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Abstract— We present a passivity-preserving balanced trun- circuit topology, and® , £ and ¢ are resistance, inductance

cation model reduction method for circuit equations (PABTEC).  and capacitance matrices, respectively. We will assume tha
This method is based on balancing the solutions of the projected

Lur'e equations and admit computable error bounds. We o the matr?XA‘V has full column rank;
show how the topological structure of circuit equations can e the matrix[A., A,, Ag, A,] has full row rank;
be exploited to reduce the computational complexity of the « the matricesg , L, ¢ are symmetric, positive definite.

presented model reduction method. The first two conditions mean that the circuit does not contai
I. INTRODUCTION loops of voltage sources and cutsets of current sourceseThe

With decreasing structural size and increasing complexit%md_'t'OnS together with positive definiteness of the eleme
of modern integrated circuits, there is a growing deman@ialricés guarantee that the pentit’ — A is regular, i.e.,
for new modelling techniques and simulation algorithms fo,Flet(AE — A) # 0. Moreover, system (1), (2) BASSIVE1.€.,
circuit design that make use of the structure and propesfies it dogs hot generate energy, _almlhpro_cql i.e., its transfer
the underlying problem. The numerical treatment of complegyncF'on G(s) = C(sE _TA) B satisfies the SYmmeW
circuit models containing hundreds of millions of equasion relation G(s) = SextG(s)" Sext With an _ext_ernal §|gnature
and variables is extremely expensive with respect to bothext = d'ag(I"f’_*I":‘v)' see [.1]' Pa.‘SS'V'ty 'S an !mportant
computing time and memory requirements. Therefore, thYSteM Property in circuit design. Itis well known in networ
reduction of model complexity or model order reduction idheory [2] that system (1) is passive if arjd only |f_|t§ tragrsf
of great importance. functlon G positive realmeaning thatG |§} a_na.lytlc in 'the
Electronic circuits often contain large linear RLC sub2Pen right half-planeC, and G(s) + G" (s) is positive
networks that consist of resistors, inductors and capacito>eMidefinite for alls € C... o _
only. Such subnetworks are used to model interconnects, 9eneral idea of model reduction is to approximate the
transmission lines and pin packages. Using a modified nod4fge-scale system (1) by a reduced-order model

anglysis (MNA), Iingar RLQ circuits can be .modelled by Eé?(t) _ gg(t)Jrgu(t)’
a linear system of differential-algebraic equations (DAEs 3t = CF), ®)
i = A ~ o~ ~ ~
Ezgg _ Oiggf Buld), (1) whereE, A e RY, BeR™, C e R™! andl < n. Itis
required that the approximate system (3) captures the-input
where ] output behavior of (1) to a required accuracy and preserves
A.cAT 0 0 passivity and reciprocity.
E = 0 L 0], For linear systems, a variety of passivity-preserving meth
0 0 0 ods exist. These are interpolation-based methods like PRIM
- [3], SPRIM [4] and spectral zero interpolation [5], [6] and
—A,RTAT A, A, also balancing-related methods [7], [8], [9], [10]. Intela
A = AT 0 0o |, (2)  tory model reduction methods are closely related to rationa
AT 0 0 Krylov subspace methods. Despite the successful applicati
- of these methods in circuit simulation, they provide good
—Az 0 local approximations only and so far, there exist no global
B = 0 0|=0" error bounds. Another drawback of Krylov subspace methods
L 0 -1 is the ad hoc choice of interpolation points that strongly

Here A. e R™nme, A, e R™™ A, e R™mx, A, eRmone  influence the approximation quality. Recently, an optimal
and A; € R™ "™ are incidence matrices describing thePoint selection strategy based on tangential interpaiatio

has been developed [11], [12] that provides an optififial
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computing the reduced-order model. Besides preservafionwhere A = A — BC, P, and P, are the spectral projectors

passivity and reciprocity, the PABTEC method provides alsonto the right and left deflating subspaces of the pencil

computable error bounds. AE — A corresponding to the finite eigenvalues and
Throughout the papeR™™ denotes the space af x m . . A1

real matrices. The open right half-plane is denotedhyand Mo = lim, Gls)=1-2 Jim ClsE—A)"B.

