary in κ. Then Corol-
lary 3.5 shows that κ is regular. Since κ is not stably measurable in KDJ , Theorem
4.5 now shows that, in KDJ , the set {Hκ} is definable by a Σ1-formula with pa-
rameters in Hκ ∪{κ}. Let C denote the set of all ordinals less than κ that are limit
cardinals in KDJ . Then C is a closed unbounded subset of κ and, since the class
KDJ is definable by a Σ1-formula with parameter κ, the set {C} is definable by a
Σ1-formula with parameters in Hκ ∪ {κ}. Now, let E denote the set of all succes-
sor cardinals of singular cardinals less than κ. The results of [4] then show that
the elements of E are successor cardinals of singular cardinals in KDJ and hence
C∩E = ∅. This shows that E is an unbounded subset of κ that consists of cardinals
and is not Σ1-stationary. In combination with Theorem 4.2, these arguments prove
the desired equivalence. □

In Section 5 we show that the assertion in item (2) of the last theorem can con-
sistently hold at κ = ℵω, starting from the consistency assumption of a measurable
cardinal.

4.2. Limits of measurable cardinals. We now continue by showing that many
of the above results can be extended to larger classes of definable sets if the given
cardinal is a (not necessarily regular) limit of measurable cardinals:

Theorem 4.7. Let κ be a cardinal that is a limit of measurable cardinals.

(1) Every unbounded subset S of κ consisting of cardinals is Σ1(Ord)-stationary.
(2) If S is a Σ1(Ord)-stationary subset of κ and r : κ −→ κ is a regressive

function that is definable by a Σ1-formula with parameters in Hκ ∪ Ord,
then r is constant on a Σ1(Ord)-stationary subset of S.

The starting point of the proof of this theorem is the following technical lemma
that generalizes [13, Lemma 1.1.25] to embeddings given by linear iterations.

Lemma 4.8. Suppose that κ0 < κ1 are measurable cardinal and α0 < κ1 is an
ordinal. Given i < 2, let Ui be a normal ultrafilter on κi and let

⟨⟨M i
α | α ∈ Ord⟩, ⟨jiα,β : M i

α −→ M i
β | α ≤ β ∈ Ord⟩⟩

denote the linear iteration of ⟨V,∈, Ui⟩. In addition, let

⟨⟨M∗
α | α ∈ Ord⟩, ⟨j∗α,β : M∗

α −→ M∗
β | α ≤ β ∈ Ord⟩⟩

denote the linear iteration of ⟨M0
α0
,∈, j00,α0

(U1)⟩. Then j∗0,α ↾ Ord = j10,α ↾ Ord for
all α ∈ Ord.

Proof. Fix an ordinal α1 < κ with the property that j∗0,α ↾ Ord = j10,α ↾ Ord holds

for all α < α1. Set M0 = M0
α0
, M1 = M1

α1
, M∗ = M∗

α1
, j0 = j00,α0

, j1 = j10,α1
,

j∗ = j∗0,α1
and U∗ = j0(U1). Then j0(κ1) = κ1. In addition, if i < 2, then we
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define κi
α = ji0,α(κi) for all α ∈ Ord and Ci = {κi

α | α < αi}. An application of

[10, Lemma 19.6] then shows that every element of M∗ is of the form j0(f)(c) with
n < ω, f : [κ0]

n −→ V and c ∈ [C0]n. In addition, given i < 2 and n < ω, we define

Un
i = {X ⊆ [κi]

n | ∃E ∈ Ui [E]n ⊆ X}.
The results of [10, Chapter 19] then show that Un

i is a <κi-complete ultrafilter
on [κi]

n. Set Un
∗ = j0(Un

1 ) for all n < ω. Our assumption now implies that
j∗0,α(κ1) = κ1

α holds for all α < α1. In particular, we know that every ordinal is of

the form j∗(g)(d) with n < ω, g : [κ1]
n −→ Ord in M0 and d ∈ [C1]n.

Claim. If n < ω, B ∈ Un
1 and B∗ ∈ Un

∗ , then j0[B] ∩B∗ ̸= ∅.

Proof of the Claim. Pick n < ω, f : [κ0]
n −→ V and c ∈ [C0]n with B∗ = j0(f)(c).

By [10, Lemma 19.9], we then have

D = {a ∈ [κ0]
n | f(a) ∈ Un

1 } ∈ Un
0 .

Since Un
0 has cardinality less than κ1, the <κ1-completeness of Un

1 implies that
E =

⋂
{f(a) | a ∈ D} is an element of Un

1 . Pick b ∈ B ∩ E. Then

D ⊆ {a ∈ [κ0]
n | b ∈ f(a)} ∈ Un

0

and [10, Lemma 19.9] shows that j0(b) ∈ j0[B] ∩ j0(f)(c) = j0[B] ∩B∗ ̸= ∅. □

Claim. If n < ω and g0, g1 : [κ1]
n −→ Ord are functions in M0 with

{b ∈ [κ1]
n | g0(b) = g1(b)} ∈ Un

∗ ,

then

{b ∈ [κ1]
n | g0(j0(b)) = g1(j

0(b))} ∈ Un
1 .

Proof of the Claim. Assume, towards a contradiction, that the above conclusion
fails. Then we know that the set B = {b ∈ [κ1]

n | g0(j0(b)) ̸= g1(j
0(b))} is an

element of Un
1 . In this situation, we can use our first claim to find b ∈ B with

g0(j
0(b)) = g1(j

0(b)), a contradiction. □

The same proof also yields the following implication:

Claim. If n < ω and g0, g1 : [κ1]
n −→ Ord are functions in M0 such that the set

{b ∈ [κ1]
n | g0(b) < g1(b)} is an element of Un

∗ , then the set

{b ∈ [κ1]
n | g0(j0(b)) < g1(j

0(b))}
is an element of Un

1 . □

Claim. For every function f : [κ1]
n −→ Ord in V , there is a function g : [κ1]

n −→
Ord in M0 with

{b ∈ [κ1]
n | f(b) = g(j0(b))} ∈ Un

1 .

Proof of the Claim. Given b ∈ [κ1]
n, pick mb < ω, fb : [κ0]

mb −→ Ord in V and
cb ∈ [C0]mb with f(b) = j0(fb)(cb). Then there is m < ω and c ∈ [C0]m with

B = {b ∈ [κ1]
n | mb = m, cb = c} ∈ Un

1 .

