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ABSTRACT. Motivated by recent work of Boney, Dimopoulos, Gitman and Magidor, we charac-
terize the existence of weak compactness cardinals for all abstract logics through combinatorial
properties of the class of ordinals. This analysis is then used to show that, in contrast to the
existence of strong compactness cardinals, the existence of weak compactness cardinals for ab-
stract logics does not imply the existence of a strongly inaccessible cardinal. More precisely, it
is proven that the existence of a proper class of subtle cardinals is consistent with the axioms of
ZFC if and only if it is not possible to derive the existence of strongly inaccessible cardinals from
the existence of weak compactness cardinals for all abstract logics. Complementing this result,
it is shown that the existence of weak compactness cardinals for all abstract logics implies that
unboundedly many ordinals are strongly inaccessible in the inner model HOD of all hereditarily
ordinal definable sets.

1. INTRODUCTION

The theory of strong axioms of infinity and the study of extensions of first-order logic are deeply
connected through results showing that the ability to generalize fundamental structural features
of first-order logic to stronger logics is equivalent to the existence of large cardinalsﬂ A classical
example of such a result is a theorem of Magidor in [14] that shows that the existence of a strong
compactness cardinal for second-order logic £? (i.e., the existence of a cardinal x with the property
that every unsatisfiable £2-theory contains an unsatisfiable subtheory of cardinality less than ) is
equivalent to the existence of an extendible cardinal. In [I6], Makowsky proved an analog of this
result that provides a large cardinal characterization for the existence of strong compactness cardi-
nals for all abstract logicsﬂ Recall that Vopénka’s Principle is the scheme of axioms stating that
for every proper clas&ﬂ of graphs, there are two distinct members of the class with a homomorphism
between them. The validity of this combinatorial principle is known to be characterizable through
the existence of certain large cardinals (see [I Section 4] and [2I], Section 6]). Makowsky’s result
can then be stated as follows:

2020 Mathematics Subject Classification. (Primary) 03B16; (Secondary) 03C55, 03E45, 03E55.

Key words and phrases. Abstract logics, large cardinals, weak compactness cardinals, strict Lowenheim—Skolem—
Tarski numbers, ordinal definability.

The author would like to thank Will Boney and Victoria Gitman for discussions that motivated much of the
content of this paper. In addition, he would like to thank Toshimichi Usuba for helpful comments on earlier versions
of the presented results. The author gratefully acknowledges supported by the Deutsche Forschungsgemeinschaft
(Project number 522490605).

IThroughout this paper, we refer to properties of cardinal numbers that imply weak inaccessibility as large cardinal
properties.

2The definition of abstract logics and all related model-theoretic notions can be found in Section

?’Throughout this paper, we work in ZFC. Therefore, all classes are definable by first-order formulas in the
language of set theory, possibly using sets as parameters.
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Theorem 1.1 ([I6, Theorem 2]). The following schemes are equivalent over ZFC:
(1) Vopénka’s Principle.
(2) FEwvery abstract logic has a strong compactness cardinal.

The work presented in this paper is motivated by recent results of Boney, Dimopoulos, Gitman
and Magidor in [5] that deal with the existence of weak compactness cardinals for abstract logics,
i.e., the existence of cardinals x with the property that every unsatisfiable theory of cardinality
K contains an unsatisfiable subtheory of cardinality less than k. These results show that the
existence of weak compactness cardinals for strong logics is connected to the combinatorial concept
of subtleness, introduced by Jensen and Kunen in [II]. Remember that an infinite cardinal « is
subtle if for every sequence (A, | o < k) with A, C « for all & < k and every closed unbounded
subset C of k, there are o, § € C with o < 8 and AgNa = A,. A short argument shows that subtle
cardinals are inaccessible limits of totally indescribable cardinals. This large cardinal notion has a
canonical class-version, i.e., one defines “Ord is subtle” to be the schemes of sentences stating that
for every class sequence (A, | a € Ord) with A, C « for all & € Ord and every closed unbounded
class C of ordinals, there exist o, § € C' with a < 8 and Ag N = A,. The results of [5] now show
that, in the presence of a definable well-ordering of VE| the validity of this principle is connected to
the existence of weak compactness cardinals for abstract logics:

Theorem 1.2 ([5, Theorem 5.3]). The following schemes are equivalent over ZFC together with
the existence of a definable well-ordering of V:

(1) Ord is subtle.
(2) Ewvery abstract logic has a stationary class of weak compactness cardinals.

This result immediately raises the following questions:

e [s it also possible to characterize the mere existence of weak compactness cardinals for
every abstract logic (instead of the existence of stationary classes of such cardinals) through
combinatorial properties of the class of ordinals?

e [s it possible to establish such characterizations in the absence of definable well-orderings
of V?

The results of this paper will provide affirmative answers to both of these questions. Moreover,
this analysis will be based on arguments showing that the validity of the involved combinatorial
principles for the class of ordinals is equivalent to the existence of certain large cardinals.

First, in order to prove results that do not rely on the existence of definable well-orderings, we
will make use of the following variation of the above class-principle that was introduce by Bagaria
and the author in their work on principles of structural reflection:

Definition 1.3 ([2]). We let “Ord is essentially subtle ” denote the scheme of sentences stating
that for every class sequence (Ey | a € Ord) with ) # E, C P(«) for all o € Ord and every closed
unbounded class C' of ordinals, there exist o, 3 € C and A € Eg with a < 8 and ANa € E,.

Obviously, if Ord is essentially subtle, then Ord is subtle. Moreover, in the presence of a definable
well-ordering of V, these principles are equivalent. In particular, since the assumption that Ord is
subtle is easily seen to be downwards absolute from V to the constructible universe L, it follows
that these two principles are equiconsistent over ZFC. In contrast, by combining a result in [5] with
Theorem [I.4]below, it is possible to show that, over ZFC, the assumption that Ord is subtle does not

4Note that the existence of such a well-ordering is equivalent to the statement that V. = HOD, for some set x
and can therefore be formulated as a single sentence in the language of set theory.
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imply that Ord is essentially subtle (see Corollary below). The following direct strengthening
of Theorem proven in Section [6] below, now provides the desired ZFC-characterization of the
existence of stationary classes of weak compactness cardinals for all abstract logics:

Theorem 1.4. The following schemes of sentences are equivalent over ZFEC:

(1) Ord is essentially subtle.
(2) Every abstract logic has a stationary class of weak compactness cardinals.

Next, we present a characterization of the existence of weak compactness cardinals for all abstract
logics in terms of combinatorial properties of the class Ord. This characterization is based on the
notion of faintness, introduced by Matet in [I7]. Matet defined a cardinal « to be faint if for every
sequence (A, | a < k) with A, C « for all @ < k and every £ < &, there are { < a < 8 < k with
AgNa = A,. The results of [I7] then show that a cardinal is faint if and only if it is either subtle
or a limit of subtle cardinals. Following earlier patterns, we introduce the following class-version of
faintness:

Definition 1.5. We let “Ord is essentially faint ” denote the scheme of sentences stating that for
every class sequence (E,, | a € Ord) with O # E, C P(«) for all a € Ord and every ordinal £, there
are ordinals £ < a <  and A € Eg with ANa € E,.

By definition, if Ord is essentially subtle, then Ord is essentially faint. Moreover, it is easy to see
that the existence of a proper class of subtle cardinals implies that Ord is essentially faint, because,
given a class sequence (E, | a € Ord) with 0 # E, C P(«a) for all & € Ord and an ordinal £, we
can pick a subtle cardinal £ > £ and use the Axiom of Choice to find a sequence (4, | o < k) with
A, € E, for all @ < k. The following result, again proven in Section [6] shows that this principle
exactly determines the combinatorial property of Ord needed for the desired characterization:

Theorem 1.6. The following schemes of sentences are equivalent over ZFC:

(1) Ord is essentially faint.
(2) Ewvery abstract logic has a weak compactness cardinal.

As already mentioned earlier, the proofs of the above theorems rely heavily on characterizations
of the involved combinatorial class-principles through large cardinal assumptions. This analysis,
carried out in Sections [2 and |3 below, can also be used to show that the ability to generalize other
structural properties of first-order logic to all abstract logics can also be characterized through the
validity of the studied combinatorial principles for Ord. More specifically, motivated by an un-
published result of Stavi that provides an analog to Theorem [I.1] for the existence of Lowenheim—
Skolem—Tarski numbers for abstract logics (see Theorem below), we will prove analogs of The-
orems and that characterize the existence of strict Léwenheim—Skolem—Tarski numbers,
studied by Bagaria and Vaanénen in [3], through subtlety properties of Ord (see Theorem [5.5]).

The results presented above naturally raise questions about the relationship between the principle
“Ord is essentially subtle” and the principle “Ord is essentially faint”. Trivially, the former
principle implies the latter. However, it is not obvious whether these principles are equivalent.
Somewhat surprisingly, the next result shows that the inequivalence of the two principles has
consistency strength strictly greater than the consistency strength of the individual principles.
Moreover, this result uses the inequivalence of the two principles to derive the existence of certain
large cardinals not only in the constructible universe L, but also in the class HOD of all hereditarily
ordinal definable sets.
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Theorem 1.7. If Ord is essentially faint and only boundedly many cardinals are subtle in HOD,
then Ord is essentially subtle.

In particular, should it be the case that the axioms of ZFC prove that there are only set-many
subtle cardinals, then these axioms also prove the equivalence of the two principles. Moreover, since
the existence of a subtle cardinal clearly implies the existence of a set-sized model of ZFC in which
Ord is essentially subtle, the above result directly yields the following equiconsistency:

Corollary 1.8. The following theories are equiconsistent:

(1) ZFC + “Ord is essentially subtle”.
(2) ZFC + “Ord is essentially faint”. O

Motivated by Theorem we now consider the possibility of separating the principle “Ord is
essentially faint” from the principle “Ord is essentially subtle”. Our results will show that this
question is closely related to questions about the existence of sentences in the language of set theory
that imply all sentences appearing in the given schemes of sentences. To motivate these results, we
will first observe that, over ZFC, the principle “Ord is essentially subtle” cannot be derived from
a single consistent sentence. In Section [2] we will show that this observation directly follows from
the results of [2| Section 9] that show that for every natural number n, the assumption that Ord
is essentially subtle implies the existence of class-many strongly inaccessible cardinals x with the
property that V is a 3,-elementary submodel of V.

Proposition 1.9. If ¢ is a sentence in the language of set theory with the property that ZFC + ¢
is consistent, then

ZFC + ¢t/ “Ord is essentially subtle”.

In contrast, assuming the consistency of sufficiently strong large cardinal assumptions, it is easy
to find consistent sentences that provably imply that Ord is essentially faint. As observed above,
the statement that there is a proper class of subtle cardinals is an example of a sentence with this
property. Our further analysis will yield additional examples of such sentences. In particular, we
will produce two incompatible sentences with the given property (see Theorem below). The
following theorem now shows that the existence of such a consistent sentence is actually equivalent
to the possibility of separating the two principles. Moreover, it shows that Theorem already
provides the correct consistency strength for the inequality of these principles.

Theorem 1.10. The following statements are equivalent:

(1) ZFC+ “Ord is essentially faint "t/ “Ord is essentially subtle”.
(2) There exists a sentence ¢ in the language of set theory such that the theory ZFC + ¢ is
consistent and

ZFC + ¢ F “Ord is essentially faint”.
(3) The theory
ZFC + “There is a proper class of subtle cardinals”
18 consistent.
Next, we consider the possibility of axiomatizing the validity of the given principles by single
sentences. Proposition already shows that this is not possible for the principle stating that Ord

is essentially subtle. A short argument in Section [f] will prove the following result that provides the
same conclusion for the principle “Ord is essentially faint”.
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Corollary 1.11. If the theory
ZFC + “Ord is essentially faint”

is consistent, then no sentence ¢ in the language of set theory satisfies the following statements:

(1) ZFC+ “Ord is essentially faint” F ¢.
(2) ZFC+ ¢+ “Ord is essentially faint”.

We now consider the question whether the validity of the scheme “Ord is essentially subtle” can
be finitely axiomatized over the theory ZEC+ “Ord is essentially faint”. The following observation,
proven in Section [4} motivates the formulation of the subsequent theorem:

Proposition 1.12. There exists a theory T in the language of set theory such that the following
statements hold:

(1) ZFC + “Ord is essentially subtle”+ T.
(2) ZFC + “Ord is essentially faint” + T F “Ord is essentially subtle”.
(3) For every sentence ¢ in T, we have

ZFC + —¢ - “Ord is essentially faint ”.