j is the imaginary unit. The matriAT denotes the transpose For the passive MNA System (]_), (2) these equations are

of A. An identity matrix of ordern is denoted byl, or gplvable for X € R*", K. € R*»™, J. € R™™ and

simply by I. We denote bym(A) andker(A) the image and y ¢ R K, € R™", J, € R™™, respectively, see [13].

the kernel of the matrix4, respectively. A matrixZ € R™*  Moreover, there exist the extremal solutions that satisfy

is called a basis matrix for a subspagec R" if Z has

full column rank andm(Z) = Z. A matrix Z’ € R*"* is 0< Xmin <X < Xiax, 0= Vinin SV < Vinax

called a complementfiry ma'_[rix wif [Z, Z']is npnsingular. for all symmetric solutions andY of (4) and (5), respec-
Further, for symmetric matrice§” andY’, we write X >Y  {iely. The minimal solutionsX i, and Y., are called the

(X >Y)if X -V is positive definite (semidefinite). bounded real controllabilityand observability Gramiansof
Il. PASSIVITY-PRESERVING BALANCED th? '\"tgebt')us'”j‘”gfom:eg lsySte?'t ; od. we d
TRUNCATION n e pounded real balance runcation metnod, we de-

termine the Cholesky facto® and L of X,;, = RRT and

In this section, we describe the PABTEC method thay, . — L7 respectively, and compute the singular value
is based on bounded real balanced truncation applied #composition

a Moebius-transformed system.
For a square transfer functia® with det(I + G(s)) # 0, LYER =[Uy, Uy] [

a Moebius transformatiors defined as
R 1 where the matrice§/;, Uz] and [V1, V2] have orthonormal
G(s) = M(G)(s) = (I - G(s)) (I + G(s)) . columns,
One can show that is positive real if and only if the I, =diagm Iy, ..., 7 14,),
Moebius-transformed functioﬁT}’ is bounded real, i.e(7 is y = diag(m,4 111,y -, g d1,)
analytic inC, andI — G(s)G (3) is positive semidefinite
for all s € C,, see [2].

II
! H2:| [V17 VQ]Ta

with 7 > ... > 7 > w1 > ... > Ty The valuesr;
are called thecharacteristic valueof G. A reduced-order

i = _— 71 ja . .
For the transfer functio(s) = C(sE — A)™" B of the model forG can be computed by projection onto the left and

pa;sivg system (1), we fir_st dete.rmiﬂ;é(s) = M(G)(s) right subspaces corresponding to the dominant charaateris
which is bounded real. This function can be represented 33 o5 We obtaire (s) = Gy (sEy — A,) 1B, + T with

G(s) = C(sE — A)"1B + I with

R R R R sl 0 i _[WrAa-BO)T 0
E=E, A=A-BC, B=-v2B=-C". *=1o ol r= 0 7l
Then using the bounded real balanced truncation method [8], . —V2wTB ¢ — [V3CT. C
[10], G(s) can be approximated by a bounded real function T Boo ’ L [ ’ 00] ’
G,(s) = C.(sk.—A,)" 1 B,.+1I of lower dimension. Finally, 172 1 _
a back transformation whereW = LU, II; /°, T = RV,1I; "/, and the matrices
. ) R ) . B, andC,, are chosen such that — My = C» Bso.
G(s) = MTHG,)(s) = (I — G1(9)) (I + G,(9)) Using the structure of circuit equations, the model reduc-

A . . . tion procedure presented above can be made more efficient
will gives the positive real function that can be realized 85 1d accurate. Since the MNA matrices in (2) satisfy
G(s) = C(sE — A)~'B with '

ET: Sint ESinta AT: Sint ASint> BT: Sext Csint;

- . ~ . 1. 4 ~ 2 . ~ 2 A
E=E, A=A, -3BC., B= —gB,., o= gc where
. . . Sint = diaqlnna _InL 5 _In.,/)a
Consider the dual projected Lur'e equations Sext = diag(L,,, —In,)
EXA"+ AXE"+2PBB"P = 2K K, we find thatP, = Si, P7 Siy and