Define

G : [κ0]
m ×B −→ Ord; (a, b) 7−→ fb(a)

and

g : [κ1]
n −→ Ord; b 7−→ j0(G)(c, b).
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Then g is an element of M0 and

g(j0(b)) = j0(G)(c, j0(b)) = j0(fb)(c) = f(b)

holds for all b ∈ B ∈ Un
1 . □

Claim. If g : [κ1]
1 −→ Ord is an element of M0, then

j1(g ◦ j0)({κ1}) = j1(g)({κ1}).

Proof of the Claim. Since standard arguments show that {{γ} | γ < κ1, j
0(γ) = γ}

is an element of U1
1 , we know that the set {{γ} | γ < κ1, (g ◦ j0)(γ) = g(γ)} is also

contained in U1
1 and hence an application of [10, Lemma 19.9] shows that we have

j1(g ◦ j0)({κ1}) = j1(g)({κ1}). □

By our second claim and [10, Lemma 19.9], there is a well-defined class function
F : Ord −→ Ord with the property that

F (j∗(g)(c)) = j1(g ◦ j0)(c)
holds for all n < ω, g : [κ1]

n −→ Ord in M0 and c ∈ [C1]n. Moreover, our third
claim shows that F is order-preserving. Finally, since every ordinal is of the form
j1(f)(c) for some n < ω, f : [κ1]

n −→ Ord in V and c ∈ [C1]n, our fourth claim
shows that F is also surjective. In combination, this shows that F is the identity
on Ord. Now, fix an ordinal γ and let gγ denote the constant function on [κ1]

1

with value γ. Then we have

j∗(γ) = j∗(gγ)({κ1}) = F (j∗(gγ)({κ1}))
= j1(gγ ◦ j0)({κ1}) = j1(gγ)({κ1}) = j1(γ)

and this proves the statement of the lemma. □

Using the above results, we can now drive a variation of [13, Lemma 1.1.27] for
iterations. The following lemma will be the main tool used in the proofs of this
section.

Lemma 4.9. Let λ ≥ ℵ0 be a regular cardinal, let κ⃗ = ⟨κξ | ξ < λ⟩ be a strictly in-

creasing sequence of measurable cardinals with supremum κ and let U⃗ = ⟨Uξ | ξ < λ⟩
be a sequence with the property that Uξ is a normal ultrafilter on κξ for all ξ < λ.
Assume that either κ = λ or λ < κ0. Given ξ < λ, let

⟨⟨Mξ
α | α ∈ Ord⟩, ⟨jξα,β : Mξ

α −→ Mξ
β | α ≤ β ∈ Ord⟩⟩

denote the linear iteration of ⟨V,∈, Uξ⟩. Then for all ordinals γ and eventually all

ξ < λ, we have jξ0,α(γ) = γ for all α < κ.

Proof. Assume, towards a contradiction, that there is an ordinal γ such that for

unboundedly many ξ < λ, there is an α < κ with jξ0,α(γ) > γ. Let γ be minimal

with this property. Pick ζ < λ and α0 < κ with jζ0,α0
(γ) > γ. Set j = jζ0,α0

and

M = Mζ
α0
. Then j(λ) = λ and j(κ) = κ. Moreover, if we set j(κ⃗) = ⟨κ′

ξ | ξ < λ⟩
and j(U⃗) = ⟨U ′

ξ | ξ < λ⟩, then the fact that j(γ) > γ yields an ordinal ρ < λ with

the property that iξ0,α(γ) = γ holds for all ρ ≤ ξ < λ and all α < κ, where

⟨⟨Nξ
α | α ∈ Ord⟩, ⟨iξα,β : Nξ

α −→ Nξ
β | α ≤ β ∈ Ord⟩⟩

denotes the linear iteration of ⟨M,∈, U ′
ξ⟩. By our assumption, we can now pick

ρ < ξ < λ and α1 < κ such that κξ > α0 and jξ0,α1
(γ) > γ. In this situation,
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Lemma 4.8 implies that i
j(ξ)
0,α1

(γ) = jξ0,α1
(γ) > γ and this yields a contradiction,

because ρ ≤ ξ ≤ j(ξ) < λ. □

With the help of Lemma 4.9, we can now work towards a proof of the first part
of Theorem 4.7.

Lemma 4.10. In the setting of Lemma 4.9, for every ordinal γ ≥ κ, there exists an
ordinal λ0 < λ with the property that the cardinal κ has the Σ1(κξ, γ)-undefinability
property for all λ0 ≤ ξ < λ.

Proof. Lemma 4.9 yields λ0 < λ with the property that jξ0,α(κ) = κ and jξ0,α(γ) = γ
holds for all λ0 ≤ ξ < λ and α < κ. Assume, towards a contradiction, that
there is a Σ1-formula φ(v0, . . . , v3), and ordinal λ0 ≤ ξ < λ, an element z of Hκξ

and an ordinal α in the interval [κξ, κ) such that the set {α} is definable by the
formula φ(v0, . . . , v3) and the parameters κ, γ and z. Pick an ordinal β < κ with

jξ0,β(κξ) > α. Then jξ0,β(α) > α and elementarity implies that φ(jξ0,β(α), κ, γ, z)

holds in Mξ
β . But, then Σ1-upwards absoluteness implies that φ(jξ0,β(α), κ, γ, z)

holds in V , contradicting our assumptions. □

Lemma 4.11. Let κ be a cardinal that is a limit of measurable cardinals. Then
every unbounded subset of κ that consists of cardinals is Σ1(Ord)-stationary in κ.

Proof. Work in the setting of Lemma 4.9. Let E be an unbounded subset of κ that
consists of cardinals and fix a Σ1-formula φ(v0, v1, v2), an ordinal γ and z ∈ Hκ

with the property that there exists a closed unbounded subset C of κ that is the
unique set x with the property that φ(x, γ, z) holds. By combining Lemma 4.9 and
Lemma 4.10 with Corollary 2.15, we can find ξ < λ such that κξ is an element of C,

z ∈ Hκξ
and for all α < κ, we have jξ0,α(κ) = κ and jξ0,α(γ) = γ. In this situation,

we can find a cardinal κξ < µ ∈ E with jξ0,µ(κξ) = µ. Then φ(jξ0,µ(C), γ, z) holds in

Mξ
µ and, since Σ1-upwards absoluteness implies that this statement also holds in V,

it follows that jξ0,µ(C) = C. Moreover, since κξ ∈ C, we can now use elementarity

to conclude that µ = jξ0,µ(κξ) ∈ C ∩ E ̸= ∅. □

The next result generalizes [19, Theorem 1.26] and Lemma 4.4 to (possibly sin-
gular) limits of singular cardinals:

Lemma 4.12. Let κ be a cardinal that is a limit of measurable cardinals and let
E be a subset of κ with the property that the set {E} is definable by a Σ1-formula
with parameters in Ord ∪ Hκ. Then there exists a closed unbounded subset C of κ
of order type κ with the property that the set {C} is definable by a Σ1-formula with
parameters in Hκ ∪ {κ} and either C ⊆ E or C ∩ E = ∅ holds.