It is now natural to ask whether the theory T appearing in the above proposition can be replaced
by a single sentence. The next result, also proven in Section[d] shows that the answer to this question
depends on the consistency of the class-version of the large cardinal property of being a subtle limit
of subtle cardinals:

Theorem 1.13. The following statements are equivalent:

(1) There is no sentence ¢ in the language of set theory satisfying the following statements:
(a) ZFC + “Ord is essentially subtle” - ¢.
(b) ZFC + “Ord is essentially faint” + ¢ = “Ord is essentially subtle”.
(¢) ZFC + —¢+ “Ord is essentially faint”.

(2) There is no sentence ¢ in the language of set theory satisfying the above statements ([1al)
and .

(3) The theory

ZFC + “There is a proper class of subtle cardinals” 4+ “Ord is essentially subtle”
18 consistent.

The final topic that will be treated in this paper is the relationship between the existence of weak
compactness for abstract logics and the existence of strongly inaccessible cardinals. By combining
Theorem |1.1{ with the results of [Il Section 4], it is easy to see that the existence of strong compact-
ness cardinals for all abstract logics implies the existence of a proper class of strongly inaccessible
cardinals. Moreover, a combination of Theorem with results in [2, Section 9] (see Theorem
below) shows that the same conclusion follows from the assumption that every abstract logic
has a stationary class of weak compactness cardinals. In contrast, it turns out that the existence
of weak compactness cardinals for abstract logics is compatible with the non-existence of strongly
inaccessible cardinals. The corresponding arguments will also allow us to show that there can be
incompatible sentences witnessing in Theorem m

Theorem 1.14. The following statements are equivalent:
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(1) The theory
ZFC + “There is a proper class of subtle cardinals”

is consistent.
(2) The theory

ZFC + “Ord is essentially faint” + “There are no strongly inaccessible cardinals”

18 consistent.
(3) There is a sentence ¢ in the language of set theory such that ZFC + ¢ is consistent and

ZFC + ¢+ “Ord is essentially faint” + “There are no strongly inaccessible cardinals”.

Notice that, in combination with Theorem the above theorem shows that the existence
of a weak compactness cardinal for second-order logic does not imply the existence of a strongly
inaccessible cardinal and this shows that weakly sub-extendible cardinals, introduced by Fuchino
and Sakai in their analysis of weak compactness cardinals for £2 in [§], can exist in models of set
theory that do not contain strongly inaccessible cardinals.

Finally, while Theorem shows that the existence of weak compactness cardinals for all
abstract logics does not imply the existence of strongly inaccessible cardinals, our analysis allows
us to conclude that the given assumption at least implies the existence of strongly inaccessible
cardinals in the inner model HOD:

Theorem 1.15. If Ord is essentially faint, then unboundedly many ordinals are strongly inacces-
sible cardinals in HOD.

Note that the proof of this result will actually show that strongly inaccessible cardinals with
strong combinatorial properties exist in HOD (see Corollary below).

2. C(")_STRONGLY UNFOLDABLE CARDINALS

In this section, we review the large cardinal characterization of the principle “Ord is essentially
subtle” derived in [2| Section 9]. The starting point of these results is the notion of strongly
unfoldable cardinal introduced by Villaveces in [22]. Villaveces defined an inaccessible cardinal s
to be strongly unfoldable if for every ordinal A and every transitive ZF~ -model M of cardinality s
with k € M and <*M C M, there is a transitive set N with V) C N and an elementary embedding
j: M — N with crit (j) = « and j(k) > A. In [2], Bagaria and the author introduced natural
strengthenings of this definition that demand the existence of embeddings into models with stronger
correctness properties. Following [I], for every natural number n, we let C(™) denote the class of all
Yn-correct ordinals, i.e., the class of all ordinals o with the property that V, is a 3,-elementary
submodel of the set-theoretic universe V, denoted by V, <sx, V. It is then easy to show that
for each natural number n, the class C(™ is a closed unbounded class of ordinals that is definable
by a II,,-formula without parameters. Moreover, short arguments show that C©) is the class of
all ordinals and CV is the class of all cardinals satisfying H(k) = V. In particular, there is
a sentence ¢ in the language of set theory with the property that C(Y) is equal to the class of all
ordinals o with the property that ¢ holds in V.

Definition 2.1 ([2]). Given a natural number n, an inaccessible cardinal k is C'™-strongly unfold-
able if for every ordinal X € C™ greater than r and every transitive ZF~ -model M of cardinality &
with K € M and <M C M, there is a transitive set N with Vx C N and an elementary embedding

j: M — N with crit (§) = &, j(k) > X and Vx <y, Vﬁn).



WEAK COMPACTNESS CARDINALS AND SUBTLETY PROPERTIES 7

The following basic properties of these large cardinal notions were established in [2, Section 9]:

Proposition 2.2 ([2]). (1) A cardinal is strongly unfoldable if and only if it is C™ -strongly
unfoldable for some natural number n < 2.
(2) Given natural numbers m < n, every C™ -strongly unfoldable cardinals is C™) -strongly
unfoldable.

(3) For every natural number n, all C") _strongly unfoldable cardinals are elements of C("+1),

In [19], Rathjen defined a cardinal x to be shrewd if for every formula ®(vp,v1) in the language
of set theory, every ordinal v > k and every A C V. with the property that ®(A, k) holds in V.,
there exist ordinals o < 8 < k such that ®(A NV, «) holds in Vg. The results of [12] then show
that the notions of shrewdness and strong unfoldability coincide. The proof of this equivalence
relies on an embedding characterization of shrewdness in [I3] that closely resembles Magidor’s
classical characterization of supercompactness in [14]. The following result establishes analogous
equivalences for the notion of C(™-strong unfoldability (see [2, Theorem 9.4]):

Lemma 2.3 ([2]). Given a natural number n > 0, the following statements are equivalent for every
cardinal K:
(1) The cardinal k is C™) -strongly unfoldable.
(2) For every Le-formula @(vg,v1), every ordinal v € C™) greater than k, and every subset
A of V,, with the property that ¢(k,A) holds in V,, there exist ordinals o < 8 < K with
B € C™ and the property that w(a, ANV,) holds in V3.
(3) For every ordinal v € C™) greater than k and every z € V., there exists an ordinal ¥ €
C"™ Nk, a cardinal & < 7, an elementary submodel X of V5 with Vzx U{R} C X, and an
elementary embedding j : X — V., with j | R =idz, j(R) = k and z € ran(j).

Analogous to the characterization of Vopénka’s Principle through the existence of C'(™-extendible
cardinals provided by the results of [I, Section 4], it turns out that the existence C")_gtrongly
unfoldable cardinals for all natural numbers n characterizes the validity of the principle “Ord is
essentially subtle” (see [2, Theorem 1.17]).

Theorem 2.4 ([2]). The following schemes of azioms are equivalent over ZFC:

(1) Ord is essentially subtle.
(2) For every natural number n, there exists a C\™)-strongly unfoldable cardinal.
(3) For every natural number n, there exists a proper class of C'") _strongly unfoldable cardinals.

The above results now allow us to show that no consistent sentence can imply that Ord is
essentially subtle. Note that an almost identical argument shows that Vopénka’s Principle is not
the consequence of a single consistent sentence.

Proof of Proposition[I.9 Assume, towards a contradiction, that there is a sentence ¢ in the lan-
guage of set theory such that the theory ZFC + ¢ is consistent and proves that Ord is essentially
subtle. Work in a model of ZFC + ¢. By combining Theorem with Proposition , we can
now find an inaccessible cardinal x with the property that ¢ holds in V.. Let x be minimal with
this property. Since V, is a model of ZFC + ¢, we can repeat this argument in V, and find an
inaccessible cardinal p < & such that ¢ holds in V,,, contradicting the minimality of . (]

3. C(")_WEAKLY SHREWD CARDINALS

In this section, we will formulate and prove an analog of Theorem for the principle “Ord is
essentially faint”. The starting point of this analysis is the notion of weak shrewdness introduced
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in [13] as a natural weakening of shrewdness that does not imply the strong inaccessibility of the
given cardinal. In [I3], a cardinal x is defined to be weakly shrewd if for every formula o (vg,v1)
in the language of set theory, every cardinal § > k and every subset z of k with the property
that ¢(z, x) holds in H(#), there exists cardinals & < € such that & < x and (2 N &, &) holds in
H(A). The results of [I3, Section 3] then show that every shrewd cardinal is weakly shrewd and
every weakly shrewd cardinal is weakly Mahlo. Moreover, these results show that, starting from
a subtle cardinal, it is possible to construct a model of set theory that contains a weakly shrewd
cardinal that is not strongly inaccessible and therefore also not shrewd. Moreover, it is shown that
weakly shrewd cardinals can even exist below the cardinality of the continuum. The results of the
paper will show that these consistency results make use of the correct large cardinal hypothesis (see
Lemma below). Motivated by Lemma we strengthen the notion of weak shrewdness in the
same way as the transition to C'("™-strong unfoldability strengthens the notions of shrewdness.

Definition 3.1. Given a natural number n, a cardinal k is C"™-weakly shrewd if for every formula
©(vo,v1) in the language of set theory, every cardinal k < b € C™ and every subset z of K with
the property that o(z, k) holds in H(0), there exist a cardinal @ € C™) and a cardinal & < min(k, 0)

such that (z N R, k) holds in H(H).
We now derive some basic properties of this newly defined notion:

Proposition 3.2. (1) Given natural numbers m < n, every C™ -weakly shrewd cardinal is
C"™) _weakly shrewd.
(2) A cardinal is weakly shrewd if and only if it is C")-weakly shrewd for some n < 2.

Proof. Let s be a C(™-weakly shrewd cardinal. Fix a formula o(vo,v;) in the language of
set theory, a cardinal K < # € C™ and z C & such that o(z, ) holds in H(#). Pick a cardinal
6 <9 € C™. Then, in H(¥9), there exists a cardinal x < v € C"™) with the property that ¢(z, x)
holds in H(v). By our assumptions on x, we can now find a cardinal ¥ € C™ and a cardinal
£ < min(k,d) such that, in H(JJ), there exists a cardinal & < 7 € C(™) with the property that
¢(2 N &, &) holds in H(). Since ¥ € C™ and n > 0, we then know that, in V, the ordinal 0 is a
cardinal in O™ with the property that (2 N &, &) holds in H(7).

By definition and , it suffices to show that every weakly shrewd cardinal is C")-weakly
shrewd. Let k be a weakly shrewd cardinal, let ¢(vg, v1) be a formula in the language of set theory,
let k < 8 € CV be a cardinal and let z be a subset of x with the property that ©(z, k) holds in
H(#). Since 6 is an element of C")| we then know that, in H(), for every ordinal «, the class V,
is a set. Our assumption then allows us to find a cardinal § and a cardinal & < min(k, #) with the
property that, in H(@), the statement (2 N &, &) holds and for every ordinal o, the class V, is a
set. This completes the proof, because this conclusion ensures that @ is an element of C'(1). O

In combination with [I3 Proposition 3.3, the above proposition shows that all weakly c)-
shrewd cardinals are weakly Mahlo. In particular, if a C(""-weakly shrewd cardinal is an element
of C(M then it is strongly inaccessible. Motivated by [13] Lemma 3.1], we now prove an analog of
Lemma [2.3] for C(™")-weak shrewdness.

Lemma 3.3. Given a natural number n > 0, the following statements are equivalent for every
cardinal K:

(1) The cardinal k is C™ -weakly shrewd.
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(2) For every cardinal k < 0 € C™ and every y € H(H), there exists a cardinal § € cm,
a cardinal & < min(k,0), an elementary submodel X of H(O) with K+ 1 C X and an
elementary embedding j : X — H(0) with j | £ =idz, j(R) = k and y € ran(j).

Proof. First, assume that holds, k < # € C™ is a cardinal and y is an element of H(#). Pick
a cardinal < ¥ € C™ and an elementary submodel Y of H(#) of cardinality x with the property
that k U {k, 2z} C Y. In addition, fix a bijection b : Kk — Y satisfying b(0) = &, b(1) = (k, z) and
bw- (14 a)) = «a for all @ < k. Finally, define z to be the set of all elements of x of the form
<0, aq, ... ,an,1>-E| with the property that ¢ < w is the Godel number of a set-theoretic formula
with n free variables, a, ..., an—1 < k and Sat(Y, ¢, (b(ap), . .., b(an—1))) holds, where Sat denotes
the formalized satisfaction relation (see, for example, [7, Section 1.9]).

