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Abstract. Tensoring finite pointed simplicial sets X with commutative ring spectra R yields
important homology theories such as (higher) topological Hochschild homology and torus
homology. We prove several structural properties of these constructions relating X ⊗ (−) to
ΣX⊗(−) and we establish splitting results. This allows us, among other important examples,

to determine THH
[n]
∗ (Z/pm;Z/p) for all n > 1 and for all m > 2.

Introduction

For any (finite) simplicial set X one can define the tensor product of X with a commutative
ring spectrum A, X ⊗A, where the case X = S1 gives topological Hochschild homology of A.
More generally, for any sequence of maps of commutative ring spectra R → A→ C and any
(finite) pointed simplicial set X we can define LRX(A;C), the Loday construction with respect
to X of A over R with coefficients in C. Important examples are X = Sn or X a torus. The
construction specializes to X⊗A in the case LSX(A;A) where S denotes the sphere spectrum.
For details see Definition 1.1.

An important question about the Loday construction concerns the dependence on X: Given
two pointed simplicial sets X and Y , with ΣX ' ΣY , does that imply that LRX(A) ' LRY (A)?
If it does, the Loday construction would be a “stable invariant”. Positive cases arise from the
work of Berest, Ramadoss and Yeung [5, Theorem 5.2]: They identify the homotopy groups
of the Loday construction with respect to a simplicial set X of a commutative Hopf algebra
over a field with representation homology of the Hopf algebra with respect to Σ(X+), where
X+ denotes X with an added disjoint basepoint. In [16] Dundas and Tenti prove that stable
invariance holds if A is a smooth algebra over a commutative ring k. However in [16] they

also provide a counterexample: LHQ
S2∨S1∨S1(HQ[t]/t2) is not equivalent to LHQ

S1×S1(HQ[t]/t2)

even though Σ(S2 ∨ S1 ∨ S1) ' Σ(S1 × S1). Our juggling formula (Theorem 3.3) and our
generalized Brun splitting (Theorem 4.1) relate the Loday construction on ΣX to that of
X. One application among others of these results is to establish stable invariance in certain
examples.

For commutative Fp-algebras A one often observes a splitting of THH(A) as THH(Fp)∧HFp

THHHFp(HA), so THH(A) splits as topological Hochschild homology of Fp tensored with the
Hochschild homology of A [25]. It is natural to ask in which generality such splittings occur.
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If one replaces Fp by Z, then there are many counterexamples. For instance if A = OK is a
number ring then THH∗(OK) is known by [27, Theorem 1.1] and is far from being equivalent
to π∗(THH(Z)∧LHZTHH

HZ(HOK)) in general (see [19, Remark 4.12.] for a concrete example).
We prove several splitting results for higher THH and use one of them to determine higher
THH of Z/pm with Z/p-coefficients for all m > 2.

Content. We start with a brief recollection of the Loday construction in Section 1.

In [6] we determined the higher Hochschild homology of R = Fp[x] and of R = Fp[x]/xp
`
,

both Hopf algebras. In Section 2 we generalize our results to the cases R = Fp[x]/xm if p

divides m, which is not a Hopf algebra unless m = p` for some `.
Building on work in [19] we prove a juggling formula (see Theorem 3.3): For every sequence

of cofibrations of commutative ring spectra S → R→ A→ B → C there is an equivalence

LRΣX(B;C) ' LRΣX(A;C) ∧LLAX(C)
LBX(C).

This result is crucial for the applications that we present in this paper. It has to be handled
with care: We explain in 3.1 what happens if one oversimplifies this formula.

Using a geometric argument, Brun [9] constructs a spectral sequence for calculating THH∗-
groups. As a consequence of the above juggling formula we obtain a generalization of his
splitting: For any sequence of cofibrations of commutative ring spectra S → R→ A→ B (see
Theorem 4.1) there is an equivalence of commutative B-algebra spectra

LRΣX(A;B) ' B ∧LLRX(B)
LAX(B).

Note that B, which only appears at the basepoint on the left, now appears almost everywhere
on the right. This splitting also gives rise to associated spectral sequences for calculating
higher THH∗-groups.

We apply our results to prove a generalization of Greenlees’ splitting formula [18, Remark
7.2]: For an augmented commutative k-algebra A we obtain in Corollary 3.6 that

LΣX(HA;Hk) ' LΣX(Hk) ∧LHk LHAX (Hk)

and this can be written as

LΣX(HA;Hk) ' LΣX(Hk) ∧LHk LHkΣX(HA;Hk),

where all the Loday constructions are over the same simplicial set. For X = Sn, for example,
this yields Theorem 5.9,

THH[n](A; k) ' THH[n](k) ∧LHk THH[n],k(A; k)

where THH[n] = LSn .
Shukla homology is a derived version of Hochschild homology. We define higher order

Shukla homology in Section 5 and calculate some examples that will be used in subsequent
results. We prove that the Shukla homology of order n of a ground ring k over a flat aug-
mented k-algebra is isomorphic to the reduced Hochschild homology of order n+ 1 of the flat
augmented algebra (Proposition 5.8).
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Tate shows [41] how to control Tor-groups for certain quotients of regular local rings. We
use this to develop a splitting on the level of homotopy groups for THH(R/(a1, . . . , ar);R/m)
as

THH∗(R/(a1, . . . , ar);R/m) ∼= THH∗(R;R/m)⊗R/m ΓR/m(S1, . . . , Sr)

if R is regular local, m is the maximal ideal and the ai’s are in m2. Here, Γ denotes a divided
power algebra, and |Si| = 2 for all 1 6 i 6 r.

We prove a splitting result for THH[n](R/a,R/p) in Section 7, where R is a commutative
ring and p, a ∈ R are not zero divisors, (p) is a maximal ideal, and a ∈ (p)2. In this situation,

(0.1) THH[n](R/a,R/p) ' THH[n](R,R/p) ∧LHR/p THH
[n];R(R/a,R/p).

For this result, the juggling formula is an important ingredient in the proof, but it doesn’t
suffice to deduce this splitting result. We need a careful analysis of the maps involved; this is
the content of Section 7.

In many cases the homotopy groups of the factors on the right hand side of (0.1) can
be completely determined. Among other important examples we get explicit formulas for
THH[n](Z/pm,Z/p) for all n > 1 and all m > 2 (compare Theorem 9.1):

THH
[n]
∗ (Z/pm,Z/p) ∼= THH

[n]
∗ (Z,Z/p)⊗Z/p THH

[n],Z
∗ (Z/pm,Z/p).

We know THH
[n]
∗ (Z,Z/p) from [13] and we determine THH

[n],Z
∗ (Z/pm,Z/p) explicitly for all

n.
This generalizes previous results by Pirashvili [34], Brun [9], and Angeltveit [1] from n = 1

to all n.
In Section 8 we provide a splitting result for commutative ring spectra of the form A×B:

we show in Proposition 8.4 that for any finite connected simplicial set X, we have

LX(A×B)
' //LX(A)× LX(B).

We present some sample applications of our splitting results in Section 9: a splitting of
higher THH of ramified number rings with reduced coefficients (9.2), a version of Galois
descent for higher THH (9.3) and a calculation of higher THH of function fields over Fp (9.4).
We close with a discussion of the case of higher THH of Z/pm (with unreduced coefficients)
(9.5).
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1. The Loday construction: basic features

We recall some definitions concerning the Loday construction and we fix notation.
For our work we can use any good symmetric monoidal category of spectra whose category

of commutative monoids is Quillen equivalent to the category of E∞-ring spectra, such as
symmetric spectra [23], orthogonal spectra [29] or S-modules [17]. As parts of the paper
require working with a specific model category, we work with the category of S-modules
unless otherwise specified.