Proof. We may assume that there is a Σ1-formula φ(v0, v1, v2), an ordinal γ and
z ∈ Hκ with the property that E is the unique set x satisfying φ(x, γ, z). By Lemma
4.9, there exists a measurable cardinal κ0 < κ with z ∈ Hκ0 and a normal ultrafilter
U on κ0 satisfying j0,α(κ) = κ and j0,α(γ) = γ for all α < κ, where

⟨⟨Mα | α ∈ Ord⟩, ⟨jα,β : Mα −→ Mβ | α ≤ β ∈ Ord⟩⟩
is the linear iteration of ⟨V,∈, U⟩. Given an ordinal α < κ, elementarity ensures that
φ(j0,α(E), γ, z) holds in Mα. In this situation, Σ1-upwards absoluteness implies
that φ(j0,α(E), γ, z) holds in V for all α < κ, and this allows us to conclude that
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j0,α(E) = E holds for all α < κ. If κ0 is an element of E, then these observations
show that {j0,α(κ0) | α < κ} is a closed unbounded subset of E of order type κ. In
the other case, if κ0 /∈ E, then {j0,α(κ0) | α < κ} is a closed unbounded subset of
E of order type κ that is disjoint from E.

Now, pick a transitive model N of ZFC− such that N contains κ and U and the
model ⟨N,∈, U⟩ is linearly iterable. Let

⟨⟨Nα | α ∈ Ord⟩, ⟨iα,β : Nα −→ Nβ | α ≤ β ∈ Ord⟩⟩
denote the linear iteration of ⟨N,∈, U⟩. In this situation, the fact that P(κ0) ⊆ N
implies that j0,α(κ0) = i0,α(κ0) holds for all α < κ. Since the class of all sets
N with the above properties is definable by a Σ1-formula with parameter U , we
can conclude that the set {{j0,α(κ0) | α < κ}} is definable by a Σ1-formula with
parameters in Hκ ∪ {κ}. □

The techniques used in the above proofs also allow us to prove the second part
of Theorem 4.7:

Proof of Theorem 4.7. Let κ be a limit of measurable cardinals. Then Lemma 4.11
shows that every unbounded subset of κ that consists of cardinals is Σ1(Ord)-
stationary. Now, let S be a Σ1(Ord)-stationary subset of κ and let r : κ −→ κ be a
regressive function that is definable by a Σ1-formula φ(v0, . . . , v3), an ordinal γ and
an element z of Hκ. As in the proof of Lemma 4.12, we can now find a measurable
cardinal κ0 < κ with z ∈ Hκ0

and a normal ultrafilter U on κ0 with the property
that j0,α(γ) = γ holds for all α < κ, where

⟨⟨Mα | α ∈ Ord⟩, ⟨jα,β : Mα −→ Mβ | α ≤ β ∈ Ord⟩⟩
denotes the linear iteration of ⟨V,∈, U⟩. Let r(κ0) = ξ < κ0. Then φ(κ0, ξ, γ, z)
holds in V and for all α < κ, elementarity implies that φ(j0,α(κ0), ξ, γ, z) holds in
Mα. Given α < κ, Σ1-upwards absoluteness now implies that φ(j0,α(κ0), ξ, γ, z)
holds in V and hence r(j0,α(κ0)) = ξ. This shows that the restriction of r to the
closed unbounded subset C = {j0,α(κ0) | α < κ} of κ is constant with value ξ.
Moreover, the proof of Lemma 4.12 shows that the set {C} is definable by a Σ1-
formula with parameters κ and U . Since Corollary 2.12 and Lemma 4.11 show that
the set C ∩ S is Σ1(Ord)-stationary in κ, these arguments show that r is constant
on a Σ1(Ord)-stationary subset of S. □

4.3. Partition properties. Remember that, given uncountable cardinals µ < κ,
the cardinal κ is µ-Rowbottom if the square brackets partition relation κ −→ [κ]<ω

λ,<µ

holds true for all λ < κ, i.e., for every λ < κ and every function c : [κ]<ω −→ λ,
there exists H ∈ [κ]κ with |c[[H]<ω]| < µ. Moreover, ω1-Rowbottom cardinals are
called Rowbottom cardinals. The following lemma connects this partition property
to the Σ1-undefinability property:

Lemma 4.13. Let κ be a µ-Rowbottom cardinal. If either κ = ωω or ρ<µ < κ
holds for all ρ < κ, then κ has the Σ1(µ)-undefinability property.

Proof. Assume, towards a contradiction, that there is a Σ1-formula φ(v0, v1, v2),
an element z of Hµ and an ordinal α in [µ, κ) that is the unique set x such that
φ(x, κ, z) holds.

Claim. There is an elementary submodel X of Hκ+ with tc({z}) ∪ {κ, α} ⊆ X,
|X ∩ α| < |α| and |X ∩ κ| = κ.
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Proof of the Claim. Define L to be the countable first-order language that extends
L∈ by a unary predicate symbol Ṗ , a unary function symbol ṡ, a constant symbol
κ̇, a constant symbol α̇ and a constant symbol ċy for every y ∈ tc({z}). Pick an
elementary submodel M of Hκ+ of cardinality κ with tc({z}) ∪ (κ+ 1) ⊆ M and a

surjection s : κ −→ M . Now, let A denote an L-expansion of ⟨M,∈⟩ with ṖA = α,
ṡA ↾ κ = s, κ̇A = κ, α̇A = α and ċAy = y for all y ∈ tc({z}). In addition, we define
ρ = |α| ≥ µ.

First, assume that ρ<µ < κ holds. Then [10, Theorem 8.5] yields an elementary
substructure X of A of cardinality κ with |X ∩ α| < µ ≤ ρ. This setup then
ensures that tc({z}) ∪ {κ, α} ⊆ X and, since ran(s ↾ X) = X, we also know that
|X ∩ κ| = κ.