By our assumption and the fact that Sat is uniformly A;-definable over models of ZF™
can now find a cardinal 9 € O™ and a cardinal & < min(k, ") with the property that, in H(t?)
there exists a cardinal & < # € C™, an element z of H(#), an elementary submodel X of H(f) of
cardinality & with RU{R, z} C X and a bijection a : & — X with a(0) = &, a(w-(14+a)) = « for all
«a < K and the property that z N & consists of all elements of k of the form </, vy, ..., a,_1> such
that ¢ < w is the Godel number of a set-theoretic formula with n free variables, aqg,...,a,_1 < R
and Sat(X, ¢, (a(ag), . ..,a(a,_1))) holds. Since ¥ € C™, we now know that, in V, the ordinal 8 is
a cardinal in C(™) and the set X is an elementary submodel of H(f). If we now define

j = boa': X — H(H),

then it is easy to check that j is an elementary embedding with j [ & = idg, j(kK) = k and y € ran(j).

Now, assume that (2)) holds, ¢(vo,v1) is a formula in the language of set theory, £ < 6 € cm
is a cardinal and z is a subset of x with the property that ¢(z, x) holds in H(6). Our assumptions
then allows us to find a cardinal § € C™), a cardinal & < min(x, §), an elementary submodel X of
H(f) with & +1 C X and an elementary embeddmg j: X — H(0) with j | & =idz, j(RF) = k and
z € ran(j). We then know that zN& € X and j(z N k) = z. But, this shows that ¢(z N &, &) holds
in both X and H(#). O

Next, we observe that the existence of subtle cardinals entails the existence of many C("-weakly
shrewd cardinals:

Lemma 3.4. Given a natural number n > 0, every subtle cardinal is a stationary limit of strongly
inaccessible C™ -weakly shrewd cardinals.

Proof. Assume, towards a contradiction, that there is a subtle cardinal § and a closed unbounded
subset C' of § that consists of uncountable cardinals that are not C'"™)-weakly shrewd. Given v € C,
we can use Lemmamto find £, < w and z, C ~ such that ¢, is the Godel number of a set-theoretic
formula o (vg, v1) with the property that there exists a cardlnal v < 6 € C™ such that ©(z,7) holds
in H(6) and for every cardinal § € C"™), there is no cardinal 4 < min(y,#) with the property that
¢(2N#,%) holds in H(f). Now, let (E, \ v € C) denote the unique sequence with

E, = <0,,>= U {<1,8> | B € z,}

for all v € C. Using the subtlety of §, we can now find § < v in C with E, N = Ez. We then
know that {3 = ¢, and z, N B = z3. But, this contradicts the choice of ¢, and z,, because, if
@(vg,v1) is the formula coded by ¢,, then § is a cardinal below v with the property that there
exists B < 6 € C(™ such that ¢(z, N B3, 3) holds in H(H).

5We use <+, ..., > to denote (iterated applications) of the Gédel pairing function.
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Since subtle cardinals are regular limit points of the class C'!), the above computations show
that subtle cardinals are stationary limits of C("™)-weakly shrewd cardinals that are elements of
C™ . This yields the statement of the lemma, because, as observed earlier, C("-weakly shrewd
cardinals are inaccessible if and only if they are elements of C'1). |

We close this section by proving the desired characterization of the principle “Ord is essentially
faint” through the existence of weakly C™)-shrewd cardinals:

Theorem 3.5. The following schemes of axioms are equivalent over ZFC:

(1) Ord is essentially faint.
(2) For every natural number n, there exists a proper class of C™ -weakly shrewd cardinals.

Proof. First, assume, towards a contradiction, that holds, n > 0 is a natural number and there
exists an ordinal ¢ with the property that there are no weakly C(™-shrewd cardinals above . Then
there is a unique class function £ with domain Ord such that the following statements hold:

E(a) = P(a) for all ordinal o < €.

E(a+1) = {{<0,a>}} for all ordinals a > &.

If a > £ is a singular limit ordinal, then E(«a) consists of all subsets of « of the form

{=<1,cof(a)=} U {=<2,m,¢c(n)= | n < cof(a)},

where ¢ : cof(a) — « is a strictly increasing cofinal function.
If o > £ is a regular cardinal, then E(«a) consists of all subsets of « of the form

{=<3,0-} U {<4,n= | n €z},

where ¢ is the Godel number of a set-theoretic formula (v, v1) and z is a subset of «
with the property that there exists a cardinal o < 6 € C'™) such that ¢(z, ) holds in H()
and for every cardinal # € C'("), there is no cardinal @ < min(a, #) with the property that
¢(zNa&,a) holds in H(#).

Our assumption then ensures that F(a) # 0 holds for all @« € Ord. Therefore, we can find
ordinals £ < a < B and A € E(8) with AN« € E(a). The definition of E then ensures that o and
B are both regular cardinals. Fix a set-theoretic formula ¢(vg,v1) and a subset z of 8 such that
A ={=<3,0-}U{=<4,n> | n € z}, where ¢ is the Gidel number of p(vg,v1). Since

ANna = {3, -}U{=4,n=|nezna} € E(a),

we now know that there exists a cardinal o < § € C(™ with the property that (z N a, ) holds in
H(#). Since o < min(f,#), this contradicts the fact that A is an element of E(f).

Now, assume that holds and F is a class function with domain Ord and the property that
0 # E(a) C P(«) holds for all &« € Ord. Fix an ordinal £. Pick a natural number n > 0 such that
there exists a 3,-formula ¢(vg, v1,v2) and a parameter y defining E. By our assumption, there is
a C("_weakly shrewd cardinal x > ¢ with y € H(x). Pick A € E(k) and a cardinal k < § € C("),
Then Lemma yields a cardinal § € C(™), a cardinal & < min(k,#), an elementary submodel X
of H(A) with £+ 1 C X and an elementary embedding j : X — H(0) with j [ & = idg, j(R) = &
and A,y,€ € ran(j). We then know that £ < &, y € H(k) N X with j(y) =y and ANk € X with
j(ANE) = A. Moreover, the fact that § € C™) ensures that, in H(0), there exists a set A such that
A € A and ¢(k, A, y) holds. This implies that, in H(f), there exists a set A such that AN& € A
and (%, A,y) holds. Since § € C™ we then know that (%, .4,y) also holds in V and we can
conclude that ANk € A= E(R). O
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4. SEPARATING THE SCHEMES

The goal of this section is to identify scenarios in which the principle “Ord is essentially faint”
holds while the principle “Ord is essentially subtle” fails. In the light of Theorems [2:4] and this
task is closely connected to the analysis of C'"™)-weakly shrewd cardinals that are not C(")-strongly
unfoldable. For the case n = 1, this analysis is provided by [I3, Lemma 3.5], which shows that a
weakly shrewd cardinal is strongly unfoldable if and only if it is an element of C®). The following
lemma provides a direct analog of this result for C'("™-weakly shrewd cardinals:

Lemma 4.1. Given a natural number n > 0, the following statements are equivalent for every
C") _weakly shrewd cardinal:

(1) The cardinal  is C™ -strongly unfoldable.

(2) The cardinal  is an element of C™+1),

(3) There is no ordinal € > k with the property that the set {e} is definable by a 3, 41-formula
with parameters in H(k).

Proof. First, assume that fails. Then Lemma shows that there is a set-theoretic formula
©(vp,v1) and a subset z of k with the property that there exists a cardinal x < ¥ € C'™)such that
©(2, ) holds in H(»¥) and there is no cardinal § € C™) such that (2N &, &) holds in H(f) for some
cardinal & < . Since x is weakly C("™-shrewd, we can find a cardinal § € C™ and a cardinal
% < min(k, ) such that ¢(z N &, ) holds in H(f). Now, define ¢ to be the least element of C'(™)
above % with the property that ¢(z N &, &) holds in H(e). We then know that € > k and it is easy
to see that the set {e} is definable by a ¥, 11-formula with parameters &, 2 Nk € H(x). This shows
that fails and hence we know that implies (|1). This completes the proof of the lemma,
because obviously implies and Proposition shows that implies . O

Corollary 4.2. Given a natural number n > 0, every subtle cardinal that is not a limit of subtle
cardinals is a stationary limit of strongly inaccessible C"™) -weakly shrewd cardinals that are not
C™ _strongly unfoldable.

Proof. Let § be a subtle cardinal that is not a limit of subtle cardinals and let v < § be an ordinal
with the property that the interval (v, d) does not contain subtle cardinals. Then the set {0} can be
defined by a Ys-formula with parameter . In this situation, Lemma shows that no C(")-weakly
shrewd cardinal in the interval (-, ) is C(")-strongly unfoldable. An application of Lemma [3.4] now
yields the statement of the corollary. O

The next lemma provides us with a tool to derive non-trivial consistency strength from the
existence of C'("-weakly shrewd cardinals that are not C(™-strongly unfoldable. An intriguing
aspect of this result is the fact that it establishes the existence of a subtle cardinal not only in
some specific canonical inner model (e.g., in the constructible universe L), but in all canonical inner
models (e.g., all submodels of the class HOD).

Lemma 4.3. Let n > 0 be a natural number and let k be a C") -weakly shrewd cardinal that is
not C "™ -strongly unfoldable. If § is the least ordinal ¢ > K with the property that the set {e} is
definable by a X,,11-formula with parameters in H(k), then the following statements hold:

(1) 0 is a cardinal greater than x with cof(d) € kU {d}.

(2) 0 is a subtle cardinal in HOD.

Proof. Fix a ¥, 1-formula ¢(vg,v1) and an element y with the property that J is the unique set
x such that ¢(z,7) holds. Pick a cardinal x < # € C™*D and use Lemma find a cardinal
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6 € C™, a cardinal & < min(, ), an elementary submodel X of H(f) with #+1 € X and an
elementary embedding j : X — H(#) with j [ & = idg, j(F) = x and y,0 € ran(j). Then y € H(R)
with j(y) = y. Pick e € X with j(e) = §. Since (4, y) holds in H(#), we then know that (e, y)
holds in H(#) and the fact 0 is an element of C(™ implies that ¢(e,y) also holds in V. This shows
that 6 = ¢ and hence 6 > k. Next, note that the set {|§|} is Xa-definable from the parameter §
and, since |§| > k, the minimality of § implies that J is a cardinal. Finally, since the set {cof(d)}
is Yo-definable from the parameter §, the minimality of § also ensures that either § is regular or
cof(4) <  holds.

Now, assume that ¢ is not a subtle cardinal in HOD. Let (/T, C') denote the least pair in the
canonical well-ordering of HOD with the property that A = (A, | v < ¢) is a sequence of length
0 with A, C v for all v < ¢ and C is a closed unbounded subset of § with the property that
A, NpB # Ag holds for all 8 <~ in C. Since the class of all proper initial segments of the canonical
well-ordering of HOD is definable in V by a Xo-formula without parameters (see [10, Lemma 13.25]),
we then know that, in V, the sets {A} and {C} are both definable by So-formulas with parameter
0, and hence these sets are also definable by ¥, 1-formulas with parameter y. We then know that
CNk # ), because otherwise k < min(C) < ¢ is an ordinal with the property that the set {min(C)}
is definable by a X, 1-formula with parameters in H(k).

Claim. k€ C.

Proof of the Claim. Assume, towards a contradiction, that x is not an element of C' and set a =
max(C Nk) < k and f = min(C \ k) = min(C \ (o + 1)) < §. Then B is an ordinal greater than
k with the property that the set {8} is definable by a %, 1-formula with parameters «, z € H(k)
and hence it follows that S > §, a contradiction. O

Pick a cardinal 6 < # € C*1) and use Lemma to find a cardinal § € C™ a cardinal
R < min(k, #), an elementary submodel X of H(f) with & + 1 C X and an elementary embedding
j: X — H(0) with j | K =idg, j(k) = k and y € ran(j). We then again know that y € H(k) with
j(y) = y and, by the correctness properties of H(0) and H(f), the fact that the sets {A}, {C'} and
{0} are all definable by X,,11-formulas with parameter y implies that A,C,6 € X with j (/T) = A,
j(C) = C and j(§) = 6. In this situation, elementarity allows us to conclude that & € C' and
Ai € X with j(Az) = Ak and A, Nk = j(A4z) Nk = Ai, contradicting the choice of Aand C. O

As a first application of the above lemma, we observe that, by combining it with Corollary [£:2] we
can determine the exact consistency strength of the existence of a C'(")-weakly shrewd cardinal that
is not C'™)-strongly unfoldable. The following corollary directly strengthens [I3, Theorem 1.9.(i)].
Note that, in combination with Theorem this result shows that, over ZFC, the existence of a
C("_-weakly shrewd cardinal that is not C(")-strongly unfoldable has strictly greater consistency
strength than the existence of a C'"™-weakly shrewd cardinal.