EXCT - pPBM] = -K,JT, (4)

Knin = Sin Xmin Sin =S5
JJT =1—MMT, X =PXPT ' '

1

GRRTSL = LLT.

int —

Thus, for the linear circuit equations (1), (2), it is enough
and to compute only one projector and solve only one projected
ETY A+ ATYE + 2PTCTOP, — —9KTK Lure equati?n. Ano'gher projeptor and also the solution of
T o " T oo the dual Lur'e equation are given for free. Furthermore, we
—E'YB+ P, C"My = —-2K, J,, () can show thalL.”ER = RT S,  ER is symmetric. Then the
JIJ, =1~ MIM,, Y = P'YP, characteristic values; can be computed from an eigenvalue



Algorithm 1. Passivity-preserving balanced truncation folprojector P, onto the right deflating subspace of the pencil

electrical circuits (PABTEC). M\E —(A—BC) corresponding to the finite eigenvalues along
Given passivéx = (£, A, B, C'), compute a reduced-order the right deflating subspace corresponding to the eigeavalu
modelG = (E, 4, B, C). at infinity are given by

1) Compute the Cholesky factdt of the minimal solu-

[ T —1,T T —1,T
tion X,,in = RRT of the projected Lur'e equation (4). My = I1-2A7ZH, 2" A; 2A7ZH, " Z7A, @)
2) Compute the eigenvalue decomposition | —2A4TZH;'ZTA; —I+2ATZH; ' ZTA,|
A _
RTS\wER = Uy, Us] { ! AJ Vi, 2 ]7, Hs(HyHy — 1)  HsH4A Hg 0
P.= 0 Hg 0, )
where[{]l, Us] and[Vy, V5] have_ orthonormal columns, _7A£(H4H2 -I1) -ATH,A,Hs O
Ay = dla.Q)\l7 . ,)\gf>, Ay = dlag()\ng, ceey )\nf) where
3) Compute the eigenvalue decomposition
_ 7T T T T
(I — MO)Sext = UOAOU(,)T7 HO =7 (AKR 1;47{ +AIAI +AVAIV)Z’
. R ] Hy, = Z(‘T;\Z'VALLi AzZ(~KZ'V’
whereUj is orthogonal and\, = diag(A1, ..., Am)- i . -
4) Compute the reduced-order system Hy = AR _fllx; A A7 _L—IA(VTA‘V .
E: |:I 0:| +ALL ALZCKZ'VHl ZCRIW/ALL AL’
0 0’ Hs=ZTHyZ., (20)
il [ 2WTAT V2WTBCx Hy=Z.H3'Z},
= , B .
2 |-V2BCT 21— ByCx ©6) Hs =2, H ' Z% A, L7 AT — 1,
T -1 _
B= { g/ Bi/i] ’ Hy=1-L AlZ.q,H; 1Z£{IVAL7
B OO/ Z = ZCZ;QI‘V—C’
C= [CT, Coc/V2 } Z. is a basis matrix foker(A7),
where Zyzv—c is @ basis matrix fotker([ Ay, Az, Ay |7 Z.),
Bo = 50|Ao|1/2U0TSext, Co = U0|AO|1/27 Zy 1y _. IS @ complementary matrix 7y,
W =LU|AM|7'2, T =SuL U151|A1|—1/2, Zox7v IS @ basis matrix foker([ Aq, Ag, Az, Ay ]7T).
Sy = diag(sign(&l), o ,Sigr‘(:\m)% Proof: It has been shown in [13] that
|Ao| = diag(| 1], .-, [Am]), My =1+ BFA;'B,
Sl = dlagSIQr(Al)a s 7Sigr(A€f)) with
A =diag(| M, ..., A ]). _
|A4] (PSRRI PYA)) CA R TAT A AT AL A,
A = AT 0 0 |,
T J—
decomposition ofR” S;,, ER instead of a more expensive N OA’V 0 I
singular value decomposition. Finally, using the symmetry By = /3 OI 0
of (I — Mp)Sext, We can determiné3,, and C, from the 0= 0 I
eigenvalue decomposition ¢f — M;)Sex;. We summarize
the PABTEC method in Algorithm 1. Let
One can show the reduced-order model computed by X1 Xz 1 )
the PABTEC method preserves not only passivity but also Xo1 Xoo| = 7 Ay B,y.
reciprocity. Moreover, we have the following error bound X311 X3