In the other case, assume that κ = ωω. Then ρ is regular and κ is also ρ-
Rowbottom. Another application of [10, Theorem 8.5] now produces an elementary
substructure X of A of cardinality κ with |X ∩ α| < ρ. As above, we can conclude
that tc({z}) ∪ {κ, α} ⊆ X and |X ∩ κ| = κ. □

Let π : X −→ N denote the corresponding transitive collapse. Then our setup
ensures that π(κ) = κ, π(z) = z and π(α) < α. Moreover, since Σ1-absoluteness
causes φ(α, κ, z) to holds in Hκ+ and X, we know that φ(π(α), κ, z) holds in N . But
then Σ1-upwards absoluteness implies that this statement holds in V , contradicting
our assumptions. □

Recall that a cardinal κ is Jónsson if for every function f : [κ]<ω −→ κ there
is a proper subset H of κ of cardinality κ with f [[H]<ω] ⊆ H. Motivated by the
notoriously open question whether the first limit cardinal ωω can be Jónsson, we
show that this assumption causes analogs of central results from the previous two
sections to hold at ωω.

Theorem 4.14. If ωω is a Jónsson cardinal, then the following statements hold:

(1) Every infinite subset of {ωn | n < ω} is Σ1-stationary in ωω.
(2) If r : ωω −→ ωω is a regressive function that is definable by a Σ1-formula

with parameters in Hℵω ∪ {ωω}, then r is constant on an infinite subset of
{ωn | n < ω}.

Proof. Since ωω is the least Jónsson cardinal, we know that ωω is ωn-Rowbottom for
some 0 < n < ω (see [10, Proposition 8.15]). Then Lemma 4.13 implies that ωω has
the Σ1(ωk)-undefinability property for all n ≤ k < ω. An application of Corollary
2.15 then shows that every infinite subset of {ωm | m < ω} is Σ1-stationary in ωω.

Now, assume that r : ωω −→ ωω is a regressive function that is definable by a Σ1-
formula with parameters in Hℵω

∪ {ωω}. Then we can find 0 < n < ω and z ∈ Hℵn

such that ωω is ωn-Rowbottom and r is definable by a Σ1-formula φ(v0, . . . , v3)
and the parameters ωω and z. By repeating the proof of Lemma 4.13, we can find
an elementary submodel X of Hℵω+1

with tc({z}) ∪ {κ} ⊆ X, |X ∩ ωω| = ℵω and
|X ∩ ωn| = ℵn−1. Let π : X −→ N denote the corresponding transitive collapse.
Then ωω ∈ N , π(ωω) = ωω and ωn ∈ ran(π). Set λ = π−1(ωn) < ωn. Then
π ↾ λ = idλ and an an easy induction shows that π(ωk) < ωk holds for all n ≤ k < ω.
In particular, we know that π−1(α) > α holds for all ωn ≤ α < ωω. By elementarity,
the formula φ(v0, . . . , v3) and the parameters ωω and z define a regressive function
in N . In particular, Σ1-upwards absoluteness implies that φ(α, r(α), ωω, z) holds
in N for all α < ωω. We now define a strictly increasing sequence ⟨µi | i < ω⟩ of
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ordinals in the interval [ωn, ωω) by setting µ0 = ωn and µi+1 = π−1(µi) for all
i < ω. We can then inductively show that each µi is a cardinal with r(µi) = r(λ)
and hence r is constant on an infinite subset of {ωm | m < ω}. □

We end this section by presenting an example of an application of the concepts
isolated in this paper to reduce the class of models of set theory in which ωω

possesses strong partition properties. In particular, we will show that ωω is not
ω2-Rowbottom in the standard models of strong forcing axioms, where the given
axiom was forced over a model of the GCH by turning some large cardinal into ω2.
This implication will be a direct consequence of the following observation:

Lemma 4.15. Assume that there is a natural number n∗ > 1 such that there are no
special ωn∗-Aronszajn trees and for all n∗ < n < ω, there are special ωn-Aronszajn
trees. Then the set {ωn∗} is definable by a Σ1-formula with parameter ωω and the
cardinal ωω is not ωn∗-Rowbottom.

Proof. Consider the collection of all transitive modelsM of ZFC− with the following
properties:

• ωω + 1 ⊆ M .
• ωω = ωM

ω .
• In M , for every n∗ < n < ω, there is a special ωM

n -Aronszajn tree.

The collection of such models M is not empty as it includes Hℵω+1
. It is clear that

for each model M in this collection, we have ωM
n∗

= ωn∗ . Hence, we can conclude
that the set {ωn∗} is definable by the Σ1-formula with parameter ωω that says there
is a model M with the above properties and x is equal to ωM

n∗
. In particular, this

shows that the cardinal ωω does not have the Σ1(ωn∗)-undefinability property and
hence Lemma 4.13 shows that ωω is not ωn∗ -Rowbottom. □

If we start in a model of the GCH containing a supercompact cardinal and use
the canonical forcing to force the validity of some strong forcing axiom, like PFA or
MM++, then a result of Baumgartner shows that the tree property holds at ω2 and,
since the GCH holds above ℵ0, a result of Specker ensures that there are special
ωn-Aronszajn trees for all 2 < n < ω. Therefore, the above lemma shows that ωω

is not ω2-Rowbottom in these models. This observation should be compared with
the consistency results of König in [12].

5. Equiconsistency results

We build on the results of the previous sections to obtain more equiconsistency
results that witness various ways by which different types of Σ1-definable closed
unbounded sets of cardinals κ fail to approximate the closed unbounded filter on κ.

5.1. Limits of uncountably many measurable cardinals. We start by show-
ing that, in the case of singular cardinals of uncountable cofinality, Theorem 4.7
provides the right consistency strength for both of the listed conclusions. In con-
trast, we will later show that the consistency strength for singular cardinals of
countable cofinality is merely a single measurable cardinal.

Theorem 5.1. Let κ be a singular cardinal of uncountable cofinality. If there is no
inner model with cof(κ)-many measurable cardinals, then the following statements
hold:
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(1) Every subset of κ that is Σ1-stationary in κ is stationary in κ. In particular,
there is an unbounded subset of κ that consists of cardinals and is not Σ1-
stationary in κ.

(2) There exists a regressive function r : κ −→ κ that is definable by a Σ1-
formula with parameters in Hκ∪{κ} and is not constant on any unbounded
subset of κ.