Corollary 4.4. Given a natural number n > 0, the following statements are equiconsistent over
ZFC:

(1) There exists a C") _weakly shrewd cardinal that is not C™ -strongly unfoldable.
(2) There exists a subtle cardinal. O

Next, we use Lemma [4.3] to show that the principles “Ord is essentially subtle” and “Ord is
essentially faint” are equivalent if only boundedly many cardinals are subtle in HOD.
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Proof of Theorem[1.7 Assume, towards a contradiction that Ord is essentially faint and not es-
sentially subtle. By Theorem the fact that Ord is not essentially subtle implies that for some
natural number n > 0, there are no C(™-strongly unfoldable cardinals. Since Ord is essentially
faint, Theorem now shows that there is a proper class of C(")-weakly shrewd cardinals that are
not C'"™-strongly unfoldable. In this situation, we can apply Lemma to conclude that a proper
class of cardinals is subtle in HOD. (]

We now continue by using Theorem to show that the principle “Ord is essentially faint” is
not finitely axiomatizable over ZFC.

Proof of Corollary|1.11] Assume, towards a contradiction, that the theory
ZFC + “Ord is essentially faint”

is consistent and there is a sentence ¢ in the language of set theory with the property that the
statements and listed in the corollary hold. By combining Theorem with Theorem
it follows that the theory

ZFC + “Ord is essentially subtle” + * There are no subtle cardinals in HOD?”

is also consistent. Define 1 to be the conjunction of ¢ with the statement that only boundedly
many cardinals are subtle in HOD. Then together with the above observations ensures that
ZFC + 1 is consistent. Moreover, by , we can apply Theorem to conclude that

ZFC + ¢ F “Ord is essentially subtle”
holds, contradicting Proposition [1.9 |

Another application of Theorem yields the following strengthening of Theorem [1.15

Corollary 4.5. Given a natural number n, if Ord is essentially faint, then unboundedly many
ordinals are strongly inaccessible C™) -weakly shrewd cardinals in HOD.

Proof. If Ord is essentially subtle, then Ord is essentially subtle in HOD and an application of
Theorem[2.4]in HOD yields the desired conclusion. Hence, we may assume that Ord is not essentially
subtle. Then Theorem shows that, in HOD, there is a proper class of subtle cardinals. An
application of Lemmal[3.4now allows us to conclude that unboundedly many ordinals are inaccessible
C(")_weakly shrewd cardinals in HOD. a

We now continue by using the developed techniques to show that the consistency strength of the
inequality of the principles “Ord is essentially subtle” and “Ord is essentially faint” is equal to
the existence of a proper class of subtle cardinals.

Proof of Theorem[I.10 First, assume that
ZFC 4 “Ord is essentially faint” I/ “Ord is essentially subtle”
holds. Then Theorem yields a natural number n > 0 with the property that the theory
ZFC + “Ord is essentially faint” + “ There are no C™ -strongly unfoldable cardinals”

is consistent and we can work in a model of this theory. An application of Theorem now directly
shows that, in HOD, there is a proper class of subtle cardinals. These computations show that
implies in the statement of the theorem.
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Next, let ¢ denote the set-theoretic sentence stating that there is a proper class of subtle cardinals.
A combination of Lemma with Theorem then shows that the theory ZFC 4 ¢ proves that
Ord is essentially faint. This shows that implies in the statement of the theorem.

Finally, assume that there is a sentence ¢ such that the theory ZFC + ¢ is consistent and

ZFC + ¢+ “Ord is essentially faint”.
Then Proposition [I.9] ensures that
ZFC + ¢t/ “Ord is essentially subtle”
and hence we can conclude that
ZFC + “Ord s essentially faint” B “Ord is essentially subtle”.
This shows that implies in the statement of the theorem. |

In order to expand our analysis of the given class principles, we now explore a phenomenon
already unveiled by [I3}, Theorem 1.11] showing that the existence of weakly shrewd that are not
strongly unfoldable yields reflection properties for statements of arbitrary high complexities:

Lemma 4.6. Given natural numbers n > m > 0, if k is a C™) -weakly shrewd cardinal that is not
C™) _strongly unfoldable, 6 > k is a cardinal with the property that the set {5} is definable by a
Ymt1-formula with parameters in H(k) and a < k is an ordinal, then the interval (a, ) contains a
C") _weakly shrewd cardinal that is not C™ -strongly unfoldable.

Proof. Pick y € H(k) with the property that the set {0} is definable by a X,,,1-formula with
parameter y. Since & is a limit cardinal, we can find a cardinal o < p < k with y € H(p). Moreover,
since n > m, it follows that the interval (p, §) does not contain an element of C"*1). Now, assume,
towards a contradiction, the interval (p,d) does not contain a C(")_-weakly shrewd cardinal that is
not C'™-strongly unfoldable. The above observation then allow us to use Lemma to conclude
that the interval (p,d) does not contain C(")_-weakly shrewd cardinals. This shows that for every
cardinal g in the interval (p, §), there exists a set-theoretic formula (vg, v1), a cardinal u < 6 € C™
and a subset z of p such that (2, ) holds in H(6) and ¢(z N fi, i) does not hold in H(#) for all
6 € C™ and all cardinals i < min(u,). We can then find a cardinal § < ¢ € C") with the
property that, in H(¢), for every cardinal 4 in the interval (p, §), there exists a set-theoretic formula
¢(vg,v1), a cardinal 4 < @ € C™ and a subset z of u such that ¢(z, ) holds in H(#) and ¢ (2N, i)
does not hold in H(A) for all # € C™ and all cardinals i < min(y,#). Let n be the least cardinal
with this property. Then the set {n} is definable by a Xs-formula with parameters § and y. We
then directly know that the set {n} is also definable by a ¥,,,,1-formula with parameter y.

Now, pick & < ¥ € C("+1) and use Lemmato find ¥ € C™ | a cardinal & < min(x,?), an
elementary submodel X of H(¥) with & +1 C X and an elementary embedding j : X — H(?)
with j | & = idz, j(R) = k and y,p € ran(j). Then y € X with j(y) = y. Moreover, we know
that p < k and therefore j(p) = p. In combination with the facts that all 3, i-statements are
upwards absolute from X to V, this shows that §,n € X with j(§) = ¢ and j(n) = 7. Since  is a
cardinal in the interval (p,d) in H(n), we can now find a set-theoretic formula ¢(vg, v1), an ordinal
E<0eXnnand z € P(k) N X with the property that, in H(n), the ordinal 8 is a cardinal in
C™ such that ¢(z, &) holds in H(#) and (2 N u, 1) does not hold in H(f) for all § € C™) and all
cardinals p < min(#&,f). The fact that H(n) € X with j(H(n)) = H(n) then allows us to use the
elementarity of j to conclude that, in H(7), the ordinal j(6) is a cardinal in C"™) with the property
that ¢(j(z), ) holds in H(j(0)) and o(j(2) N u, 1) does not hold in H(#) for all § € C'™ and all
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But, this yields a contradiction, because € is an element of C'™ in H(n),

cardinals p < min(, 6).
JNE =z O

R < min(k, 0) and j(z

As a first application of Lemma [4.6] we show that the principle “Ord is essentially subtle” can
be axiomatized over the theory ZFC 4 “Ord is essentially faint” in a strong way.

Proof of Proposition[I.12 For each natural number n > 0, let ¢,, denote the sentence in the lan-
guage of set theory that states that the existence of a proper class of C'")-weakly shrewd cardinals
implies the existence of a proper class of C(™)-strongly unfoldable cardinals. Define T to be the
theory consisting of these sentences. Then Theorem [2.4] shows that T holds in every model of ZFC
in which Ord is essentially subtle. Moreover, a combination of Theorem 2.4 and Theorem [3.5] shows
that Ord is essentially subtle in every model of ZFC in which Ord is essentially faint and T holds.
Finally, assume that we work in a model of ZFC in which the sentence ¢,, fails for some natural
number m > 0. Then there exists a proper class of C'"™)-weakly shrewd cardinals and there are
only boundedly many C("™)-strongly unfoldable cardinals. In particular, there exists a proper class
of C("™)-weakly shrewd cardinals that are not C'™-strongly unfoldable. In this situation, a com-
bination of Lemmas [£.1] and shows that for every natural number n > 0, there exists a proper
class of C™-weakly shrewd cardinals. Hence, we can apply Theorem to conclude that Ord is
essentially faint in this model. O

By combing Theorem with Proposition [1.12] we can now examine the conditions that allow
the proposition’s statement to be strengthened to result in finite axiomatizations.

Proof of Theorem[1.13 First, assume that the theory
ZFC + “There is a proper class of subtle cardinals” + “Ord is essentially subtle”

is inconsistent and let ¢ denote the set-theoretic sentence stating that only boundedly many cardi-
nals are subtle in HOD. Now, if we work in a model V of ZFC in which Ord is essentially subtle,
then Ord is essentially subtle in HOD and, since our assumption ensures that HOD has only bound-
edly many subtle cardinals, we can conclude that ¢ holds in V. Next, if we work in a model of
ZFC in which Ord is essentially faint and ¢ holds, then Theorem directly shows that Ord is
essentially subtle. In combination, this shows that implies in the statement of the theorem.

Next, assume that there is a set-theoretic sentence ¢ satisfying the statements and
listed in the theorem. Let 1 be the set-theoretic sentence that is given by the conjunction of ¢ and
the sentence stating that there is a proper class of subtle cardinals. Then

ZFC + ¢ F “Ord is essentially subtle”
and therefore Proposition [I.9 shows that ZFC - —¢. In this situation, our assumptions imply that
ZFC + “Ord is essentially subtle” = “There are only boundedly many subtle cardinals”

and we can conclude that implies in the statement of the theorem.
Finally, assume that there is a set-theoretic sentence ¢ satisfying the statements and ((1b))
listed in the theorem. Let T be the theory given by Proposition [I.12] We then know that

ZFC + “Ord is essentially faint” +T + ¢
and hence there is a finite subtheory F of T with
ZFC + “Ord s essentially faint” + F F ¢.
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Let 9 be the set-theoretic sentence that is given by the disjunction of ¢ with the conjunction of all
sentences in F. Our assumptions then ensure that i satisfies the statement of the theorem.
Moreover, the definition of ¢ implies that

ZFC + “Ord is essentially faint” +¢¥ + ¢

and hence our assumption ensure that 1) satisfies statement of the theorem. Finally, assume
that we work in a model of ZFC in which ¥ does not hold. Then there exists a sentence in F
that does not hold. In this situation, the properties of the theory T allow us to conclude that Ord
is essentially faint in this model. This shows that 1 also satisfies statement of the theorem.
In combination, these arguments show that implies in the statement of the theorem and
therefore these assumptions are equivalent. O

We end this section by using Lemma to show that the principle “Ord is essentially faint”
does not imply the existence of strongly inaccessible cardinals.

Proof of Theorem[1.1} Work in a model of ZFC+V = L in which a proper class of subtle cardinals
exists and no inaccessible cardinal is a limit of subtle cardinals. Let S denote the class of all subtle
cardinals. Define R to be the unique class function with domain S that satisfies R(min(S)) = w and
R(§) = sup(S N )T for all min(S) < § € S. Our assumptions then ensure that R is a well-defined
regressive function. Define P to be the class partial order that is given by the Easton support
product of all partial orders of the form Add(R(),d) with 6 € S and let G be P-generic over V.
Then standard arguments (as in [10, pp. 235-236]) show that V]G] is a model of ZFC with the
same regular cardinals as V.

Claim. There are no inaccessible cardinals in V[G].