& Gl < 1T+ Gl (T + .. +7g) Then the matricesy;; satisfy the equations

. (7
* T 1=+ Gu, (Tr+1+ ... +7g) (7)

provided || + G|lu_ (7r+1 + ... + 1) < 1, see [10] for
details.

(A R~ AZ; + AL AT Xy + AcXoy + Ay X1 = Az, (11)
_AZ:'XII = 0) (12)

—A X1+ X3 =0, (13)
IIl. TOPOLOGICAL ANALYSIS

Using the topological structure of circuit equations, thénd
matrix Moland _the prolecto_PT can be computed in explicit (Axi’i_lAg F AAT) X1 + Ap Xog + Ay Xap =0, (14)
form as given in the following theorem. T
Theorem 1:Let E, A, B andC be as in (2). Then —A: X12 =0, (19)
the matrix My = I — 2 lim C(sE — A+ BC)~'B and the —ATX 15 + X3 =1. (16)



SubstitutingX3; from (13) in (11), we obtain
(A R AT + AL AT + A AT X1 + A X0y = Az (17)

(10) coincide with those in [13], where the representation
(9) for the projectorP,. has been proved. ]
Note that the matriced/; in (10) are more efficient to

Furthermore, it follows from equation (12) that columns ofompute than those presented in [13]. Indefd, and H3

X1 belong toker(AT) = im(Z.), i.e., X11 = Z.Y; for
some matrixY;. SubstitutingXy; in (17) and multiplying
this equation from the left by’”', we get

ZN(A,RTAY + AL AT + A ATV Z Yy = ZT A7 (18)

LetY) = Zgro_cY11 + ZJ’,\Z,V_CYH. Then a multiplication
of (18) from the left by(Z; ;,, )" yields HyY1, = Z" Az
with Hy and Z as in (10). SinceH, is nonsingular, we have
X1 = ZcZygo—c Y + ZHy ' Z7 Az,
Xa1 = AL (Ze Zazw— Y1 + ZHy ' Z7 Af)
= ATZH;'ZT A7
Analogously, we find from equations (14)—(16) that
Xio=ZcZgzv—cYo1 — ZHO_lzTAw
Xso=1—-ATZH;'ZT A,
with some matrixYs;. Finally, substituting the matriceX; 1,
Xs31, X2 andX32 in
I-2AYX,

*QA%ﬂXlQ

My=TI+BlA;'B, = I ox,

and taking into account that?Z.Z, s, .= 0, we obtain
the expression (8) foh/.
In order to prove (9), we first show that

ZcxIleilz;fRIq/ = QCRIVHleZRIV’
where
; -1
Hl = Pg;{IfVPcRIfV + QZ;{IVALL AfQCRIV7
Qcx 70 IS @ projector ontoker([ A, Ay, Az, Ay ]7),
PCRI'V =1- chIrw
Sinceim(Zerzv) = im(Qexzv ), the projectorQe;z,» can
be represented a8 47y = Zexzo Z1 With ZT Z g7y = 1.
Then
I=2"Zsy=Z"H'H\Q ., 2, 7
= ZTHle?RIVHIZCRIV
=72"H'zZ%  H,Z

CRIV

CRIV ZCRIV

CRIV*

Hence, (2%, H,\Z  7,,) "

hand, we have

ZTHT'Z. On the other

7 — —1 _ _
(ch;(ZfVleCqu/) ! = (ZE;QI'VALL AfZCKIV) ! = Hl 1'

Thus,
—1 2 —
Zmzq/Hl ZcTym/ = Zmzq/(Zg;{Iq/lemzv) 1Z?;w
Y SN
= ZCKI’VZTHI ZZ?;{I,V