Proof. By [11, Theorem 2.14], our assumptions imply that 0long (as defined in
[11, Definition 2.13]) does not exist. Let Ucan denote the canonical sequence of
measures and let K[Ucan] denote the canonical core model (as defined in [11, Def-
inition 3.15]). Then our assumption ensures that dom(Ucan) has order-type less
than cof(κ). Moreover, since cof(κ) is uncountable, we can apply [11, Theorem
3.23] to show that κ is not measurable in K[Ucan]. But, this allows us to use [11,
Theorem 3.20] to conclude that κ is singular in K[Ucan]. Set U = Ucan ↾ κ and
K = K[U ] (see [11, Definition 3.1]). Then U ∈ Hκ and [11, Theorem 3.9] shows that
P(κ)K[Ucan] ⊆ K. In particular, we know that κ is singular in K and we can define

c : cof(κ)
K −→ κ to be the <K[U ]-least cofinal function in K (see [11, Theorem 3.4]).

Then [16, Lemma 2.3] shows that c is definable by a Σ1-formula with parameters
in Hκ ∪ {κ}. But this shows that there is a closed unbounded subset C of κ of

order-type cof(κ)
K

such that min(C) > cof(κ)
K

and the set {C} is definable by a
Σ1-formula with parameters in Hκ ∪ {κ}. As in the proof of Corollary 3.4, we now
know that every subset of κ that is Σ1-stationary in κ is stationary in κ. Finally,
the function

r : κ −→ cof(κ)
K
; α 7−→ otp (C ∩ α)

is a regressive function that is definable by a Σ1-formula with parameters in Hκ∪{κ}
and is not constant on any unbounded subset of κ. □

By combining this result with Theorem 4.7, we obtain the following equiconsis-
tency:

Corollary 5.2. The following statements are equiconsistent over ZFC:

(1) There exist uncountably many measurable cardinals.
(2) There exists a singular cardinal κ of uncountable cofinality with the property

that some non-stationary subset of κ is Σ1-stationary in κ.
(3) There exists a singular cardinal κ of uncountable cofinality with the property

that some non-stationary subset of κ is Σ1(Ord)-stationary in κ. □

5.2. Countable cofinalities. The aim of this section is to prove the following
equiconsistency result:

Theorem 5.3. The following statements are equiconsistent over ZFC:

(1) There is a measurable cardinal.
(2) Every unbounded subset of {ωn | n < ω} is Σ1(Ord)-stationary in ωω.
(3) There is a singular cardinal κ of countable cofinality and a subset of κ that

consists of cardinals and is Σ1(Ord)-stationary in κ.
(4) There is a singular cardinal κ of countable cofinality and a subset of κ that

consists of cardinals and is Σ1-stationary in κ.

Remark 5.4. The restriction to Σ1(Ord)-definability in (2) of the theorem is
optimal since the sequence ⟨ωn | n < ω⟩ is Σ2(Ord)-definable.



ON Σ1-DEFINABLE CLOSED UNBOUNDED SETS 25

In the following arguments we will make use of the Easton-support collapse
version from [18] of a universal collapse forcing (see [6] for a comprehensive back-
ground).

Definition 5.5. Suppose that κ is a Mahlo cardinal and let

Iκ = {ω} ∪ {γ < κ | γ is inaccessible}.
For each γ ∈ Iκ, we define Q(γ,<κ) to be the product

Q(γ,<κ) =
∏

δ∈Iκ\γ

Col(δ,<κ)

with the Easton-support.

Remark 5.6. The partial order Q(γ,<κ) is clearly definable from the ordinals γ
and κ, and forcing with Q(γ,<κ) collapses all cardinals in the interval (γ, κ). Since
this partial order is <γ-closed and satisfies the κ-chain condition, the cardinal κ
becomes γ+ in Q(γ,<κ)-generic extensions. In the following, we will rely on the
following two useful features of this partial order:

(1) If δ < κ is a Mahlo cardinal and γ ∈ Iδ, then Q(γ,<δ) × Q(δ,<κ) is a
regular subforcing of Q(γ,<κ).

(2) Q(γ,<κ) is weakly homogeneous.

The proofs are left to the reader (see also [18]).

Before proving Theorem 5.3, we review some basic facts about Prikry forcing
and products of collapse forcings. Suppose that κ is a measurable cardinal and
U is a normal measure on κ. We let PU denote the Prikry forcing given by U .
Conditions PU are then of the form p = ⟨sp, Ap⟩, where sp ∈ [κ]<ω is a finite
sequence of Mahlo cardinals and Ap ∈ U consists of Mahlo cardinals and satisfies
min(Ap) > max(sp). We then have p ≤PU

q if sp end-extends sq, Ap ⊆ Aq, and
sp \ sq ⊆ Aq. If moreover, sp = sq holds, then we say p is a direct extension
of q, denoted by p ≤∗

PU
q. Given a condition p in PU and t ∈ [Ap]

<ω, we let
p⌢t denote the condition ⟨sp ∪ t, Ap \ (max(t) + 1)⟩. Finally, if G is PU -generic
filter over V , then its associated Prikry sequence κ⃗G = ⟨κG

n | n < ω⟩ is defined
by κ⃗G =

⋃
{s ∈ [κ]<ω | ∃A ∈ U ⟨s,A⟩ ∈ G}. Below, we record some of the basic

properties of PU that will be used in the following arguments (see [8] for details).

Fact 5.7.

(1) The direct extension order ≤∗
PU

is <κ-closed.
(2) Forcing with PU does not introduce new bounded subsets of κ.
(3) The partial order PU satisfies the κ+-chain condition.
(4) (Prikry Property) For every condition q in PU and every statement σ in the

forcing language of PU , there is p ≤∗
PU

q which decides σ.
(5) (Strong Prikry Property) For every condition q in PU and every dense open

set D of PU , there is p ≤∗
PU

q and n < ω such that D contains all conditions
of the form p⌢t with t ∈ [Ap]

n.
(6) (Name Capturing Property) For every condition q in PU and every PU -name

ḟ for a function with domain ω with the property that ḟG(n) ∈ HκG
n
holds

whenever n < ω and G is PU -generic over V with q ∈ G, there is a condition
p ≤∗

PU
q and a function F : [Ap]

<ω −→ Hκ so that

p⌢t ⊩PU
“ ḟ(|šp ∪ ť|) = F̌ (ť)”
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holds for every t ∈ [A∗]<ω.
(7) A PU -generic filter G is generated by its induced Prikry sequence κ⃗G in the

sense that G = {⟨κ⃗G ↾ n,A⟩ | n < ω, κ⃗G \ n ⊆ A ∈ U}.
(8) (Mathias Criterion) A sequence κ⃗ = ⟨κn | n < ω⟩ generates a PU -generic

filter if and only if κ⃗ \A is finite for every A ∈ U .