Let X be a finite pointed simplicial set and let R → A → C be a sequence of maps of
commutative ring spectra. We assume that R is a cofibrant commutative S-algebra and that
A and C are cofibrant commutative R-algebras.

Definition 1.1. The Loday construction with respect to X of A over R with coefficients in
C is the simplicial commutative augmented C-algebra spectrum LRX(A;C) whose p-simplices
are

C ∧
∧

x∈Xp\∗

A

where the smash products are taken over R. Here, ∗ denotes the basepoint of X and we place
a copy of C at the basepoint. As the smash product over R is the coproduct in the category of
commutative R-algebra spectra, the simplicial structure is straightforward: Face maps di on
X induce multiplication in A or the A-action on C if the basepoint is involved. Degeneracies
si on X correspond to the insertion of the unit maps ηA : R → A over all n-simplices which
are not hit by si : Xn−1 → Xn.

The cofibrancy assumptions on R, A and C ensure that the homotopy type of LRX(A;C) is
well-defined.

As defined above, LRX(A;C) is a simplicial commutative augmented C-algebra spectrum. If
M is an A-module spectrum (which is cofibrant as an R-module spectrum), then LRX(A;M) is
defined. By slight abuse of notation we won’t distinguish LRX(A;C) or LRX(A;M) from their
geometric realization. For C = A we abbreviate LRX(A;A) by LRX(A). If R = S, then we omit
it from the notation. Note that LRX(A) is by definition [17, VII, §2, §3] equal to X ⊗A where
X ⊗A is formed in the category of commutative R-algebras.

If X is an arbitrary pointed simplicial set, then we can write it as the colimit of its fi-
nite pointed subcomplexes and the Loday construction with respect to X can then also be
expressed as the colimit of the Loday construction for the finite subcomplexes.

Let A be a fixed cofibrant commutative R-algebra. As the model structure on commutative
R-algebras is a topological model category [17, Corollary 4.8], the functor X 7→ X ⊗A sends
homotopy pushouts to homotopy pushouts; in particular

ΣX ⊗A ∼= CX ⊗A ∧(X⊗A) CX ⊗A ' A ∧L(X⊗A) A

where CX ' ∗ denotes the cone on X. Similarly for a cofibrant commutative R-algebra C
with a morphism of commutative R-algebras A→ C one has

LRΣX(A;C) ' C ∧LLRX(A;C)
C.
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An important case of the Loday construction isX = Sn. In this case we write THH[n],R(A;C)
for LRSn(A;C); this is the higher order topological Hochschild homology of order n of A over
R with coefficients in C.

Let k be a commutative ring, A be a commutative k-algebra, and M be an A-module.
Then we abbreviate THH[n],Hk(HA;HM) by THH[n],k(A;M) and THH[n],S(HA;HM) by

THH[n](A;M).

If A is flat over k, then π∗THH
k(A;M) ∼= HHk∗(A;M) [17, Theorem IX.1.7] and this also

holds for higher order Hochschild homology in the sense of Pirashvili [35]: π∗THH
[n],k(A;M) ∼=

HH
[n],k
∗ (A;M) if A is k-flat [6, Proposition 7.2].

To avoid visual clutter, given a commutative ring A and an element a ∈ A, we write A/a
instead of A/(a).

2. Higher THH of truncated polynomial algebras

In [42, Section 3] Veen uses the fact that the Loday construction sends homotopy pushouts
of pointed simplicial sets to homotopy pushouts of commutative ring spectra in order to
express higher THH as a “topological Tor” of a lower THH. For any cofibrant commutative
S-algebra A,

THH[n](A) ' A ∧L
THH[n−1](A)

A

and this yields a spectral sequence

E2
s,∗ = TorTHH

[n−1]
∗ (A)

s (A∗, A∗)⇒ THH
[n]
∗ (A).

In particular cases, this spectral sequence collapses for all n > 1 making it possible to calculate

THH
[n]
∗ (A) as iterated Tor’s of A∗. In [6, Figures 1 and 2] we had a flow chart showing the

results of iterated Tor of Fp over some Fp-algebras with a particularly convenient form. We
can do similar calculations over any field:

Proposition 2.1. If F is a field of characteristic p and |ω| is even, there is a flow chart as in
Figure 1 showing the calculation of iterated Tor’s of F : If A is a term in the nth generation in
the flow chart, then TorA(F, F ) is the tensor product of all the terms in the (n+1)st generation
that arrows from A point to. Here |ρ0y| = |y|+ 1, |εz| = |z|+ 1 and |ϕ0z| = 2 + p|z|.

F [ω] Λ(εω) Γ(ρ0εω) ∼=
⊗
k>0

F [ρkεω]/(ρkεω)p

⊗
k>0

Λ(ερkεω)

⊗
k>0

Γ(ϕ0ρkεω) ∼=
⊗
k,i>0

F [ϕiρkεω]/(ϕiρkεω)p

· · ·

· · ·
· · ·

Figure 1. Iterated Tor flow chart
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If F a field of characteristic zero, the analogous flow chart for |x| even is

F [x] Λ(εx) F [ρ0εx] Λ(ερ0εx) · · ·

So for instance in prime characteristic p in the flow chart F [ω] is the first and Λ(εω) is the
second generation whereas for the fourth generation we obtain⊗

k>0

Λ(ερkεω)

⊗
⊗
k,i>0

F [ϕiρkεω]/(ϕiρkεω)p

 .

Proof. In characteristic p, all divided power algebras split as tensor products of truncated
polynomial algebras. This allows us to use the resolutions of [6, Section 2], where the tensor
products in the respective bar constructions are all taken to be over F , to pass from each
stage to the next.

In characteristic 0, the Tor dual of an exterior algebra is a divided power algebra, but this
is isomorphic to a polynomial algebra. Thus the resolutions of [6, Section 2], with the tensor
products in the bar constructions again taken to be over F , can be used analogously to get
the alternation between exterior and polynomial algebras. �

Let x be a generator of even non-negative degree. In [6, Theorem 8.8] we calculated higher

HH of truncated polynomial rings of the form Fp[x]/xp
`

for any prime p. The decomposition
due to Bökstedt which is described before the statement of the theorem there does not work
for Fp[x]/xm when m is not a power of p, but we can nevertheless use a similar kind of
argument to determine higher HH of Fp[x]/xm as long as p divides m. This generalization of
[6, Theorem 8.8] is interesting because if m is not a power of p, Fp[x]/xm is no longer a Hopf
algebra, which the cases we discussed in [6] were.

In the following HH
[n]
∗ will denote Hochschild homology groups of order n whereas HH[n]

denotes the corresponding simplicial object whose homotopy groups are HH
[n]
∗ .

Theorem 2.2. Let x be of even degree and let m be a positive integer divisible by p. Then
for all n > 1

HH
[n],Fp
∗ (Fp[x]/xm) ∼= Fp[x]/xm ⊗B′′n(Fp[x]/xm),

where B′′1 (Fp[x]/xm) ∼= ΛFp(εx)⊗ ΓFp(ϕ0x), with |εx| = |x|+ 1, |ϕ0x| = 2 +m|x| and

B′′n(Fp[x]/xm) ∼= Tor
B′′n−1(Fp[x]/xm)
∗,∗ (Fp,Fp).