Proof of the Claim. Assume, towards a contradiction, that there is an inaccessible x in V[G]. Set
d = min(S \ k) > k. Since £ is not a limit of subtle cardinals in V, we know that R(5) < k.
Moreover, our setup ensures that

(QR(é))V[G] > 65>k

holds, contradicting the inaccessibility of k in V[G]. O
Claim. In V[G], there is a proper class of weakly shrewd cardinals.

Proof of the Claim. Fix an ordinal a > w and pick § € S with R(§) > «. Set Sy = SN 4§ and let Q
denote the Easton support product of all partial orders of the form Add(R(y),v) with v € Sy, as
constructed in V. In addition, let R denote the partial order Add(R(J),d) as constructed in V. A
standard factor analysis of the class partial order P (again, as in [I0, pp. 235-236]) now allows us
to find an inner model M of V[G] such that V. C M, (°V)M C V and there is are Gy, G1 € V|[G]
such that Gy x G1 is (Q x R)-generic over M with V[G] = M[Gy, G1]. Then § is a subtle cardinal
in M and the definition of R in V ensures that ¢ is the minimal subtle cardinal above R(d) in M.
In particular, it follows that the set {0} is definable by a Yo-formula with parameter R(d) in M.
An application of Lemma[3.4lnow shows that, in M, the interval (R(§), §) contains an inaccessible
weakly shrewd cardinal . In the following, fix a cardinal # > § that is an element of C(!) in V[G]
and an element z of H(A)VIC]. Pick a (Q x R)-name # in M with z = 30X%1 and an ordinal ¥ >
that is an element of C®) in M and satisfies 2 € H(¢9)™. Proposition [3.2{and Lemma now show
that, in M, we can find a cardinal ¥ € C(V), a cardinal & < min(k, ), an elementary submodel
X of H(J) of cardinality & with &+ 1 C X and an elementary embedding j : X — H(¥) with
j | R=1idg, j(R) = k and R(9), 0, 2 € ran(j). We then know that R(d) < & and this directly implies
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that 6 € X with j(§) = 6. In particular, it follows that & < x < § < 9J. Since the partial order Q x R
has cardinality ¢ in M, we know that the cardinals ¥ and ¥ are elements of C") in both M[G))]
and V[G]. Moreover, since X has cardinality & < 0 in M, there is a permutation o of § in M that
extends the injection j | (X N6): X N§ — 4. Since R = Add(R(4), )M, this shows that M also
contains an automorphism 7 of R that is induced by the action of o on the supports of the conditions
in Add(R(d), 6)E| in the sense that dom(7(p)) = o[dom(p)] and 7(p)(c()) = p(7) holds for every
condition p in Add(R(d),d) and all v € dom(p). Since our setup ensures that & is inaccessible in M
and H(7)M C X with j | H(7)™ = idy ), it follows that Add(R(5), 1) U{Add(R(6), )M} € X
and j [ Add(R(5), )™ = idadd(r(s),1)m- Moreover, we also know that R € X with j(R) = R.
Finally, our definitions ensure that 7(p) = j(p) holds for every condition p in R that is an element
of X.

Next, since P(Q) € H(R)™ C X, we know that Gy is Q-generic over X, H(¢9)M[Go] = H(9)M[Col
and the model X[Gy] is an elementary submodel of H(9)M[%ol. Moreover, the fact that j [ Q = idg
implies that there is a canonical lifting

jo : X[GO] — H(ﬁ)M[GO]

of j to X[Go]. Now, set G4 = 771[G1] C R. Since 7 is an element of H(9)M, it follows that G} is
R-generic over M[Gy] with

H)MG] = H@)M)e) = H©)V9.
Set GY = G| N X. Since the partial order Q has cardinality less than % in M and the partial
order R = Add(R(0),0) satisfies the R-chain condition in M, if follows that R satisfies the k-chain
condition in M[Gy]. Together with the fact that RN X = R N X[Gy], this ensures that G is

R-generic over X [Go] and X[Go, GY] is an elementary submodel of H(9)VI¢]. Moreover, since we
have ensured that jo[GY] = j[(771[G1]) N X] C Gy, there is a canonical lifting

j1 : X[Go, GY] — H(0)V1

of jo to X[Go,GY]. Pick 6 € X with j(f) = 6. Since ¥ is an element of C") in V[G], elementarity
implies that @ is also an element of this class. Set Y = H(0)VI¢ N X[Gy, GY] and define i = j; [ Y.
Since H(O)VIC] € X[Gy,GY], elementarity ensures that the set Y is an elementary submodel of
H(A)VIE]. Moreover, our setup ensures that i : Y — H(0)VI] is an elementary embedding with
i | R =idg, i(R) = Kk, i(d) = § and z € ran(i). These computations show that, in V[G], the cardinal
Kk > « is weakly shrewd. |

In combination, the above claims show that V[G] is a model of ZFC that contains a proper class
of weakly shrewd cardinals and in which no strongly inaccessible cardinals exist.

Now, let ¢ denote the sentence in the language of set-theory stating that there are no strongly
inaccessible cardinals and there is a proper class of weakly shrewd cardinals. Then ¢ implies that
there is a proper class of weakly shrewd cardinals that are not strongly unfoldable and, by Lemma
this conclusion ensures that for every natural number n > 0, there is a proper class of C'(™)-
weakly shrewd cardinals. Therefore, Theorem shows that

ZFC + ¢ F “Ord s essentially faint” + “ There are no strongly inaccessible cardinals”.
In addition, the above computations show that the consistency of the theory

ZFC + “ There is a proper class of subtle cardinals”

6Here7 we view conditions in partial orders of the form Add(u,v) as functions p of cardinality less than p with
dom(p) C v and p(v) € Add(u,1) for every v € dom(p).
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implies the consistency of ZFC + ¢. Hence, we know that implies in the statement of the
theorem.

Next, if we work in a model of ZFC in which Ord is essentially faint and there are no strongly
inaccessible cardinals, then Theorem [2.4] shows that Ord is not essentially subtle and Theorem [1.7]
allows us to conclude that a proper class of cardinals in subtle in HOD. In particular, we know
that implies in the statement of the theorem.

This completes the proof of the theorem, because the remaining implication from to in
its statement is trivial. O

5. ABSTRACT LOGICS

In the remainder of this paper, we will connect the theory developed above with the study of
structural properties of abstract logics. We start by recalling the relevant definitions. Our setup is
based on the definitions given in [6, Section 2.5] and our presentation closely follows those provided
in [4], [5] and [9].

Definition 5.1. (1) A language is a tuple
T = <Q:‘r7 g‘m ER-,—, a‘r>a

where €., §, and R, are pairwise disjoint sets and a, : F. UR, — w \ {0} is a function.
We then call €, the set of constant symbols of 7, §, the set of function symbols of 7, R,
the set of relation symbols of 7, a, the arity function of 7 and &, = €, UF, UR, the set
of logical symbols of 7.

(2) Given a language T, a T-structure is a tuple

M = (dom(M), (M | c€ &), (f* | f€F:), (r™ | r € Ry)),

where dom(M) is a non-empty set, each c™ is an element of dom(M), each fM is an
a.(f)-ary function on dom(M) and each r™ is an a,(r)-ary relation on dom(M).

(3) Given a language T, we let Str, denote the class of all T-structures.

(4) Given a language 7 and M,N € Str,, an isomorphism between M and N is a bijection
7 : dom(M) — dom(N) satisfying:
(a) If c € €, then w(cM) =cN.
(b) If f € §- and xo, ..., x4 (5) € dom(M), then

(M (o, w0 (p)) = N(x(20),- - 7 (2a, (1)
(c) If r € R; and g, ..., T4 () € dom(M), then

rM(xo, ce g () = ’I“N(TI'(CC()), o (T (7))

(5) Given a language 7 and M, N € Str., the structure M is a substructure of the structure
N if dom(M) C dom(N), M =cN forallce &,, fM = fN [dom(M)aT(f) foradl feF
and r™ =N N dom(M)uT(T) for all r € R.

(6) A language o is a sublanguage of a language 7 if €, C €., §» C F,, R, C R, and
g = Qr f (ga Uma’)'

(7) Given a sublanguage o of a language 7 and M € Str., the o-reduct M | o of M is the
unique element N of Stry with dom(N) = dom(M), N = cM for all c € &,, fN = fM for
all f € Fo and rN =M for all v € R,.
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(8) A renaming of a language o into a language T is a bijection
u:6, — 6,
satisfying u[Co] = €1, ulFo] = Fr, u[Rs] = Ry and as(s) = ar(u(s)) for all s € Fo UNR,.

(9) Given a renaming u of a language o into a language T, we let u* : Str, — Str, denote
the bijective class function with the property that for all M € Str,, we have dom(u*(M)) =
dom(M) and u(s)* M) = sM for all s € G,,.

Note that, if u is a renaming of a language o into a language 7, then the inverse u~! of u is a
renaming of 7 into o with the property that (u=!)* = (u*)~! holds.

We are now ready to introduce the notion of an abstract logic:

Definition 5.2. An abstract logic consists of a class function £ and a binary class relation =¢
satisfying the following statements:

(1) The domain of L is the class of all languages.

(2) If M =z ¢ holds, then there exists a language T such that M € Str. and ¢ € L(T).
(3) (Monotonicity) If o is a sublanguage of T, then L(o) C L(T).

(4) (Expansion) If o is a sublanguage of T, M € Str, and ¢ € L(o), then

ML ¢ < Mok, ¢
(5) (Isomorphism) Given a language T and isomorphic T-structures M and N, we have

MEL¢ <= NE£¢
for all ¢ € L(7).

(6) (Renaming) Every renaming u of a language o into a language T induces a unique bijection
uy : L(0) — L(T) with the property that

MEL ¢ = u' (M) L us(d)

holds for every M € Str, and every ¢ € L(o).

(7) (Occurrence number) There exists an infinite cardinal o with the property that for every
language T and every ¢ € L(T), there exists a sublanguage o of T with |&,| < o and
¢ € L(0). The least such cardinal is called the occurrence number of the logic.

In the following, we just write £ to denote an abstract logic. We then call the corresponding
relation =, the satisfaction relation of L and, given a language 7, we say that £(7) is the set of
T-sentences. In addition, we write oz to denote the occurrence number of an abstract logic £. Note
that the uniqueness of u, in item (6) of Definition [5.2]implies that (u~'), = (u.)~! holds for every
renaming .

The above definitions now allow us to generalize fundamental concepts from first-order logic to
all abstract logics.

Definition 5.3. Let L be an abstract logic.

(1) An L-theory is a set T with the property that T C L(7) for some language 7.

(2) An L-theory T is satisfiable if there is a language 7 with T C L(7) and M € Str, with
Mg ¢ forallp eT.

(3) Given an infinite cardinal k, an L-theory T is <rk-satisfiable if every subset of T of cardi-
nality less than k is satisfiable.

(4) Aninfinite cardinal £ is a strong compactness cardinal for £ if every <r-satisfiable L-theory
1s satisfiable.
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(5) An infinite cardinal k is a weak compactness cardinal for L if every <x-satisfiable L-theory
of cardinality x is satisfiable.

(6) Given a language 7 and N € Str,., an L-elementary substructure of N is a substructure
M of N with the property that

ME$ &= NE¢

holds for all ¢ € L(T).

(7) An uncountable cardinal r is a Lowenheim—Skolem—Tarski number for L if for every lan-
guage T with |&,| < k and every T-structure N, there exists an L-elementary substructure
M of N with |dom(M)| < k.

(8) An uncountable cardinal k is a weak Lowenheim-Skolem—Tarski number for L if for every
language T with the property that |&;| < k and every T-structure N with |dom(N)| = &,
there exists an L-elementary substructure M of N with |dom(M)| < k.

(9) An uncountable cardinal & is a strict Lowenheim—Skolem—Tarski number for L if for every
language T with the property that |&.| < k, every T-structure N with |[dom(N)| = k and
every ¢ € L(1) with N = ¢, there exists a substructure M of N with |[dom(M)| < k and
MEc ¢.

In [5, Section 4], it is verified that Makowsky’s Theoremholds true with respect to the above
definitions. In another direction, an unpublished result of Stavi shows that the validity of Vopénka’s
Principle is also equivalent to the fact that analogs of the Léwenheim—Skolem Downward Theorem
holds for all abstract logics (see [I5, Theorem 6]). For sake of completeness and to motivate the
notions introduced in items and @D of Definition we present a proof of Stavi’s result.