To push the construction down to ωω, we force with a product of collapse posets
after adding a Prikry forcing. Let ρ⃗ = ⟨ρn | n < ℓρ⃗⟩ be a strictly increasing sequence
of Mahlo cardinals of length 0 < ℓρ⃗ ≤ ω and define Cρ⃗ to be the product

Q(ω,<ρ0) ×
∏

0<n<ℓρ⃗

Q(ρn−1, <ρn)

with full support. Therefore, conditions in Cρ⃗ are sequences q = ⟨qn | n < ℓρ⃗⟩ with
q0 ∈ Q(ω,<ρ0) and qn ∈ Q(ρn−1, <ρn) for all 0 < n < ℓρ⃗.

Remark 5.8.

(1) Standard arguments about product forcings show that, if G is Cρ⃗ -generic

over V , then ρn = ω
V [G]
n+1 holds for every n < ℓρ⃗.

(2) By the absorption argument for the Easton-support collapse product (Re-
mark 5.6), if s is a finite strictly increasing sequences of Mahlo cardinals
and t is a subsequence of s with max(s) = max(t), then Cs is a regular
subforcing of Ct. This directly implies that, if ρ⃗ is a strictly increasing se-
quence of Mahlo cardinals of length ω and s is a finite subset of ρ⃗, then Cρ⃗

is a regular subforcing of Cρ⃗\s. Moreover, the associated forcing projection
from Cρ⃗\s to Cρ⃗ is the identity on the components below min(s) and above
min (ρ⃗ \ (max(s) + 1)).

(3) The forcing Cρ⃗ is weakly homogeneous. Therefore, if some condition in Cρ⃗

forces a statement with ground model parameters to hold, then every con-
dition forces this statement to hold. Similarly, for every sequence ρ⃗ and an
initial segment s, the quotient forcing Cρ⃗/Cs is also weakly homogeneous.

In the following, let Ċ denote the canonical PU -name for a partial order with the
property that ĊG = Cκ⃗G holds whenever G is PU -generic over V . The argument of
the following Lemma will give the forcing direction of Theorem 5.3.

Lemma 5.9. If G∗H is (PU ∗ Ċ)-generic over V and γ ≥ κ is an ordinal, then, in
V [G,H], the cardinal ωω has the Σ1(ωn, γ)-undefinability property for all sufficiently
large natural numbers n.

Proof. Fix a condition p∗ in PU . For each natural number n ≥ |sp∗ |, let σn be the

statement in the forcing language of PU that says that there is a condition in Ċ which
forces that κ does not have the Σ1(κ̇n, γ)-undefinability property, where κ̇n denotes
the canonical PU -name for κG

n . By the Prikry property, for each |sp∗ | ≤ n < ω,
there is a condition pn ≤∗

PU
p∗ that decides σn. We complete the proof by showing

that, for all |sp∗ | ≤ n < ω, the condition pn forces ¬σn to hold. Suppose otherwise
that pn ⊩PU

σn for some |sp∗ | ≤ n < ω. Pick a condition p ≤PU
pn with |sp| = n.

Since p ⊩PU
σn, there is a PU -name q̇ for a condition in Ċ so that

⟨p, q̇⟩ ⊩PU∗Ċ “κ does not have the Σ1(κ̇n, γ̌)-undefinability property”.

Since κ̇n is a PU -name and Ċ is forced to be weakly homogeneous (see Remark 5.8),

we can assume that q̇ is the name for the trivial condition 1̇Ċ in Ċ. This allows us
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to find (PU ∗ Ċ)-names ẋ, α̇ and τ̇ so that ⟨p, 1̇Ċ⟩ forces the following statements
to hold:

• ẋ is an element of Hκ̇n
.

• α̇ is an ordinal in the interval [κ̇n, κ̌).
• τ̇ is the Gödel number of a Σ1-formula φ(v0, . . . , v3) that defines the set
{α̇} using the parameters κ̌, γ̌ and ẋ.

Making another use of the fact that Ċ is forced to be a weakly homogeneous
partial order, we may assume α̇ and τ̇ are PU -names. Moreover, using the Prikry
property of PU , we may also assume that p decides that τ̇ codes a given Σ1-formula
φ(v0, . . . , v3). Since the quotient forcing Cκ⃗G/Cκ⃗G↾(n+1) is weakly homogeneous

whenever G is PU -generic over V , we may assume that ẋ is a (PU ∗ Ċn)-name,

where Ċn is the canonical PU -name for Cκ⃗G↾(n+1). In addition, since forcing with

PU does not add new bounded sets to κ and Ċn is forced to satisfy the κ̇n-chain
condition, there is a PU -name ẏ with the property that whenever G is PU -generic
over V with p ∈ G, then ẏG is a Cκ⃗G↾(n+1)-name in HV

κG
n

that Cκ⃗G↾(n+1) forces

to be equal to ẋ. The fact that p⌢⟨ρ⟩ ⊩PU
“ κ̇n = ρ̌” holds for every ρ ∈ Ap

allows us to use the name capturing property of PU (see Fact 5.7) to find a function
Y : Ap −→ Hκ with the property that for every ρ ∈ Ap, the set Y (ρ) is a Csp∪{ρ}-

name in Hρ with p⌢⟨ρ⟩ ⊩PU
“ ẏ = Y̌ (ρ̌)”. Using the normality of U , we can find

A ⊆ Ap in U and ẏ0 in Hκ with the property that Y (ρ) = ẏ0 holds for all ρ ∈ A. Let
ρ0 = min(A). Then we can find an ordinal α in the interval [ρ0, κ) and a condition
r0 ≤PU

p⌢⟨ρ0⟩ with α < max(sr0) and r0 ⊩PU
“ α̇ = α̌”. Set ρ1 = min(A ∩ Ar0)

and r1 = ⟨sp ∪ {ρ1}, Ar0 \ (ρ1 + 1)⟩. Then r1 is a condition in PU that strengthens

p⌢⟨ρ1⟩. Let G1 ∗ H1 be (PU ∗ Ċ)-generic over V with r1 ∈ G1. We then have
κG1
n = ρ1 > max(sr0) > α. By the Mathias criterion for PU (see Fact 5.7), the

sequence sr0
⌢(κ⃗G1 ↾ [n, ω)) generates a PU -generic filter G0 over V that is an

element of V [G1]. It is then clear that r0 is an element of G0 and V [G0] = V [G1].
Moreover, since κ⃗G1 ↾ n = sp = sr0 ↾ n, it follows that κ⃗G1 is a subsequence of κ⃗G0

with finite difference and hence the absorption property of Easton collapse posets
(see Remark 5.6) ensures that the partial order Cκ⃗G0 is a regular subforcing of the
partial order Cκ⃗G1 . Let H0 ∈ V [G0, H1] denote the filter on Cκ⃗G0 induced by H1.