Since the ring Fp[x]/xm (with x of degree zero) is monoidal over Fp, this gives a higher
THH calculation,

THH
[n]
∗ (Fp[x]/xm) ∼= THH

[n]
∗ (Fp)⊗ HH

[n],Fp
∗ (Fp[x]/xm)

∼= Bn
Fp

(µ)⊗ Fp[x]/xm ⊗B′′n(Fp[x]/xm)
(2.3)

where B1
Fp

(µ) ∼= Fp[µ] with |µ| = 2 and Bn
Fp

(µ) = Tor
Bn−1

Fp (µ)

∗,∗ (Fp,Fp) for n > 1 (see [13,

Remark 3.6]).
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Proof. We use the standard resolution [24, (1.6.1)] and get that the Hochschild homology of
Fp[x]/xm is the homology of the complex

. . .
0 //Σm|x|Fp[x]/xm

∆(x,x)
//Σ|x|Fp[x]/xm

0 //Fp[x]/xm.

Since p divides m, we have ∆(x, x) = mxm−1 ≡ 0 so the above differentials are all trivial and

HH
Fp
∗ (Fp[x]/xm) ∼= Fp[x]/xm ⊗ ΛFp(εx)⊗ ΓFp(ϕ0x)

at least as an Fp[x]/xm-module, with |εx| = |x|+ 1, |ϕ0x| = 2 +m|x|. The map G. from [24,
equation (1.8.6)] embeds this small complex quasi-isomorphically with its stated multiplicative
structure into the standard Hochschild complex for Fp[x]/xm. It sends Fp[x]/xm to itself in
degree zero of the Hochschild complex and

εx 7→ 1⊗ x− x⊗ 1, ϕ0x 7→
m∑
i0=1

1∑
j0=0

(−1)1+j0xi0−j0 ⊗ xm−i0 ⊗ xj0

which generate an exterior and divided power subalgebra, respectively, inside the standard
Hochschild complex equipped with the shuffle product. The map G. is shown in [24] to be
half of a chain homotopy equivalence between the small complex and the standard Hochschild

complex. So we get that HH
Fp
∗ (Fp[x]/xm) = HH

[1],Fp
∗ (Fp[x]/xm) has the desired form as an

algebra and sits as a deformation retract inside the standard complex calculating it.

For the higher HH∗-computation we use that the E2-term of the spectral sequence for HH
[2]
∗

is

E2
∗,∗ = TorFp[x]/xm⊗ΛFp (εx)⊗ΓFp (ϕ0x)(Fp[x]/xm,Fp[x]/xm)

and as the generators εx and ϕ0x come from homological degree one and two, the mod-
ule structure of Fp[x]/xm over ΛFp(εx) and ΓFp(ϕ0x) factors over the augmentation to Fp.
Therefore the above Tor-term splits as

(2.4) Fp[x]/xm ⊗ Tor
ΛFp (εx)
∗,∗ (Fp,Fp)⊗ Tor

ΓFp (ϕ0x)
∗,∗ (Fp,Fp).

Now we can argue as in [6] to show that there cannot be any differentials or extensions in
this spectral sequence: although we are calculating the homology of the total complex of the
bisimplicial Fp-vector space of the bar construction B(Fp[x]/xm,HHFp(Fp[x]/xm),Fp[x]/xm)
which involves both vertical and horizontal boundary maps, we can map the bar construction

B(Fp[x]/xm,Fp[x]/xm ⊗ ΛFp(εx)⊗ ΓFp(ϕ0x),Fp[x]/xm)

quasi-isomorphically into it, and the latter complex involves only non-trivial horizontal maps
(all vertical differentials vanish) and has homology exactly equal to the algebra in equation
(2.4). When all the vertical differentials in the original double complex are zero, there can be
no nontrivial spectral sequence differentials dr for r > 2. Also, the trivial vertical differentials
mean that there can be no nontrivial extensions involving anything but the ith and (i +
1)st filtration, but since we can produce explicit generators whose pth powers (in the even
dimensional case) or squares (in the odd dimensional case) actually vanish, we do not need

to worry about extensions at all. Thus we obtain the claim about HH
[2],Fp
∗ (Fp[x]/xm).
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An iteration of this argument yields the result for higher Hochschild homology, since now we
only have exterior algebras on odd-dimensional classes and truncated algebras, truncated at
the p’th power, on even-dimensional ones where the powers that vanish do so for combinatorial
reasons not relating to the power of x that was truncated at in the original algebra. At
each stage, the tensor factor Fp[x]/xm will split off the E2-term for degree reasons. What
remains will be the Tor of Fp with itself over a differential graded algebra that can be chosen
up to chain homotopy equivalence to be a graded algebra A with a zero differential which
is moreover guaranteed by the flow chart to have the property that B(Fp, A,Fp) is chain
homotopy equivalent to its homology embedded as a subcomplex with trivial differential
inside it.

The splitting for higher THH follows from the splitting for higher HH by arguing as in [6, 6.1]
(following [20, Theorem 7.1]) for the abelian pointed monoid {1, x, . . . , xm−1, xm = 0}. �

Reducing the coefficients via the augmentation simplifies things even further. Here, the
result does not depend on the p-valuation of m, because x augments to zero and therefore
Hochschild homology of Fp[x]/xm with coefficients in Fp is the homology of the complex

. . .
0 //Σm|x|Fp

∆(x,x)=0
//Σ|x|Fp

0 //Fp.

Thus we obtain the following result.

Proposition 2.5. For all primes p and for all m > 1, for x of even degree we get

HH
[n],Fp
∗ (Fp[x]/xm;Fp) ∼= B′′n(Fp[x]/xm)

where B′′1 (Fp[x]/xm) ∼= ΛFp(εx)⊗ ΓFp(ϕ0x) and B′′n(Fp[x]/xm) = Tor
B′′n−1(Fp[x]/xm)
∗,∗ (Fp,Fp) for

n > 1. Therefore we obtain (when x has degree zero)

(2.6) THH
[n]
∗ (Fp[x]/xm;Fp) ∼= THH

[n]
∗ (Fp)⊗B′′n(Fp[x]/xm).

This is shown as in the proof of the previous theorem using the method of [6], embedding

εx 7→ 1⊗ x⊗ 1, ϕ0x 7→ 1⊗ xm−1 ⊗ x⊗ 1

inside the bar complex B(Fp,Fp[x]/xm,Fp), where they generate exterior and divided power
algebras, respectively, regardless of the divisibility of m.

Remark 2.7. Note that the calculation becomes drastically different if (p,m) = 1 and we look

at the full HH
[n],Fp
∗ (Fp[x]/xm) rather than reducing coefficients to get HH

[n],Fp
∗ (Fp[x]/xm;Fp).

Then multiplication by m is an isomorphism on Fp[x]/xm-modules and hence

HH
Fp
∗ (Fp[x]/xm) ∼=


Fp[x]/xm, for ∗ = 0,

(Σ|x|(km+1)Fp[x]/xm)/xm−1, for ∗ = 2k + 1,

Σkm|x|ker(·xm−1), for ∗ = 2k, k > 0.
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3. A juggling formula

In this section we generalize juggling formulas from [19, §2 and §3]: we allow working relative
to a ring spectrum R that can be different from the sphere spectrum and we relate the Loday
construction on a suspension on a pointed simplicial set X to the Loday construction on X.
In [19] we mainly considered the cases where X is a sphere.