Theorem 5.4 (Stavi). The following schemes are equivalent over ZFC:
(1) Vopénka’s Principle.
(2) Ewvery abstract logic has a Lowenheim—Skolem—Tarski number.
(3) For every abstract logic L, there exists an uncountable cardinal k with the property that for
every language T with |&,| < k, every T-structure N and every ¢ € L(1) with N =, ¢,
there exists a substructure M of N with [dom(M)| < k and M =, ¢.

Proof. First, assume that holds and fix an abstract logic £. Then there is a natural number
n > 0, a ¥,-formula ¢(vg,v1,v2), a Ey-formula (v, v1,v2) and a set z with the property that
the function £ is defined by the formula ¢(vg,v1,v2) and the parameter z and the relation =,
is defined by the formula (v, v1,v2) and the parameter z. By [I, Corollary 4.15], we can now
find a C")-extendible cardinal r (i.e., a cardinal xk with the property that for every n > k, there
exists an ordinal ¢ and an elementary embedding j : V,, — V¢ with crit (j) = &, j(k) > n and
j(k) € C™) with z € H(k). Now, fix a language ¢ with |&,| < & and a o-structure K. Then
there exists a renaming u of ¢ into a language 7 € V,. Since [I, Proposition 3.4] shows that
k € C2) we know that £(7) is also an element of V,.. Set M = u*(K). Pick x < n € C("*?)
with M € V,. Then, there is an ordinal ¢ and an elementary embedding j : V,, — V. with
crit () = &, j(k) > 1 and j(k) € C™. Since 7 € V,, and j(7) = 7, we now know that j(M) is
a 7-structure with s7(M) = j(sM) for every s € &,. This shows that j(M) has a substructure N
with dom(N) = j[dom(M)]. We then know that the map j | dom(M) is an isomorphism between
M and N and this isomorphism is an element of V. In this situation, the correctness properties
of V,,, the elementarity of j and item (5] in Definition [5.2] ensure that

Ve | (M, ¢,2) «— P(N, ¢, 2) (A)
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holds for all ¢ € £(7). Moreover, since x and 7 are both elements of C™) | we know that the formula
1 (vg,v1,v2) is absolute between V,, and V,. Elementarity then ensures that this formula is also
absolute between V() and V.. Moreover, since j(x) is also an element of C(™ it follows that
¥ (vo,v1,v2) is absolute between V,, and V. For all ¢ € £(7), we then have

Ve E (M), ¢,2) <= Vo E (M, 6,2) <= Ve E9d(M,¢,2) < Ve 9N, ¢, 2),

where the first equivalence is given by elementarity of j, the second equivalence follows from the
above absoluteness considerations and the third equivalence is given by . The elementarity of j
now yields a substructure S of M with |[dom(S)| < x and the property that

VT] ': w(Ma¢vz)<_>w(S,¢vz)

holds for all ¢ in £(7). Since 7 is an element of C(™, this shows that S is an £-elementary submodel
of M. Set R = (u*)"*(M) € Str,. Then R is a submodel of K with |dom(R)| < k. Moreover, we
can apply item @ in Definition to conclude that R is an L-elementary submodel of K. We can
conclude that k is a Lowenheim—Skolem—Tarski number for £. These computations show that
implies .

Now, assume that holds and fix a proper class I' of graphs. Then there is an abstract logic
Lr such that the following statements hold:

e For every language 7, the set Lr(7) consists of all first-order sentences of 7 together with
a distinguished sentence ¢, for every binary relation symbol r in 7.
e Given is a language 7, M € Str, and a first-order sentence ¢ € Lr(7), then M =, ¢ holds
if and only if ¢ holds in M (in the sense of first-order structures).
e Given is a language 7, M € Str, and a binary relation symbol r in 7, then M =, ¢, holds
if and only if (M,r™) is a graph that is isomorphic to a graph in T
Our assumption now yields an uncountable cardinal x with the property that for every language 7
with |&,| < &, every 7-structure N and every ¢ € Lr(7) with N |=¢,. ¢, there exists a substructure
M of N with |dom(M)| < k and M =, ¢. Since I is a proper class, we can fix a graph G in T
that has cardinality greater than . Let o denote a language with a single binary relation symbol
e and let 7 be a language extending ¢ that adds functions symbols for first-order Skolem functions
to o. View G as a o-structure and let G’ be a 7-structure whose o-reduct is G and that interprets
the new function symbols as the corresponding first-order Skolem functions. Then item in
Definition [5.2] ensures that G’ (=, ¢, holds and, since |&,| < k, we can use our assumption to find
a substructure substructure H' of G’ with |H'| < k and H' }=¢. ¢.. Let H denote the o-reduct of
H'. Our setup now ensures that H is a first-order elementary submodel of G and H |=,. ¢, holds.
This shows that (dom(H),ef) is a graph that is isomorphic to an element K of T'. Since dom(H)
has cardinality less than x, we know that K # G and K embeds into G. These computations show
that holds.
This completes the proof of the theorem, because obviously implies ({3). O

Motivated by Theorem we will also use the developed theory to prove the following analogs
of Theorems [[.4] and [L.6] for strict Lowenheim-Skolem-Tarski numbers in the next section:

Theorem 5.5. (1) The following schemes of sentences are equivalent over ZFC:
(a) Ord is essentially faint.
(b) Ewvery abstract logic has a strict Lowenheim—Skolem—Tarski number.
(2) The following schemes of sentences are equivalent over ZFC:
(a) Ord is essentially subtle.
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(b) Ewery abstract logic has a stationary class of strict Léwenheim—Skolem—Tarski num-
bers.

(¢) Every abstract logic has a stationary class of weak Lowenheim—Skolem—Tarski numbers.

In the last part of the next section, we will consider the question of whether the first equivalence
can also be extended to characterize the existence of weak Lowenheim—Skolem—Tarski numbers for
all abstract logics.

6. STRUCTURAL PROPERTIES OF ABSTRACT LOGICS

This section contains the proofs of Theorems and The following lemma shows how
strong structural properties of abstract logics can be derived from the existence of C")-weakly
shrewd cardinals.

Lemma 6.1. Let n > 0 be a natural number, let p(vo,v1,v2) and (vg, v1,vs) be X, -formulas and
let z be a set with the property that there is an abstract logic L such that the function L is defined
by the formula p(vo,v1,v2) and the parameter z and the relation =, is defined by the formula
Y (vo,v1,v2) and the parameter z. Then the following statements hold:

(1) There exists a cardinal p € CY) such that the following statements hold:
(a) u>or and z € H(p).
(b) If o is a language that is an element of H(oz), then L(o) € H(p).
(c) If o is a language that is an element of H(oz) and 7 is a non-trivial permutation of
L(o), then there exists a o-structure M, » € H(u) and ¢o » € L(0) with

Ms » Fr Gom ﬁ(ZWU,TF):L W((bo,ﬂ))- (B)

(2) If p is a cardinal with the properties listed in (1)), o is a language in H(oz) and u is a
renaming of o into a language T, then u, is the unique bijection w between L(o) and L(T)
with the property that

Me ¢ — u'(M) L =(¢) (©)

holds for every o-structure M in H(p) and every ¢ € L(o).

(3) If uis a cardinal with the properties listed in , k> pis a C™-weakly shrewd cardinal
and 7 is a language with |S,| < k and &, C H(k), then for every cardinal k < § € C"+?)
and every y € H(P), there exists

a cardinal € C™,

a cardinal i < < min(k, 6),

a sublanguage T of T with |67 < & and &7z = &, NH(R),

an elementary submodel X of H(0) with & U {&,7,L(7),2} C X and

an elementary embedding j : X — H(O) with j | & = idz, j(R) = &, j(z) = z,

J(7) =7, JL(T)) = L(7), j [ (£(T) N X) =idgm)nx and y € ran(j).

(4) If p is a cardinal with the properties listed in , then every C"™) -weakly shrewd cardinal
greater than p is a weak compactness cardinal for L.

(5) If u is a cardinal with the properties listed in , then every C") -weakly shrewd cardinal
greater than p is a strict Lowenheim—Skolem—Tarski number for L.

(6) If p is a cardinal with the properties listed in , then every C™ -weakly shrewd cardinal
k > p with the property that v<°% < k holds for all v < k is a weak Léwenheim—Skolem—
Tarski number for L.
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Proof. Note that, given a language o, an application of @ in Definition to the trivial
renaming of o into itself ensures that the identity function on £(o) is the unique permutation 7 on
L(c) with the property that

MEr ¢ <= ML 7(9)
holds for every o-structure M and every ¢ € L(o). Hence, for every non-trival permuation 7 of
L(0), there exists a o-structure M, . and ¢, € L(0o) with . Using this observation, it is now
easy to find a cardinal p with the desired properties.

Let yu be a cardinal as in (), let o be a language in H(o,), let u be a renaming of o into a
language 7 and let @ be a bijection 7 between L£(o) and L£(7) such that holds. Assume, towards
a contradiction that @ # u.. Then 7 = (u,)~! o @ is a non-trivial permutation of £(c) and, since
M,  is an element of H(yu), our assumptions on w ensure that

Ma,ﬂ' ):L ¢U,ﬂ' — U*(Mo',fr) ':ﬁ w(¢a,ﬂ') — Mo’,ﬂ' ):[l 7-‘—((;50,77)7
contradicting the definitions of M, » and ¢4 ». This shows that @ is equal to u..

Fix a cardinal p as in , a C™-weakly shrewd cardinal k > p, a cardinal k < 6 € C("12),
an element y of H(f) and a language 7 with [&,| < x and &, C H(k). Using Lemma3.3] we can find
a cardinal § € C(™) a cardinal & < min(, ), an elementary submodel X of H(f) with # +1 C X
and an elementary embedding j : X — H(0) with j | K = idi, j(kK) = k and u, 7,y € ran(j). Then
p < & and the fact that x4 € CM implies that H(u) U {H(x)} € X with j [ H(u) = idg(yy. In
particular, we know that z € X with j(z) = z. Moreover, our setup ensures that there is a language
7in X with j(7) = 7, 6z C H(R) and |67 < k. It then follows that j | &7 = idg, and 7 is a
sublanguage of 7 with 67 = &, NH(%K). Moreover, since £(7) is the unique set ¢ such that (7, ¢, z)
holds and £(7) is the unique set £ such that ¢(7, /, z) holds, the correctness properties of H(f) and
H(#) imply that £(7) € X with j(L(7)) = L(7).

Now, assume, towards a contradiction, that there is ¢. € L(7) N X with j(¢.) # ¢.. The
correctness properties of H(#) and in Definition then allow us to find a sublanguage 7y of
7 in X with ¢. € L(79) and |S,,| < oz. We then know that 79 is an element of H(%) N X with
j(10) = 70 and L(7p) is an element of X with j(L(79)) = L(79). This implies that j(¢.) is an
element of £(7p). In this situation, we can now pick a language 71 that is an element of H(o,) and
a renaming u of 71 into 7y that is an element of H(k) N X. It follows that j(u) = u. Let u* denote
the canonical bijection between Str;, and Str;, induced by u. Since 79 and u are both elements of
H(g) N X, it follows that u*(M) € H(k) N X holds for every rj-structure M in H(u). In particular,
we know that j(u*(M)) = u*(M) holds for every 7j-structure M in H(p). Let uy : L(m1) — L(70)
denote the unique bijection given by @ in Definition

Claim. The map u, is an element of X.

Proof of the Claim. First, since 0 is an element of C("*2)_if follows that u, is an element of H().