_ r—1 AT
- Qm,IfVHl Qm,IfV'

Analogously, we can show thaf H; ' z! = Q H;'QT,
where Hy = A.cAT + QTH,Q. and Q. is a projector
onto ker(AT). Thus, the matricesl,, Hy, H; and Hg in

have smaller dimension and they are often much better con-
ditioned thanH, and H5 used in [13]. The basis matricés
andZ. 7, can be computed by analyzing the corresponding
subgraphs of the given network graph as described in [14].
For example, the matri¥. can be constructed in the form

k1

Z. =11,
o
0

where . =[1,...,1]T e R¥, i = 1,...,s, and Il is

a permutation matrix, by searching the components of con-
nectivity [15] in the C-subgraph consisting of the capaeiti
branches only. As a consequence, the nonzero columns of
ZT[Ag, Az, Ay] form an incidence matrix, and, hence,
Zy1v—c Can also be determined from the associated graph
as described above. In this case, the complementary matrix
Z, 1, _. required for)M is just a selector matrix constructed
from the identity matrix by removing some columns. One can
see that the resulting basis matrices and also the mafiiges
Hs, H; and Hg are sparse. Of course, the projecterwill
never be constructed explicitly. Instead, we use projector
vector products required in the numerical solution of the
Lur'e equation.

IV. COMPUTING THE GRAMIANS

In order to compute the Gramiak,,,;;, we have to solve
the projected Lur'e equation (4). 1Dy = I — MyM{ is
nonsingular, then this equation is equivalent to the ptepkc
Riccati equation

(A- BC)XE" + EX(A - BC)" +2P,BB"P[
+2(EXC"-PBM{ )Dy (EXCT-PBMy )" =0,
X=P.XP'. (19)

that can be solved via Newton's method. This method was
first developed for standard Riccati equatiohs=£ 1) [16],

[17] and then extended in [10], [18] to projected Riccati
equations. In each Newton iteration, we have to solve the
projected Lyapunov equations of the form

EXFT + FXET = —-PGG'PI', X =P XP" (20)

with given matricest, F, G, the projectorP. as in (9) and
P, = Sint PT Sine. Such equations can be solved using the
generalized alternating direction implicit (ADI) methat9].
Low-rank version of this method provides low-rank Cholesky
factors of the solution of (20) that allow, finally, to detenm
an approximate solution of the projected Riccati equation
(19) in factored formX,i, ~ RRT with R € R™* and
k < n, see [10] for detalils.

The most expensive step in the ADI method is solving
linear systems of the foriE + 7F)z = f with different



Bounded real characteristic values
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Fig. 1. The bounded real characteristic values of the Maebansformed Fig.
system.

parameterg. This can be done either by computing sparse
LU factorization or by using Krylov subspace methods [20].
In case of singulad — M,M{', small to medium-sized
DAE systems can be transformed similarly to the standar
state space case [21] to systems of smaller dimension fi
which the bounded real projected Riccati equations exis
For large-scale problems, the numerical solution of Lur'e
equations requires further investigations.

Magnitude

V. NUMERICAL EXAMPLE

In this section, we present some results of numerice
experiments to demonstrate the feasibility of the PABTEC
method for large-scale circuit equations.

We consider a transmission line model consisting o0:

a scalable number of RLC ladders. We have a reciprocatiy 3 The absolute errdG(jw) — G(

passive DAE system of order= 127 869 with a single input

and a single output. The minimal solution of the projected
Riccati equation (19) was approximated by a low-rank matrix[5]
Xmin ~ RRT with R € R™® using Newton's method.
Figure 1 shows that the characteristic values decay rapidly
SO we can expect a good approximation by a reduced—ord«T
model. The original system was approximated by a mode
of order¢ = 24. In Figure 2 we present the magnitude of

the frequency respons€s(jw) and G(jw) for a frequency 7]
rangew € [1, 10'°]. We also display in Figure 3 the absolute
error |G(jw) — G(jw)| and the error bound (7). 8]
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