Lemma 3.1. Let X be a pointed simplicial set and let R be a cofibrant commutative S-algebra.
For a sequence of commutative S-algebras

R
ηA
//A

α //B
β
//C

such that A is a cofibrant commutative R-algebra, B and C are cofibrant commutative A-
algebras, there is an equivalence of augmented commutative C-algebras.

LAX(B;C) ' C ∧LRX(A;C) L
R
X(B;C).

The following proof replaces a less transparent one that we gave in an earlier version of the
paper. The new proof was suggested by one of the referees of our paper and we thank her or
him for it.

Proof. The Loday construction LAX(B;C) in simplicial degree n can be written as the colimit
of the diagram

C A
β◦α
oo α //B A

αoo α // . . . A
αoo α //B

where C is placed at the basepoint of Xn and the copies of B sit at the points x ∈ Xn \ ∗.
This colimit is equivalent to the iterated colimit of the expanded diagram

C A
β◦α

oo A A . . . A A

C R
β◦α◦ηA

oo

ηA

OO

ηA
// A

α
��

R
ηA
oo

ηA

OO

ηA
// . . . R

ηA
oo

ηA

OO

ηA
// A

α
��

C R
β◦α◦ηA

oo
α◦ηA

// B R
α◦ηA
oo

α◦ηA
// . . . R

α◦ηA
oo

α◦ηA
// B

where we first form the colimit of the columns and then take the colimit of the rows.
Forming the colimit first with respect to the rows yields

C

(LRX(A;C))n

OO

��

(LRX(B;C))n
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and then the colimit of the columns just gives the pushout

C ∧(LRX(A;C))n
(LRX(B;C))n.

This yields an isomorphism for any fixed simplicial degree n. As the simplicial structure maps
cause the insertion of the unit maps of A and B in the case of degeneracies or the multipli-
cation in A or B or the action of A or B on C in the case of face maps, these equivalences
are compatible with the simplicial structure maps. Thus we obtain an isomorphism of sim-
plicial spectra which is compatible with the structure of simplicial augmented commutative
C-algebras.

A colimit argument over finite pointed subcomplexes then proves the claim for general, not
necessarily finite, X. �

Remark 3.2. Under the assumptions of Lemma 3.1 the map LRX(A;C) → LRX(B;C) is a
cofibration of commutative augmented C-algebras (see [19, §3] for a proof) thus C ∧LRX(A;C)

LRX(B;C) is actually a homotopy pushout and models the derived smash product C ∧LLRX(A;C)

LRX(B;C).

Theorem 3.3 (Juggling Formula). Let X be a pointed simplicial set. Then for any sequence
of cofibrations of commutative S-algebras S → R → A → B → C we get an equivalence of
augmented commutative C-algebras

LRΣX(B;C) ' LRΣX(A;C) ∧LLAX(C)
LBX(C).

Proof. Consider the diagram

C LRX(A;C) //oo C

LRX(C)

OO

��

LRX(A;C) //oo

OO

��

C

OO

��

LRX(C) LRX(B;C) //oo C.

By Lemma 3.1, taking the homotopy pushouts of the rows produces the diagram

LRΣX(A;C)

LAX(C)

OO

��

LBX(C)
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whose homotopy pushout is

LRΣX(A;C) ∧LLAX(C)
LBX(C).

We get an equivalent result by first taking the homotopy pushouts of the columns and then
of the rows. Homotopy pushouts on the columns produces

C ∧LLRX(C)
LRX(C) LRX(A;C) ∧LLRX(A;C)

LRX(B;C)oo // C ∧LC C

which simplifies to

C LRX(B;C)oo // C

whose homotopy pushout is equivalent to LRΣX(B;C). �

Restricting our attention to spheres we obtain the following result. This is a relative variant
of [19, Theorem 3.6].

Corollary 3.4. Let S → R → A → B → C be a sequence of cofibrations of commutative
S-algebras. Then for all n > 0 there is an equivalence of augmented commutative C-algebras:

THH[n+1],R(B;C) ' THH[n+1],R(A;C) ∧L
THH[n],A(C)

THH[n],B(C).

Remark 3.5. This corollary gives a splitting of the same form as [19, Theorem 3.6]. However,
as the proof is different it is not obvious that the maps in the smash product are the same.
Thus (unlikely as it may be) it may turn out to be the case that this gives two different but
similar-looking splittings.

Let B be an augmented commutative A-algebra spectrum. We apply Theorem 3.3 to the se-

quence S
= //S //A //B //A so we take a cofibrant model of A as a commutative S-algebra,

a cofibrant model of B as a commutative A-algebra and we factor the augmentation map

B → A into a cofibration followed by an acyclic fibration of B-algebras, B // // A′
∼ // // A.

Note that

A ' LAX(A) ' LAX(A′)

because A is cofibrant over A and the map A→ A′ is a weak equivalence by 2-out-of-3.

Corollary 3.6. There is a splitting

LΣX(B;A′) ' LΣX(A;A′) ∧LA LBX(A′).

In particular, if k is a commutative ring, A = Hk, and B = HQ for an augmented com-
mutative k-algebra Q, then factoring the augmentation HQ → Hk through a cofibration

HQ // // (Hk)′
∼ // // Hk as above,

LΣX(HQ; (Hk)′) ' LΣX(Hk; (Hk)′) ∧LHk L
HQ
X ((Hk)′)

and if k is a field, then we obtain on the level of homotopy groups

π∗LΣX(HQ;Hk) ∼= π∗(ΣX ⊗Hk)⊗k π∗(LHQX ((Hk)′)).
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Remark 3.7. We stress that in Corollary 3.6 there is a spectrum level splitting of LΣX(HQ;Hk)
into LΣX(Hk) smashed with an additional factor. In particular, for X = Sn higher THH of
an augmented commutative k-algebra splits as

THH[n+1](Q; k) ' THH[n+1](k) ∧LHk THH[n],Q(k).

Greenlees proposed a splitting result in [18, Remark 7.2]: If k is a field and Q is an augmented
commutative k-algebra, then his results yield a splitting

THH∗(Q; k) ' THH∗(k)⊗k TorQ∗ (k, k).

Our result generalizes his because for X = S0 the term LHQ
S0 (Hk) is nothing but Hk ∧LHQHk

whose homotopy groups are isomorphic to TorQ∗ (k, k). We will revisit this splitting result later
in Theorem 5.9, relating it to higher order Hochschild homology.

3.1. Beware the phony right-module structure! In some cases it is tempting to use
the (valid) splitting of THH[n+1],R(A;C) as THH[n+1],R(A) ∧A C and oversimplify the jug-

gling formula we got in Corollary 3.4 to the invalid identification of THH[n+1],R(B;C) with

THH[n+1],R(A) ∧A (C ∧L
THH[n],A(C)

THH[n],B(C)) which in the case B = C becomes

(3.8) THH[n+1],R(A) ∧A THH[n+1],A(C).

This transformation is incorrect because it disregards the module structures, without which
the maps of pushouts are not well-defined. The spectrum THH[n+1],R(A;C) is not equivalent

to THH[n+1],R(A) ∧A C as a right-module spectrum over THH[n],A(C). Assuming that the
rearrangement that leads to (3.8) were valid, any cofibration of commutative S-algebras S →
A → B would produce an equivalence between THH[n](B) and THH[n](A) ∧LA THH[n],A(B).
But this equivalence does not hold in many examples, e.g., for A = HZ and B equal to the
Eilenberg Mac Lane spectrum of Fp or of the ring of integers in a number field.