The elementarity of j and the correctness properties of H(6) then imply that there is a bijection
w: L(1) — L(70) in X with the property that
M, ¢ = u'(M) L w(9)

holds for all M € Str,, N X and all ¢ € L(71). Since H(u) C X, we can now apply (2] to conclude
that @ = u. ]

Since our setup ensures that £(m) C X, we now know that £(79) = u.[£(71)] € X and the fact
that j(L(19)) = L(70) implies that

J 1 L(ro) « L(10) — L(70)



24 PHILIPP LUCKE

is a bijection. If we now define
T o= (u) "t o (4 [ L(10)) 0w : L(T1) — L(1),

then we have
T((w)7H@) = ()T (5(0s) # ()7 ()
and this shows that 7 is a non-trivial permutation of £(7). Since M, » € H(p) C H(R) N X, we

know that j(M;, ») = M;, ». Moreover, earlier computations show that u*(M,, ) is an element of
X with j(u*(Mr, ) = u*(M-, ). Since u. (¢, ») € L(10) € X, we can now conclude that

M« Fr ¢rn = 0 (M x) Fr us(dr x)
= X = (M x), usdryx), 2)
= H(0) v (Mr, 2), (J © ue)(dr,,5), 2)
= u(Mr, x) Fr (U o) (¢r, )
= My » e m(drix),

where the first and fifth equivalence is given by @ in Definition the second equivalence is given
by the correctness properties of H(#), the third equivalence is given by the elementarity of j and
the fourth equivalence is given by the correctness properties of H(#). The above equivalences now
contradict the defining properties of M, » and ¢, r. This shows that j [ (£L(7) N X) = idz#)nx-

Let p be a cardinal as in , let £ > p be a C™-weakly shrewd cardinal and let U be a
<k-satisfiable theory of cardinality . Since oy < k, we can find a language o with |&,| < k and
U C L(o). Then there is a renaming u of o into a language 7 with &, C H(k). Set T' = u,[U]. Then
(@ in Deﬁnitionensures that 7T is also <k-satisfiable. Now, pick a cardinal x < § € C("+2) with
T € H(#) and use (3) to find a cardinal § € O™, a cardinal 1 < & < min(k, ), a sublanguage 7 of T
with || < & and &, = &, NH(K), an elementary submodel X of H(f) with KU{%, 7, L(7),2} C X
and an elementary embedding j : X — H(#) with j [ & = idz, j(R) = k, j(z) = 2, j(T) = 7,
JL(T) = L(7), j I (L(F) N X) = idgnx and T € ran(j). Pick T € X with j(T) = T. Then
T is a subset of £(7) of cardinality & and the fact that & C X ensures that T C X. Moreover,
since j | (£(7) N X) = idg)nx, it follows that T = j[T] C T and hence T is satisfiable. This
shows that there is a 7-structure M with the property that ¢ (M, ¢, z) holds for all ¢ in T. The
correctness properties of H(#) now ensure that this statement holds in X and hence we know that,
in H(#), there is a 7-structure N with the property that (N, ¢, z) holds for all ¢ in T. Using the
correctness properties of H(6), we can now conclude that T is satisfiable and, by @ in Definition
5.2l we also know that U is satisfiable.

Let u be a cardinal as in , let k > p be a C")-weakly shrewd cardinal, let o be a language
with the property that |S,| < &, let I be a o-structure with |dom(I)| = x and let ¢ be an element
of L(o) with T =, ¢. Let u be a renaming of o into a language 7 € H(k). Set K = u*(I) and
¢1 = ux(p). Then K =, ¢1 and there is an isomorphism 7 between K and a 7-structure N with
dom(N) = k and N |z, ¢1. Fix a cardinal x < § € C(*2). Then K is an element of H(f) and we
can use to find a cardinal § € C, a cardinal p < & < min(k, #), a sublanguage 7 of 7 with
|&-| < & and &; = &, NH(E), an elementary submodel X of H(f) with & U {&, 7, £(7),2} C X
and an elementary embedding j : X — H(0) with j | & = idz, j(R) = &, j(z) = 2, j(F) = 7,
JL(T)) = L(1), j [ (L(T) N X) = idgz)nx and N, ¢1 € ran(j). The fact that 7 is an element of
H(x) then implies that 7 =7 € H(R), 6, C X and j [ 6, = ids.. Pick M in X with j(M) = N.
Then M is a 7-structure with dom(M) = & and it follows that M is a substructure of N. Next,
pick ¢g in X with j(¢o) = ¢1. Then ¢o € L(7) and the fact that j | (L(7) N X) = idgrnx
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implies that ¢g = ¢1 € X. Moreover, using the elementarity of j and the correctness properties of
H(#) and H(f), we know that M [=, ¢; holds. Then 7~! | & is an isomorphism between M and a
substructure J of K, and we can apply in Definition to show that J =, ¢1. Finally, we can
use (B)) in Definition [5.2| to conclude that H = (u*)~1(J) is a substructure of I with |[dom(H)| < &
and H . ¢.

@ Given a cardinal p as in , a C")-weakly shrewd cardinal x > pu satisfying v<°¢ < k for
all v < k, a language o with |S,| < k and a o-structure I with |[dom(I)| = &, we proceed as in ()
to first find a renaming v of o into a language 7 € H(x) and an isomorphism 7 between v*(I) and
a T-structure N with dom(N) = k. As above, fix a cardinal £ < # € C(™*2) and use to find
a cardinal § € C(™) a cardinal y < & < min(k,f) with 7 € H(%), an elementary submodel X of
H(#) with & U {&,7,£(7), 2} C X and an elementary embedding j : X — H(#) with j | & = idx,
J(R) =k, j(z) = 2, j(r) = 7, j(L(7)) = L(7), j | (L(r) N X) = idg(r)nx and N € ran(j). This
setup then ensures that ¥<°4 < & holds for all v < &.

Claim. £(7) C X.

Proof of the Claim. Fix ¢ € L(1). By in Definition there is a sublanguage 1y of 7 with
|6+, < or and ¢ € L(1g). Since |&,|<°¢ <k C X, it follows that 79 is an element of H(R) N X and
this implies that j(79) = 70 and j(L(m)) = L(19). Now, we can find a language 7 € H(o,) and a
renaming v of 71 into 79 that is an element of X. Our setup then ensures that £(m1) € H(u) C X
and j(L(r1)) = L(m1). Since (2) shows that v, is the unique bijection between £(71) and L(79) with
the property that holds for all 71-structures M in H(u) and every ¢ € L(71), the fact that all
parameters of this existence statements are elements of X that are fixed by j ensures that v, is an
element of X. In particular, since £(71) C H(u) C X, we know that £(79) C X and hence ¢ is an
element of X. ]

Now, pick M € X with j(M) = N. Then M is a 7-structure with dom(M) = &. Moreover, since
j 1 6, =1ids,, we know that M is a substructure of N. Fix ¢ € L(7). Then ¢ € X with j(¢) = ¢
and we can conclude that

This shows that M is an L-elementary submodel of N and, by arguing as in the proof of , this
shows that there is an L-elementary submodel H of I with |dom(H)| < . O

By combining the above lemma with Theorems [2.4] and we obtain the forward implications
in Theorems and

Corollary 6.2. (1) If Ord is essentially faint and L is an abstract logic, then there is a proper
class of cardinals that are both weak compactness cardinals for L and strict Lowenheim—
Skolem—Tarski numbers for L.

(2) If Ord is essentially subtle and L is an abstract logic, then the class of cardinals that are
both weak compactness cardinals for L and weak Léwenheim—Skolem—Tarski numbers for L
18 stationary.

Proof. Given a natural number n > 0, assume that £ is an abstract logic with the property that the
function £ and the relation =, are definable by %,,-formulas with parameters. Then and of
Lemma show that all sufficiently large C'"™)-weakly shrewd cardinals are both weak compactness
cardinals for £ and strict Léwenheim—Skolem-Tarski numbers for £. Theorem [3.5] then shows that
the assumption that Ord is essentially faint implies that there is a proper class of cardinals that
are both weak compactness cardinals for £ and strict Lowenheim—Skolem—Tarski numbers for L.



26 PHILIPP LUCKE

Now, let £ be an abstract logic and let C' be a closed unbounded class of ordinals. Then there is a
natural number n > 0 such that both £ and C are definable by ¥,,-formulas with parameters. Since
every sufficiently large cardinal in C'™) is an element of C, we can combine the above computations
with Lemma to conclude that every sufficiently large C'"-strongly unfoldable cardinal is an
element of C' that is both a weak compactness cardinal for £ and a weak Léwenheim—Skolem—
Tarski number for £. In particular, Theorem shows that the assumption that Ord is essentially
subtle implies that every closed unbounded class of ordinals contains a cardinal that is both a weak
compactness cardinal for £ and a weak Lowenheim—Skolem—Tarski number for L. O

By combining the above corollary with arguments contained in [5], we can also use the obtained
results to separate the principle “Ord is subtle” from the principle “Ord is essentially subtle”:

Corollary 6.3. If the theory
ZFC + “Ord is subtle”

is consistent, then this theory does mot prove that Ord is essentially subtle.

Proof. The proof of [5, Theorem 5.6] shows that, if the above theory is consistent, then it is
consistent with the assumption that there is no weak compactness cardinal for second-order logic.
An application of Corollary [6.2] then shows that this theory does not prove that Ord is essentially
subtle. O

We now work towards proving the backward implications in Theorems and Given
a natural number n > 0 and a cardinal x that is not C(™-weakly shrewd, we let §7 denote the
minimal element 6 of C(™) greater than s with the property that there exists z € H(#) such that for
all # € C™ all cardinals & < min(k, #) and all elementary submodels X of H(f) with & +1 C X,
there is no elementary embedding j : X — H(#) with j | & = idi, j(R) = k and 2z € ran(j). In
addition, given a natural number n > 0 and a cardinal x that is not C(")-weakly shrewd, we let
Z™ denote the non-empty set of all elements z of H(f?) with the property that for all § € C(™),
all cardinals & < min(k,f) and all elementary submodels X of H(f) with & + 1 C X, there is no
elementary embedding j : X — H(07) with j | & = idi, j(R) = k and z € ran(j). In the following,
let o denote a language consisting of a binary relation symbol E and four constant symbols d, e, f
and g. Given a natural number m, a natural number n > 0 and a cardinal p € C") of uncountable
cofinality, we define ;"™ to be the class of all o-structures M with the property that there exists
a (necessarily unique) cardinal p < ks € Lim(C(™) such that the following statements hold:

e There exists a cardinal ¥ > k) with the property that ¢ > ¢ holds for every cardinal u
in C™ N (p, k] that is not C™-weakly shrewd and dom(M) is an elementary submodel
of H(¥) of cardinality s with kps + 1 C dom(M).

o EM = ¢ | (dom(M) x dom(M)), d™ = kps and eM = p.

e M and g™ are functions whose domains are the set of all cardinals in C"™) N (p, xp] that
are not C"™-weakly shrewd.

o If p € dom(fM), then fM(u) is an elementary submodel of H(07) of cardinality p with
p+1C fM(p) and gM(n) € Zi 0 fM ().

The following lemma shows how the above class of structures can be used to derive the existence
of C™-weakly shrewd cardinals from strong structural properties of abstract logics:

Lemma 6.4. Given a natural number m, a natural number n > 0 and a cardinal p € C of
uncountable cofinality, assume that L is an abstract logic with the property that the following state-
ments hold whenever T is a language extending o:
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(1) The set L(T) contains all first-order sentences of T, a distinguished sentence ¢. and distin-
guished sentences ¢<¢ and ¢>¢ for every ordinal & < p.

(2) Given M € Str, and a first-order sentence ¢ € L(1), then M =, ¢ holds if and only if ¢
holds in M (in the sense of first-order structures).

(3) Given M € Str,, then M =, ¢« holds if and only if M | o is isomorphic to a structure in
cpm.

(4) Given & < p and M € Str,, then M |, d<¢ holds if and only if (dom(M),EM) is a
well-order of order-type less than &.

(5) Given & < p and M € Str., then M =, ¢>¢ holds if and only if (dom(M), EM) is a
well-order of order-type at least €.

If k € Lim(C™)) is either a weak compactness cardinal for L or a strict Lowenheim—Skolem—
Tarski number for L, then k > p and the set C(™ N (p, K] contains a C ") _weakly shrewd cardinal
w with the property that 8" < p holds for all § < p and n < p with §" < k.

Proof. First, assume towards a contradiction, that x < p. Define

T = {¢<x} U {dze | § <K} C L(0).
Then T is an unsatisfiable £-theory that is <x-satisfiable. This shows that x is not a weak com-
pactness cardinal for £. If we now pick a o-structure N with dom(N) = x and EN = € | (k X k),
then N =, ¢, holds and M |=, ¢>, fails for every substructure M of N with |dom(M)| < k.
This shows that « is also not a strict Lowenheim—Skolem—Tarski number for £, contradicting our
initial assumptions. Therefore, we know that x > p and we can pick M € C;"" with ky = k.