Since H0 and H1 induce the same filter on Csp∪{ρ0}, we know that ẏH0
0 = ẏH1

0 . This

implies that φ(α, κ, γ, ẏH1
0 ) holds in V [G0, H0] and, by Σ1-upwards absoluteness,

this statement also holds in V [G0, H1]. But this yields a contradiction, because the
fact that r1 is an element of G1 implies that α̇G1 ≥ κG1

n = ρ1 > α and α̇G1 is the

unique element a of V [G0, H1] with the property that φ(a, κ, γ, ẏH1
0 ) holds. □

A combination of the above lemma with Corollary 2.15 now directly yields the
following result:

Corollary 5.10. If G ∗ H is (PU ∗ Ċ)-generic over V , then, in V [G,H], every
unbounded subset of {ωn | n < ω} is Σ1(Ord)-stationary in ωω. □

We are now ready to prove the main result of this section:

Proof of Theorem 5.3. First, let κ be a singular cardinal of countable cofinality and
let E be a subset of κ that consists of cardinals and is Σ1(Ord)-stationary in κ.
Assume, towards contradiction, that there is no inner model with a measurable
cardinal. Then κ is singular in the Dodd-Jensen core model KDJ . By Lemma
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3.3, there is a cofinal function c : cof(κ)
KDJ

−→ κ which is definable by a Σ1-

formula with parameter κ. In addition, pick a cofinal function g : ω −→ cof(κ)
KDJ

.
Then the composition f = c ◦ g : ω −→ κ is cofinal in κ and Σ1-definable from the
parameters κ and g ∈ Hκ. Then the C = {f(n) + 1 | n < ω} is closed unbounded in
κ and it is definable by a Σ1-formula with parameters in Hκ∪{κ}. Since it consists
of successor ordinals, it is disjoint from E, contradicting our assumptions.

The above computations show that (4) implies (1) in the statement of the the-
orem. This completes the proof of the theorem, because the implications from (2)
to (3) and from (3) to (4) are trivial and the implication from (1) to (2) is given
by Corollary 5.10. □

By combining Theorem 5.3 with the second part of Corollary 3.6, we derive the
following equiconsistency result that shows that the statement of Proposition 2.9
is optimal in ZFC.

Corollary 5.11. The following statements are equiconsistent over ZFC:

(1) There is a measurable cardinal.
(2) There is a singular cardinal κ of countable cofinality with the property that

for every subset A of Hκ of cardinality r, there exists a subset E of κ such
that both E and κ \ E are Σ1(A)-stationary.

(3) There is a singular cardinal κ of countable cofinality with the property that
there exists a subset E of κ such that both E and κ \ E are Σ1(Ord)-
stationary. □

5.3. Successors of regular cardinals. We continue by studying Σ1(A)-stationary
subsets of successor cardinals. In this section, we prove the following equiconsis-
tency result for successors of regular cardinals:

Theorem 5.12. The following statements are equiconsistent over ZFC:

(1) There is a Mahlo cardinal.
(2) There is a regular cardinal µ with the property that the set {µ} is Σ1(Hµ)-

stationary in µ+.
(3) There is a regular cardinal µ with the property that the set {µ} is Σ1-

stationary in µ+.

Lemma 5.13. If κ is a Mahlo cardinal, then there exists an inaccessible cardinal
δ < κ with the property that Q(δ,<κ) forces κ to have the Σ1(δ)-undefinability
property.

Proof. Assume, towards a contradiction, that no such δ exists. Then for every
inaccessible γ ∈ Iκ, the fact that Q(γ,<κ) is weakly homogeneous (see Remarks
5.6 and 5.8) allows us to find xγ , αγ and τγ such that the following statements hold:

• xγ is an element of Hγ .
• αγ is an ordinal in the interval [γ, κ).
• τγ is a Gödel number of a Σ1-formula φ(v0, v1, v2) with the property that
the trivial condition of Q(γ,<κ) forces that αγ is the unique set a such
that φ(a, κ, xγ) holds.

Since κ is a Mahlo cardinal, we can find a stationary subset S of κ consisting
of inaccessible cardinals, an element x of Hκ and a Σ1-formula φ(v0, v1, v2) such
that for all γ ∈ S, we have xγ = x and τγ is a Gödel number of φ(v0, v1, v2).
Let γ0 = min(S) and γ1 = min(S \ (αγ0

+ 1)). Clearly, we then have γ0 < γ1
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and αγ1
> αγ0

. Let G0 be Q(γ0, <κ)-generic over V . As Q(γ1, <κ) is a regular
subforcing of Q(γ0, <κ), we can now find G1 ∈ V [G0] that is Q(γ1, <κ)-generic over
V . In this situation, we know that φ(αγ1 , κ, x) holds in V [G1] and, by Σ1-upwards
absoluteness, this statement also holds in V [G0]. But this yields a contradiction,
because αγ1

> αγ0
and αγ0

is the unique element a of V [G0] with the property that
φ(a, κ, x) holds in V [G0]. □

Proof of Theorem 5.12. Suppose that µ is a regular cardinal so that the set {µ} is
Σ1-stationary in µ+. Assume, towards a contradiction, that κ = µ+ is not a Mahlo
cardinal in L. Then there is a constructible closed unbounded subset of κ whose
elements are singular in L. Let C denote the <L-least such subset of κ. Then the
set {C} is definable by a Σ1-formula with parameter κ and hence we know that µ is
an element of C. But this is a contradiction, because all elements of C are singular.