4. A generalization of Brun’s spectral sequence

In [9] Morten Brun uses the geometry of the circle to identify THH(HQ;HQ ∧LHk HQ)
with THH(Hk;HQ) where k is a commutative ring and Q is a commutative k-algebra:
THH(Hk;HQ) is a circle with HQ at the basepoint and Hk sitting at every non-basepoint
of S1. Homotopy invariance says that we can let the point take over half the circle, so that
it covers an interval. This idea identifies THH(Hk;HQ) with THH(Hk;B(HQ,HQ,HQ))
where B denotes the two-sided bar construction. Brun then shows in [9, Lemma 6.2.3] that
the latter is equivalent to THH(HQ;B(HQ,Hk,HQ)) by a shift of perspective. This idea in-
spired our juggling formula of Theorem 3.3 and also the following result which can be obtained
as a corollary of the juggling formula applied to the sequence of maps S → R = R→ A→ B:

Theorem 4.1 (Brun Juggling). Let X be a pointed simplicial set. For any sequence of cofi-
brations of commutative S-algebras S → R → A → B we get an equivalence of commutative
B-algebras

LRΣX(A;B) ' B ∧LLRX(B)
LAX(B).
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Note that B, which only appears at the basepoint on the left, now appears almost every-
where on the right. Thus we can think of the basepoint as having “eaten” most of ΣX.

In the following we will use the notation from [19, §2]. If Y is a pointed simplicial subset
of X, then we denote by LR(X,Y )(A,B;B) the relative Loday construction where we attach

B to every point in Y including the basepoint, A to every point in the complement and we
use the structure maps to turn this into an augmented commutative B-algebra spectrum.
Recall that when the simplicial set X is not necessarily finite, the construction is defined as
the direct limit of the construction on finite sub-simplicial sets. Note that if Y = ∗, then
LR(X,∗)(A,B;B) = LRX(A;B), so in this case we omit the ∗ from the notation as in Definition

1.1.
We offer a direct proof of the Brun juggling theorem that uses the geometric features of

suspensions to make it easier to see what is going on in this application of Theorem 3.3; this
generalizes the geometric intuition behind Brun’s original X = S0 case.

Alternative proof of Theorem 4.1. We consider the pair (ΣX, ∗) as (CX ∪X CX,CX), with
the cone sitting as the upper half of the suspension. Then, since the Loday construction is
homotopy invariant,

LRΣX(A;B) = LR(ΣX,∗)(A,B;B) = LR(CX∪XCX,∗)(A,B;B) ' LR(CX∪XCX,CX)(A,B;B)

= LR(CX∪XCX,CX∪XX)(A,B;B).

By [19, Proposition 2.10(b)]

LR(CX∪XCX,CX∪XX)(A,B;B) ' LR(CX,CX)(A,B;B) ∧LR
(X,X)

(A,B;B) L
R
(CX,X)(A,B;B).

By definition LR(CX,CX)(A,B;B) = LRCX(B) and LR(X,X)(A,B;B) = LRX(B) and by homotopy

invariance LRCX(B) ' B, hence

LR(CX∪XCX,CX∪XX)(A,B;B) ' B ∧LRX(B) L
R
(CX,X)(A,B;B).

Using [19, (3.0.1)] we can identify LR(CX,X)(A,B;B) with

(4.2) LRCX(A;B) ∧LLRX(A;B)
LRX(B;B)

and as CX is contractible we obtain B ' LRCX(A;B). Then Lemma 3.1 yields an equivalence
of (4.2) with LAX(B). �

Example 4.3. Consider the case when X = S0.

(4.4) THH(A;B) ' B ∧B∧B (B ∧A B) = THH(B;B ∧A B).

Let R be connective. There is an Atiyah–Hirzebruch spectral sequence [17, IV.3.7]

E2
p,q = πp(E ∧R HπqM) =⇒ πp+q(E ∧RM).

Let B be a connective A-algebra. Setting R = B ∧B, E = B and M = B ∧A B we get

E2
p,q = πp(B ∧B∧B Hπq(B ∧A B)) =⇒ πp+q(B ∧B∧B (B ∧A B)).
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Setting B = HQ and A = Hk gives us

E2
p,q = THHp(Q; Torkq (Q,Q)) =⇒πp+q(HQ ∧HQ∧HQ (HQ ∧Hk HQ))

∼= THHp+q(k;Q)

by (4.4). This recovers a spectral sequence with the same E2 page and limit as Brun’s [9,
Theorem 6.2.10]. A substantial generalization of Brun’s spectral sequence for THH can be
found in [22, Theorem 1.1].

Example 4.5. We can generalize Example 4.3 to any X. In particular, consider a commutative
ring k and a commutative k-algebra Q. If we apply the Atiyah–Hirzebruch spectral sequence
in the case

E = HQ R = LSn(HQ) M = LHkSn (HQ)

then the Brun juggling formula of Theorem 4.1 gives us a spectral squence

E2
p,q = πp(HQ ∧THH[n](Q) HTHH[n],k

q (Q)) =⇒ THH
[n+1]
p+q (k;Q).

In the next section, we will see that we can identify THH[n],k(Q) with higher order Shukla

homology, Sh[n],k(Q), so we get the simpler description

E2
p,q = πp(HQ ∧THH[n](Q) H(Sh[n],k

q (Q)) =⇒ THH
[n+1]
p+q (k;Q).

5. Higher Shukla homology

Let k be a commutative ring. Ordinary Shukla homology [40] of a k-algebra A with co-
efficients in an A-bimodule M is a derived version of Hochschild homology and it can be
identified with THHk(A;M). We will define higher order Shukla homology in the context
of commutative algebras as an iterated bar construction and identify it with higher order
topological Hochschild homology.

Definition 5.1. Let A be a commutative k-algebra and B be a commutative A-algebra. We
define

Sh[0],k(A;B) = HA ∧LHk HB.
For n > 1 we define nth order Shukla homology of A over k with coefficients in B as

Sh[n],k(A;B) = BS(HB, Sh[n−1],k(A;B), HB)

where the latter is the two sided bar construction with respect to HB over the sphere spec-
trum.

It is consistent to set Sh[−1],k(A) = Hk. Again, we abbreviate Sh[n],k(A;A) by Sh[n],k(A).

For n = 1 we have Sh[1],k(A;B) = BS(HB,HA∧LHkHB,HB) ' THHk(A;B). For example,
when k = Z and p is a prime,

ShZ∗ (Z/pm;Z/p) ∼= ΓZ/p(x(m))

with |x(m)| = 2.
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Remark 5.2. Note that both the geometric realization of BS(HB, Sh[n−1],k(A;B), HB) and of

BHk(HB, Sh[n−1],k(A;B), HB) are equivalent to HB∧L
Sh[n−1],k(A;B)

HB and the derived smash

product is the homotopy pushout in the category of commutative S-algebras and is also the
homotopy pushout in the category of commutative S-algebras under Hk which is equivalent
to the category of commutative Hk-algebras. A priori, THHk(A;B) is a simplicial spectrum

and Sh[n],k(A;B) is therefore an n-simplicial spectrum, but we take iterated diagonals to get
a simplicial spectrum and can then use geometric realization to get an honest spectrum.

In particular we can identify Sh[n],k(A;B) with THH[n],k(A;B).

Note that Sh[n],k(A;B) is a commutativeHB-algebra spectrum for all n > 1, so in particular
all Shukla homology spectra are generalized Eilenberg-Mac Lane spectra.