Claim. There exist o-structures H and K in CJ*" with k € {km,kK} and the property that
there is an elementary embedding j : dom(H) — dom(K) satisfying j(ky) = kK, j(p) = p,
31 (B 1) #idey 1, (7)) = 5 and j(g™) = g%

Proof of the Claim. First, assume that x is a weak compactness cardinal for £. Let 7 denote the
language that extends o by a constant symbol ¢ and a constant symbol ¢, for every x € dom(M).
Next, let T' denote the £(7)-theory consisting of the union of the first-order elementary diagram of
M using the constant symbols ¢, and the set

{o} U{cEd} U {c#ca|a<n}
This theory has cardinality x and 7-expansions of the structure M witness that it is <k-satisfiable.
Hence, our assumption implies that 7" is satisfiable. Our setup and in Deﬁnition Now ensure
that 7" has a model whose o-reduct NV is an element of CJ*". We can now find an elementary
embedding j : dom(M) — dom(N) with j(k) = kx > &, j(p) = p, ¥ € ky \ j[&], 5(fM) = N
and j(gM) = ¢g/V. In particular, we know that j | (k+ 1) # ide1.

Now, assume that k is a strict Lowenheim—Skolem—Tarski number for £. Let 7 be a language
extending o that adds functions symbols for first-order Skolem functions to ¢ and let N be 7-
structure such that N | ¢ = M and N interprets all new function symbols as Skolem functions.
Then N =, ¢« and |dom(N)| = k. Therefore, our assumptions yield a substructure K of N
with K =, ¢, and |[dom(K)| < k. We can now find a o-structure H in C that is isomorphic to
K | 0. Our setup now ensures that there is an elementary embedding j : dom(H) — dom(M)
with j(kx) = K, j(p) = p, j(f) = fM and j(g¥) = gM. Moreover, since kg = |[dom(H)| < K, we
know that j [ (kg + 1) # idky+1- O

Fix o-structures H and K in C;»" and an elementary embedding j : dom(H) — dom(K) as in

the above claim. Since j | (kg + 1) # idk, +1, we can find an ordinal p < kg with j [ g =1id, and
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j(p) > p. The fact that dom(H) is an elementary submodel of H(¢#) for some cardinal ¢ > & then
implies that u is a regular cardinal.

Claim. p > p.

Proof of the Claim. Since p is an element of C(Y) N kg, we know that V, U {V,} C dom(H).
Moreover, since j(p) = p, it follows that j(V,) =V, and j | V,: V, — V. In this situation, the
fact that p has uncountable cofinality now allows us to use the Kunen Inconsistency to conclude
that j | V, =idy,. |

Claim. p € C™),

Proof of the Claim. Assume, towards a contradiction, that u ¢ C(™). Set &€ = min(C"™ \ ) < k.
Then there is an ordinal n < p with the property that the ordinal £ is definable in dom(H) by
a formula using the parameters ky and n and the same formula with the parameters kKx and n
defines ¢ in dom(K). It follows that j(£) = & > p. Since C(©) is the class of all ordinals, we now
know m > 0 and this implies that kg € CV) and Viy € dom(H). The fact that j(Veys) = Veso
then implies that j [ Veya @ Vo — Veyo is a non-trivial elementary embedding, contradicting
the Kunen Inconsistency. O

Claim. If 0 < p and n < p with 0" < k, then " < p.

Proof of the Claim. Assume, towards a contradiction, that there are cardinals § < g and n < p
with ¢ < 07 < k. Then dom(H) contains an injection ¢ : u —> "§. Moreover, since 6,17 < p,
j(kg) = ki and k € {ky, KK}, the elementarity of j ensures that 0" < kg and hence we know
that "6 C dom(H). Set s = j(¢)(p) € "6. Since j(s) = s, we can now find an o < p with () = s.
But then j(¢)(a) = j((a)) = j(s) = 7(¢)(p), contradicting the injectivity of «. O

Since kg < j(kg) = kx and k € {ky, kK }, we know that p < kg < k and the above com-
putations show that the cardinal p is an element of the set C(™ N (p,k]. Assume, towards a
contradiction, that y is not a C(™-weakly shrewd cardinal. Then p € dom(f). Set v = j(u) > p.
Then v is a regular cardinal in the interval (p, kx| and elementarity implies that v € dom(f%).
Set X = f"(u) € dom(H) and z = g"(v) = j(g™(n)) € Z}. Then 6} is an element of cm,
p < min(v, 0), X is an elementary submodel of H(¢;) with u+1C X andi=j [ X : X — H(0})
is an elementary embedding with ¢ [ p = id,, i(¢) = v and 2z € ran(¢). But, this contradicts the
fact that z is an element of Z]}. This yields the conclusion of the lemma. ]

We can now also combine the above lemma with Theorems 2.4] and to derive the backward
implications of Theorems and This completes the proofs of these results.

Corollary 6.5. (1) If every abstract logic has either a weak compactness cardinal or a strict
Léwenheim—Skolem—Tarski number, then Ord is essentially faint.
(2) If every abstract logic has, for every natural number n, either a weak compactness cardinal
or a strict Lowenheim-—Skolem—Tarski number that is an element of C", then Ord is
essentially subtle.

Proof. If n > 0 is a natural number and p is a cardinal in C!) of uncountable cofinality, then
there exists an abstract logic £ that satisfies the statements 7 listed in Lemma for m =0,
n and p. The fact that C™) is the class of all ordinals then allows us to apply the lemma to find a
C(")_weakly shrewd cardinal greater than p. By Theorem these computations show that Ord
is essentially faint.
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Given a natural number n > 0 and a cardinal p € C1) of uncountable cofinality, there exists
an abstract logic £ that satisfies the statements f listed in Lemma form=n+1, n and
p. Since C(*2) C Lim(C*+Y), our assumptions allows us to use the lemma to find a C'™)-weakly
shrewd cardinal greater than p that is an element of C("*1). We can then combine Theorem [2.4
with Lemma [41] to conclude that Ord is essentially subtle. ]

In the remainder of this section, we consider the questions whether it is possible to extend the
conclusion of Theorem to obtain a characterization of the existence of weak Lowenheim—
Skolem—Tarski numbers for all abstract logics through the assumption that Ord is essentially faint.

Theorem 6.6. The following schemes are equivalent over ZFC:

(1) Every abstract logic has a weak Léwenheim—Skolem—Tarski number.
(2) For every natural number n and every cardinal 1, there is a C") _weakly shrewd cardinal K
with 8" < K for all 6 < k.

Proof. First, assume that holds, n > 0 is a natural number and p is a cardinal. Pick a cardinal p
in C) above . Then there is an abstract logic £ that satisfies statements f listed in Lemma
for m = 0, n and p together with the following statements:

(6) If 7 is a language, then £(7) contains the set £, ., (7) of all sentences of the infinitary logic
L, . that extends first-order logic by allowing conjunctions and disjunctions of less than
p-many formulas.

(7) Given a language 7, M € Str. and ¢ € L, ,(7), then M =, ¢ if and only if M =, ¢.

Our assumption now ensure that there is a weak Lowenheim—Skolem—Tarski number x for L.
Claim. If 6 < &, then 0" < k.

Proof of the Claim. Assume, towards a contradiction, that there exists a cardinal n < § < k with
0" > k. Let 7 denote a language that is obtained from ¢ by first adding a constant symbol c, for
each v < § and then closing the language under Skolem functions for first order formulas. Pick a
sufficiently large cardinal § > x and a 7-structure N such that dom(N) is an elementary submodel
of H(0) of cardinality & with x+1 C dom(N), EN = € | (dom(N) x dom(N)), ¢} = v for all
~v < § and all new function symbols are interpreted as the corresponding Skolem functions. By
elementarity, we know that the set dom(N) N "§ has cardinality x. Since x is a weak Lowenheim—
Skolem—Tarski number for £, we can find an L-elementary submodel M of N with |dom(M)| < k.
Then M is an elementary submodel of H(f) with § + 1 C M. Moreover, we know that there is a
function s € N N"§ that is not an element of M. But, the set £, ., (7) contains a sentence ¢, that
states that there is a function from ¢, to cs that sends ¢, to c,(,) for all v < n. It then follows that
N Er ¢s holds and M =, ¢ fails, contradicting the fact that M is an L-elementary submodel of
N. |

An application of Lemma now shows that the interval (p, x| contains a C"_weakly shrewd
cardinal p with the property that 67 < p holds for all § < p with 67 < k. By the above claim, we
can conclude that 67 < p holds for all 6 < u. This shows that holds in this case.

Now, assume that holds. Pick an abstract logic £ and a natural number n > 0 such that
L is definable by a ¥,,-formula with parameters. We can now apply @ of Lemma to see that
every sufficiently large C("™-weakly shrewd cardinal x with the property that v<°¢ < k holds for
all v < k is a weak Lowenheim—Skolem—Tarski number for £. Since our assumption ensures that
there is a proper class of such cardinals, we can conclude that holds in this case. |
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The above result leaves open the question of whether the existence of weak Léwenheim—Skolem—
Tarski numbers for all abstract logics is provably equivalent to the assumption that Ord is essentially
faint (see Question in the next section). Below, it is shown that a separation of these principles
would require substantial large cardinal assumptions. Recall that the Singular Cardinal Hypothesis
SCH states that £°°f(") = x* holds for every singular cardinal x with 2¢°f(®) < k. In the following,
we say that the SCH eventually holds if this implication holds for eventually all singular cardinals.
Remember that a classical result of Solovay in [20] shows that the existence of a strongly compact
cardinal implies that the SCH eventually holds.

Corollary 6.7. The following schemes are equivalent over ZFC + “SCH eventually holds”:

(1) Ewvery abstract logic has a weak Léwenheim—Skolem—Tarski number.
(2) Ord is essentially faint.

Proof. In one direction, a combination of Theorem with Theorem directly shows that
implies . In the other direction, note that, if the SCH eventually holds, then the proof of [10,
Theorem 5.22] shows that for every cardinal u, all sufficiently large weakly inaccessible cardinals
have the property that v<# < k holds for all ¥ < x. In particular, it follows that all sufficiently
large C'")-weakly shrewd cardinals satisfy the assumptions of @ in Lemma and therefore these
cardinals are weak Lowenheim—Skolem—Tarski numbers for abstract logic definable by ¥,,-formulas.
This shows that implies . O

7. OPEN QUESTIONS

We end this paper by discussing two questions raised by the above results.

First, while the existence of strict Léwenheim—Skolem—Tarski numbers for all abstract logics was
shown to be equivalent to the assumption that Ord is essentially faint in Theorem it is unclear
whether these principles are also equivalent to the existence of weak Lowenheim—Skolem—Tarski
numbers for all abstract logics. More specifically, Theorem [6.6] leaves open the possibility that the
equivalence stated in Theorem can be strengthened so that the existence of C'"™)-weakly shrewd
cardinals satisfying the cardinal arithmetic assumptions listed in Theorem can be derived from
the principle “Ord is essentially faint”.

Question 7.1. Assume that Ord is essentially faint. Given a natural number n > 0 and a cardinal
n, is there is a C" -weakly shrewd cardinal r with 6" < k for all § < k?

Note that, as shown in the proof of Corollary a negative answer to Question implies the
consistency of large cardinal assumptions in the region of measurable cardinals of high Mitchell
order, because it implies that the SCH fails at a proper class of singular cardinals and such a failure
is known to imply the existence of large cardinals in canonical inner models (see, for example, [I8]).
However, it is not clear if the given fragment of the SCH outright follows from the assumption that
Ord is essentially faint.

Second, we ask whether the analysis carried out to separate the principle “Ord is essentially
subtle” from the principle “Ord is essentially faint” can be extended to obtain characterizations of
the consistency of stronger subtlety properties of the class of ordinals through the existence and non-
existence of set-theoretic sentences with certain provable consequences. More specifically, Theorem
shows that the consistency of the class-version of the large cardinal property of being a regular
limit of subtle cardinals is equivalent to the existence of a consistent sentence implying that Ord
is essentially faint. In addition, Theorem provides a characterization of the consistency of the
class-version of subtle limits of subtle cardinals through the non-existence of a sentence axiomatizing
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the principle “Ord is essentially subtle” over the principle “Ord is essentially faint”. These results
raise the question whether the consistency of the class-version of the next stronger large cardinal
property, i.e., the property of being a stationary limit of subtle cardinals, can be characterized in a
similar manner.

Question 7.2. Are there analogs of Theorems[1.10 and[I.13 that characterize the consistency of
the theory

13.
14.
15.
16.
17.
18.
19.

20.

21.

22.

ZFC + “The class of subtle cardinals is stationary in Ord ”?
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