The above computations yield the implication from (3) to (1) in the statement of
the theorem. The implication from (1) to (2) is given by a combination of Lemma
2.14 and Lemma 5.13. Finally, the implication from (2) to (3) is trivial. □

5.4. Successors of singular cardinals. The last arguments used in the above
proof of Theorem 5.12 do not apply if we consider successors of singular cardinals.
Indeed, it turns out that the corresponding assumptions has much higher consis-
tency strength. In one direction, we show that an analogous statement holds for
successors of limits of measurable cardinals:

Theorem 5.14. If κ is a limit of measurable cardinals, then the cardinal κ+ has
the Σ1(κ)-undefinability property.

Proof. Assume, towards a contradiction, that there is a Σ1-formula φ(v0, v1, v2), an
ordinal α in the interval [κ, κ+) and an element z of Hκ such that α is the unique
set a with the property that φ(a, κ+, z) holds. Pick a measurable cardinal δ < κ
such that z ∈ Hδ and cof(κ) ∈ δ ∪ {κ}. Pick a normal ultrafilter U on δ and let

⟨⟨Mα | α ∈ Ord⟩, ⟨jα,β : Mα −→ Mβ | α ≤ β ∈ Ord⟩⟩

denote the linear iteration of ⟨V,∈, U⟩. Standard arguments now allow us to con-
clude that j0,γ(κ

+) = κ+ and j0,γ(z) = z holds for all γ < κ+ (see, for example,
[15, Lemma 7.3]). We can now pick γ < κ+ with j0,γ(δ) > α. Elementarity
then implies that φ(j0,γ(α), κ

+, z) holds in Mγ and, by Σ1-upwards absoluteness,
this shows that φ(j0,γ(α), κ

+, z) also holds in V . But, this yields a contradiction,
because j0,γ(α) > α. □

In combination with Lemma 2.14, the above result shows that if κ is a limit of
measurable cardinals, then the set {κ} is Σ1(Hκ)-stationary in κ+. We end this
section by showing that, in the case of successors of singular cardinals, the used
large cardinal assumption is optimal. In the proof of this result, we again rely on
the results of [11].

Theorem 5.15. Let κ be a singular cardinal with the property that the set {κ} is
Σ1(Hκ)-stationary in κ+. Then there is an inner model with cof(κ)-many measur-
able cardinals.

Proof. Assume, towards a contradiction, that the above conclusion fails. An ap-
plication of [11, Theorem 2.14] then shows that 0long does not exist. Let Ucan

denote the canonical sequence of measures and let K[Ucan] denote the canonical
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core model. Our assumption then implies that dom(Ucan ↾ κ) is a bounded subset
of κ.

Claim. κ+ = (κ+)K[Ucan].

Proof of the Claim. First, if κ /∈ dom(Ucan), then the fact that dom(Ucan ↾ κ) is
bounded in κ allows us to use [11, Theorem 3.20] to derive the desired conclusion.
Hence, we may assume that κ is an element of dom(Ucan). An application of [11,
Theorem 3.23] then shows that cof(κ) = ω and there is a generic extension of
K[Ucan] by finitely-many Prikry forcings that computes κ+ correctly. But this also
means that K[Ucan] computes κ+ correctly. □

Set U = Ucan ↾ κ ∈ Hκ. By [11, Theorem 3.9], we then have P(κ)K[Ucan] ⊆ K[U ]
and hence the above claim shows that κ+ = (κ+)K[U ].

Claim. The set {κ} is definable by a Σ1-formula with parameters κ+ and U .

Proof of the Claim. If ζ < κ+ is an ordinal and M is a U -mouse (i.e., an iterable
premouse over U , see [11, Definition 2.5]) with κ+ ∈ lp(M) and κ+ = (ζ+)M , then
a direct adaptation of the proof of Lemma 3.1 shows that P(κ) ⊆ M and hence
κ = ζ. Since there exists a U -mouse that satisfies the listed properties with respect
to κ, this observation yields the desired definition of the set {κ}. □

The above claim directly yields a contradiction, because it implies that the set
{(κ, κ+)} is definable by a Σ1-formula with parameters in Hκ ∪ {κ+}. □

6. Open Problems

There are many natural ways to vary Definition 2.13. For example, given a
cardinal κ ≥ ω2, we may ask whether for some uncountable ordinal α < κ, the set
{α} is definable by a Σ1-formula with parameter κ. Since our arguments to derive
consistency strength from the undefinability property (as in the proof of Theorem
5.3) cannot be directly adjusted to this variation, we arrive at the following question:

Question 6.1. Assume that for every uncountable ordinal α < ωω, the set {α} is
not definable by a Σ1-formula with parameter ωω. Does 0# exist?

In Section 4.3, we show that many of the implications of large cardinals on
Σ1(A)-stationary sets can also be derived for smaller cardinals in the case where
these cardinals possess strong partition properties. For some of these implications,
it is natural to ask whether they can be strengthened. First, since Lemma 4.13
relies on additional assumptions on the given Rowbottom cardinal, we ask whether
these assumptions can be omitted:

Question 6.2. Does every µ-Rowbottom cardinal have the Σ1(µ)-undefinability
property?

Second, when we consider Σ1-definable regressive functions and compare the
third part of Theorem 4.2 and the second part of Theorem 4.7 with the second part
of Theorem 4.14, then we notice that our result for the case where ωω is Jónsson
is restricted to Σ1-stationary sets consisting of cardinals. We therefore ask if the
given conclusion can also be extended to arbitrary Σ1-stationary subsets in this
setting.



ON Σ1-DEFINABLE CLOSED UNBOUNDED SETS 31

Question 6.3. Assume that ωω is a Jónsson cardinal, S is a Σ1-stationary subset
of ωω and r : ωω −→ ωω is a regressive function that is definable by a Σ1-formula
with parameters in Hℵω ∪ {ωω}. Is r constant on a Σ1-stationary subset of S?

Finally, let us say that a cardinal κ is strongly measurable with respect to Σ1(Ord)-
clubs if there is an inner model W in which κ is measurable such that the collection
of Σ1(Ord)-closed unbounded subsets of κ (in V ) is generated by the intersection
filter F ∈ W of η < κ many κ-complete ultrafilters on κ in W . The proof of The-
orem 5.3 shows that ωω can be strongly measurable with respect to Σ1-definable
clubs. Can the same hold for other singular cardinals such as ωω1?

Question 6.4. Can ωω1 be strongly measurable with respect to Σ1(Ord)-clubs.

See [3] for an analog of Prikry forcing, that changes the cofinality of a cardinal
κ to ω1 by a homogeneous poset.
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