Proposition 5.3. Let R be a commutative ring and let a, p ∈ R be elements which are not
zero divisors such that (p) is maximal and a ∈ (p)2. Then

Sh
[0],R
∗ (R/p) ∼= ΛR/p(τ1) ∼= Sh

[0],R
∗ (R/a;R/p), |τ1| = 1

and for n > 1,

Sh
[n],R
∗ (R/p) ∼= Tor

Sh
[n−1],R
∗ (R/p)

∗ (R/p;R/p)

and

Sh
[n],R
∗ (R/a;R/p) ∼= Tor

Sh
[n−1],R
∗ (R/a,R/p)

∗ (R/p;R/p).

Warning: the reduction R/a→ R/p does not induce an isomorphism Sh
[n],R
∗ (R/a;R/p)→

Sh
[n],R
∗ (R/p). By considering resolutions we can see that at n = 0 the induced map is the

map taking τ1 to 0. In fact, in Corollary 7.4 we show that the map induced by R/a → R/p
is zero on all generators other than the R/p in dimension 0.

Proof. We prove this by induction on n. At n = 0,

Sh[0],R(R/p;R/p) = HR/p ∧LHR HR/p.

There is a Künneth spectral sequence,

E2
s,t = TorRs,t(R/p,R/p) =⇒ πs+t(HR/p ∧LHR HR/p)

which in this case is concentrated in internal degree t = 0. The short resolution

R
·p−→ R→ R/p,

gives

TorRs,t(R/p,R/p)
∼= Hs(R/p

0−→ R/p)t ∼=


R/p, s = 0 = t,

R/p, s = 1, t = 0,

0, otherwise.
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For degree reasons, there cannot be any differentials or extensions in this spectral sequence,

and the product of τ1 with itself has to vanish. Thus Sh
[0]
∗ (R/p) ∼= ΛR/p(τ1), as desired. Note

that this proof works (almost) verbatim for Sh
[0],R
∗ (R/a;R/p).

By [13, Proposition 2.1], as an augmented commutative HR/p-algebra,

Sh[0],R(R/p) ' HR/p ∨ ΣHR/p ' Sh[0],R(R/a;R/p).

Thus

Sh[1],R(R/p) = B(HR/p,Sh[0],R(R/p), HR/p) ' HB(R/p,ΛR/p(τ1), R/p).

In the following let F be R/p. By [6, §2], if we start with BF(F,ΛF(τ1),F) for F a field of posi-

tive characteristic, we know that the spectral sequence Tor
ΛF(τ1)
∗,∗ (F,F)⇒ H∗(B

F(F,ΛF(τ1),F))

collapses at E2, which concludes the proof of the n = 1 case. We have that BF(F,ΛF(τ1),F) '
B(F,ΛF(τ1),F) because both calculate the homology of F ⊗LΛF(τ1) F. Moreover, in [6, §8] we

show that if we keep applying BF(F,−,F) to the result, having started with ΛF(τ1), the spec-

tral sequences Tor
H∗(−)
∗,∗ (F,F) ⇒ H∗(B

F(F,−,F)) will keep collapsing. Since in the case of a
characteristic zero field, a divided power algebra is isomorphic to a polynomial one, we can
use the method of [6], adjusted as in the proof of Proposition 2.1, to get the same result.

Finally, in [13, §3] we show that once we can exhibit a commutative HF-algebra as the
image of the Eilenberg Mac Lane functor on some simplicial algebra, we can continue doing
that when we apply B(F,−,F) to that algebra—once we get to the algebraic setting we can
stay there. This concludes the proof for the collapsing of the spectral sequences both for R/p
and for R/a. �

The following argument allows us to identify higher order Shukla homology of order n with
higher order Hochschild homology of order n+ 1 for augmented algebras in good cases.

Let A be an augmented commutative k-algebra. We apply the juggling formula of Theorem
3.3 to the sequence Hk → Hk → HA → (Hk)′ where HA → (Hk)′ is a cofibration of
commutative HA-algebras with (Hk)′ ' Hk and obtain

LHkΣX(HA; (Hk)′) ' LHkΣX(Hk; (Hk)′) ∧LLHk
X ((Hk)′)

LHAX ((Hk)′).

But LHkX ((Hk)′) ' Hk ' LHkΣX(Hk; (Hk)′) as before, so we have the following consequence of
Theorem 3.3.

Corollary 5.4. In the special case of the sequence of cofibrations of commutative S-algebras
R = Hk → Hk → HA→ (Hk)′ we obtain

(5.5) LHkΣX(HA; (Hk)′) ' LHAX ((Hk)′)

for any X.

Remark 5.6. Note that Corollary 5.4 implies that LHAX ((Hk)′) depends only on the homo-

topy type of ΣX, so LHAX ((Hk)′) is a stable invariant of X. Note that LHkΣX(HA; (Hk)′) '
LHkΣX(HA;Hk).
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Consider the case X = Sn. Then Equation (5.5) gives

(5.7) LHkSn+1(HA;Hk) ' LHASn ((Hk)′).

The term on the left hand side of (5.7) has as homotopy groups the Hochschild homology of
order n+1 of A with coefficients in k if A is flat as a k-module. The right hand side simplifies
to THH[n],A(k) and this is Shukla homology of order n of k over A. Therefore we obtain:

Proposition 5.8. Let k be a commutative ring and let A be an augmented commutative
k-algebra which is flat as a k-module. Then for all n > 0

HH
[n+1],k
∗ (A; k) ∼= Sh

[n],A
∗ (k).

Note that for n = 0 we obtain the classical formula [10, X.2.1]

HHk∗(A; k) ∼= TorA∗ (k, k).

For higher Hochschild homology with reduced coefficients of augmented commutative k-
algebras, this last proposition allows us to deduce the kind of splitting result we are looking
for:

Theorem 5.9. Let k be a commutative ring and let A be an augmented commutative k-algebra.
Then for all n > 1

THH[n](A; k) ' THH[n](k) ∧LHk THH[n],k(A; k).

If k is a field then we obtain the following isomorphism on the level of homotopy groups

THH
[n]
∗ (A; k) ∼= THH

[n]
∗ (k)⊗k HH

[n],k
∗ (A; k).

Proof. By Corollary 3.6

THH[n](A; k) ' THH[n](k) ∧LHk THH[n−1],A(k),

but Equation (5.7) says that

THH[n−1],A(k) ' THH[n],k(A; k).

�

6. A weak splitting for THH(R/(a1, . . . , ar);R/m)

Using a Tor-calculation by Tate from the 50’s we obtain a splitting on the level of homotopy
groups of THH∗(R/(a1, . . . , ar);R/m) in good cases. This yields an easy way of calculating
THH∗(Z/pm;Z/p) for m > 2. Compare [34, 9, 1] for other approaches.

Theorem 6.1. Let R be a regular local ring with maximal ideal m and let (a1, . . . , ar) be a
regular sequence in R with ai ∈ m2 for 1 6 i 6 r. Then

THH∗(R/(a1, . . . , ar);R/m) ∼= THH∗(R;R/m)⊗R/m ΓR/m(S1, . . . , Sr)

with |Si| = 2.
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Proof. Let I = (a1, . . . , ar). Applying the juggling formula of Theorem 3.3 to X = S0 and to
the sequence S → HR→ HR/I → HR/m gives

THH(R/I;R/m) ' THH(R;R/m) ∧L
HR/m∧LHRHR/m

(HR/m ∧L
HR/I

HR/m).

In [41] Tate determines the algebra structure on the homotopy groups of the last term,

Tor
R/I
∗ (R/m, R/m) ∼= ΛR/m(T1, . . . , Td)⊗R/m ΓR/m(S1, . . . , Sr).

Here, d is the dimension of m/m2 as an R/m-vector space. We can choose a regular system

of generators (t1, . . . , td) for m such that the module structure of Tor
R/I
∗ (R/m, R/m) over

TorR∗ (R/m, R/m) ∼= ΛR/m(T1, . . . , Td) is the canonical one (see [41, p. 22]). Hence the Künneth

spectral sequence for THH(R/I;R/m) has an E2-term isomorphic to

THH∗(R;R/m)⊗R/m ΓR/m(S1, . . . , Sr)

which is concentrated in the zeroth column that consists of

THH∗(R;R/m)⊗TorR∗ (R/m,R/m) Tor
R/I
∗ (R/m, R/m).

Therefore, there are no non-trivial differentials and extensions in this spectral sequence. �

We call the splitting of Theorem 6.1 a weak splitting because it is only a splitting on the
level of homotopy groups. In Section 7 we develop a stronger spectrum-level splitting of a
similar form.

We apply the above result in the special case where R is a principal ideal domain. Let
p 6= 0 be an element of R, such that (p) is a maximal ideal in R and let m be bigger or equal
to 2. Then we are in the situation of Theorem 6.1 because R(p)/p

m ∼= R/pm so we can drop
the assumption that R is local. The above result immediately gives an explicit formula for
THH(R/pn;R/p).

Corollary 6.2. For all m > 1:

THH∗(R/p
m;R/p) ∼= THH∗(R;R/p)⊗R/p ΓR/p(S1).

Remark 6.3. One may try to use the same method for THH[n]. The juggling formula from

Theorem 3.3 for S
= //S //HZ //HZ/pm //HZ/p gives us

THH[n](Z/pm;Z/p) ' THH[n](Z;Z/p) ∧L
Sh[n−1],Z(Z/p)

Sh[n−1],Z/pm(Z/p).

Thus we must understand the structure of Sh[n−1],Z/pm(Z/p) as a Sh[n−1],Z(Z/p)-algebra. It is
not possible to do this through direct Tor computations for all n, as the computations rapidly

become intractable; even Sh[1],Z/p2(Z/p) is rather involved [4, (5.2)], but see Proposition 7.5
for a general formula.

In order to obtain calculations in this example and in related cases, we need to develop the
more delicate splitting of Section 7.
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7. A splitting for THH[n](R/a;R/p)

Throughout this section, we assume that R is a commutative ring and a, p ∈ R are elements
which are not zero divisors for which (p) is a maximal ideal and a ∈ (p)2.

Lemma 7.1. Let R, p, and a be as above, and let π : R/a → R/p be the obvious reduction.
Then the map induced by π,

π∗ : Sh
[0],R
∗ (R/a;R/p) −→ Sh

[0],R
∗ (R/p),

factors as

Sh
[0],R
∗ (R/a;R/p)

ε //R/p
η
//Sh

[0],R
∗ (R/p).

Proof. The assumptions on a and p ensure that there exists a b ∈ R such that a = bp2. We
have the following diagram:

R
·a //

·bp
��

R
ε //

=

��

R/a

R
·p
// R

ε // R/p

Thus we have a map of resolutions. When we tensor up with R/p we get the following diagram:

R⊗R R/p
a⊗1
//

bp⊗1=0

��

R⊗R R/p

=

��

R⊗R R/p
p⊗1
// R⊗R R/p

We take the homology of the top and bottom row. Note that since a, p ∈ (p), the horizontal
maps are 0; thus the top and bottom row produce Tor’s which are of the form ΛR/p(τ1).
However, when we look at where τ1 goes from the top to the bottom, it maps by multiplication
by bp—which is 0 in R/p. Thus this map is 0. �

Surprisingly enough, this special case allows us to prove a spectrum-level splitting for all
n > 0.

Definition 7.2. Let AHR/p be the category of augmented commutative HR/p-algebras and
hAHR/p its homotopy category. Let ModHR/p be the category of HR/p-modules.

Lemma 7.3. For R, p, and a as above, the map

ϕn : THH[n],R(R/a;R/p)→ THH[n],R(R/p)

induced by R/a→ R/p factors through HR/p in hAHR/p.
Proof. The key step is the n = 0 case.

From [13, Proposition 2.1] we know that THH[0],R(R/a;R/p) ' HR/p ∨ ΣHR/p and also

THH[0],R(R/p) ' HR/p ∨ ΣHR/p. So we need to understand

hAHR/p(HR/p ∨ ΣHR/p,HR/p ∨ ΣHR/p).
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By [2, Proposition 3.2], we can identify this as

hModHR/p(LQRI(HR/p ∨ ΣHR/p),ΣHR/p).

Given an A ∈ AHR/p, we have a pullback

IA

��

// A

ε
��

∗ // HR/p

Let B be a nonunital HR/p-algebra. Basterra defines Q(B) to be the pushout

B ∧HR/p B //

��

B

��

∗ // Q(B)

We want to take the left- and right-derived versions of these functors for Basterra’s result.

Let X be a fibrant replacement for HR/p ∨ ΣHR/p in AHR/p, so that X
ε−→ HR/p is a

fibration. Thus the square

RI(HR/p ∨ ΣHR/p) //

��

X

ε
����

∗ // HR/p

is a homotopy pullback square (since every spectrum is fibrant [21, Proposition 13.1.2]). For
conciseness we write Y = RI(HR/p ∨ΣHR/p). We have a long exact sequence of homotopy
groups

0→ π1Y → π1X → π1HR/p→ π0Y → π0X → π0HR/p→ π−1Y → 0,

where we have used that X ' HR/p∨ΣHR/p so that its homotopy groups are concentrated
in degrees 0 and 1. Note that the map π0X → π0HR/p is the identity. We thus see that
πiY ∼= 0 for i 6= 1 and π1Y ∼= R/p.

We need to identify

hModHR/p(LQ(ΣHR/p),ΣHR/p) ∼= π0FHR/p(LQ(ΣHR/p),ΣHR/p),

where FHR/p(·, ·) is the function spectrum. We use the universal coefficient spectral sequence

Es,t2 = Exts,tR/p(π∗LQ(ΣHR/p), π∗ΣHR/p)

=⇒ πt−sFHR/p(LQ(ΣHR/p),ΣHR/p).

Note that we’re working over a field, so Es,t2 = 0 for s 6= 0, and π∗(ΣHR/p) is zero everywhere
except at π1, so in fact the spectral sequence collapses at E2. Since we are only interested in
π0, the only term relevant to us is

E0,0
∞
∼= E0,0

2
∼= HomR/p(π1LQ(ΣHR/p), R/p).
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Note that this group cannot be 0, since our hom-set contains at least two elements: the
identity map and the 0 map. Thus it remains to compute π1LQ(ΣHR/p).

Consider the diagram

(ΣHR/p)cof
f
//

∼
����

LQ(ΣHR/p)

ΣHR/p

By [3, Proposition 2.1], since (ΣHR/p)cof is 0-connected, f is 1-connected; thus π1f is sur-
jective. Since R/p is a field, we must have

π1LQ(ΣHR/p) ∼= 0 or R/p.

Since it can’t be 0, it must be R/p, with the induced map being the identity.

Let τ
(a)
1 be the generator of the Λ(τ1) obtained as Sh[0],R(R/a;R/p) and let τ

(p)
1 be the

generator of the Λ(τ1) obtained as Sh[0],R(R/p) in the calculation of Lemma 7.1. The above
calculation shows that

hModHR/p(LQRI(HR/p ∨ ΣHR/p),ΣHR/p)

∼= HomR/p(R/p,R/p)

where the first copy of R/p is generated by τ
(a)
1 and the second copy is generated by τ

(p)
1 . But

the induced map on Sh[0],R takes τ
(a)
1 to 0. Thus the corresponding map in hAR/p is also 0.

This proves the n = 0 case.
We now turn to the induction step. We have the composition

B(HR/p,THH[n−1],R(R/a;R/p), HR/p)

hyp.

**

B(1,ϕn−1,1)

��

B(HR/p,HR/p,HR/p)

tt

B(HR/p,THH[n−1],R(R/p;R/p), HR/p)

of maps of simplicial spectra. Taking the realization gives us the composition

ϕn : THH[n](R/a;R/p) −→ HR/p −→ THH[n](R/p),

as desired. �

By applying π∗ to the result of Lemma 7.3 we get the following generalization of Lemma 7.1.

Corollary 7.4. For R, p, and a as above, for all n > 0 the map

Sh
[n],R
∗ (R/a;R/p) −→ Sh

[n],R
∗ (R/p)
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induced by R/a→ R/p factors as

Sh
[n],R
∗ (R/a;R/p)

ε //R/p
η
//Sh

[n],R
∗ (R/p).

Here, R/p is considered as a graded ring concentrated in degree 0; the first map in the fac-
torization is the augmentation and the second is the unit map induced by the inclusion of the
basepoint.

By Lemma 3.1,

THH[n],R/a(R/p) ' HR/p ∧THH[n],R(R/a;R/p) THH
[n],R(R/p).

However, by Lemma 7.3 the map THH[n],R(R/a;R/p) → THH[n],R(R/p) factors through
HR/p. This proves the following result about higher order Shukla homology:

Proposition 7.5. For R, p, and a as above,

THH[n],R/a(R/p) ' (HR/p ∧THH[n],R(R/a;R/p) ∧HR/p) ∧HR/p THH
[n],R(R/p)

' THH[n+1],R(R/a;R/p) ∧HR/p THH[n],R(R/p).

This recovers the calculation of Sh
Z/p2
∗ (Z/p) from [4, 5.2]. It also explains why these Shukla

calculations are more involved than Shukla homology calculations of the form ShR∗ (R/x) where
x is a regular element. In the latter case we just obtain a divided power algebra over R/x on
a generator of degree two, whereas for all m > 2

Sh
Z/pm
∗ (Z/p) ∼= Sh

[2],Z
∗ (Z/pm;Z/p)⊗Z/p Sh

Z
∗ (Z/p)

∼=
⊗
i>0

Λ(ε(%i(τ
(pm)
1 )))⊗ ΓZ/p(ϕ

0%i(τ
(pm)
1 )))⊗Z/p ΓZ/p(%

0(τ
(p)
1 )).

We are now ready to prove the main splitting result:

Theorem 7.6. If R is a commutative ring and if p, a ∈ R are elements which are not zero
divisors for which (p) is a maximal ideal and a ∈ (p)2, then for all n > 1

THH[n](R/a;R/p) ' THH[n](R;R/p) ∧LHR/p THH
[n],R(R/a;R/p).

Proof. Recall that in the category of commutative algebras, the smash product is the same
as the pushout. Consider the following diagram:

HR/p //

��

THH[n−1],R(R/p;R/p) //

��

THH[n](R;R/p)

��

THH[n],R(R/a;R/p) // THH[n−1],R/a(R/p;R/p) // THH[n](R/a;R/p).

By Proposition 7.5 the left square is a homotopy pushout square and the right square is a
homotopy pushout square by the juggling formula of Theorem 3.3, with the maps of those
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formulas. Thus the outside of the diagram also gives a homotopy pushout, producing the
formula

THH[n](R/a;R/p) ' THH[n](R;R/p) ∧LHR/p THH
[n],R(R/a;R/p),

as desired. �

8. The Loday construction of products

We establish a splitting formula for Loday constructions of products of ring spectra. This
result is probably well-known, but as we will need it later, we provide a proof. In the case
of X = S1 such a splitting is proved for connective ring spectra in [15] in the context of
’ring functors’. See also [12, Proposition 4.2.4.4]. The impatient reader is invited to proceed
directly to Section 9 to see the applications of our results.

For two ring spectra A and B we consider their product A×B with the multiplication

(A×B) ∧ (A×B)→ A×B

that is induced by the maps (A × B) ∧ (A × B) → A and (A × B) ∧ (A × B) → B that are
given by the projection maps to A and B and the multiplication on A and B:

(A×B) ∧ (A×B)
prA∧prA //

prB∧prB
��

A ∧A
µA

// A

B ∧B
µB
��

B

For X = S0 we obtain

LS0(A×B) = (A×B) ∧ (A×B)

and this is equivalent to A∧A∨A∧B∨B∧A∨B∧B whereas LS0(A)×LS0(B) is equivalent
to A∧A∨B ∧B so in this case LS0(A×B) is not equivalent to LS0(A)∨LS0(B). In general,
if a simplicial set has finitely many connected components, say X = X1 t . . . tXn, then

LX(A×B) ' LX1(A×B) ∧ . . . ∧ LXn(A×B)

so it suffices to study LX(A × B) for connected simplicial sets X. We will first consider
the case X = S1, where LS1 with respect to the minimal simplicial model of the circle is

THH = THH[1], and then use that special case to prove the result for general connected finite
simplicial sets X.

We thank Mike Mandell who suggested to use Brooke Shipley’s version of THH in the
setting of symmetric spectra. Brooke Shipley shows in [38] that a variant of Bökstedt’s model
for THH in symmetric spectra of simplicial sets is equivalent to the version that mimics the
Hochschild complex and she proves several important features of this construction. See also
[33] for a correction of the proof of the comparison.
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Proposition 8.1. For symmetric ring spectra A and B, the product of the projections induces

a stable equivalence THH(A×B)
∼ //THH(A)× THH(B).

Schwede establishes a Quillen equivalence between symmetric ring spectra and S-algebras
in [37, Theorem 5.1]. This allows a transfer of the above result to the setting of EKMM:

Corollary 8.2. Let A and B be two cofibrant S-algebras and let (A×B)c denote a cofibrant
replacement of A×B. Then the product of the projection maps induces a weak equivalence

THH((A×B)c)
∼ //THH(A)× THH(B).

In the following proof we denote by THH the model of THH defined in [38, Definition 4.2.6].
This is no abuse of notation: Let A and B be S-cofibrant symmetric ring spectra [39, Theorem
2.6]. Then by [38, Theorem 4.2.8] and [33, Theorem 3.6] THH(A) and THH(B) are stably
equivalent to THH(A) and THH(B) in our sense. As THH(−) sends stable equivalences to
stable equivalences ([38, Corollary 4.2.9]) we can choose an S-cofibrant replacement of A×B,
(A×B)c, and get that THH(A×B) is stably equivalent to THH((A×B)c) and this in turn
is stably equivalent to our notion of THH.

Proof of Proposition 8.1. Note that for any symmetric ring spectrum R, THH(R) is defined
as the diagonal of a bisimplicial symmetric spectrum THH•(R) [38, 4.2.6], where one of the
simplicial directions comes from the THH-construction and the other one comes from the fact
that we are working with symmetric spectra in simplicial sets. In [33, p. 4101] the authors
use the geometric realization instead of the diagonal, but this does not cause any difference
in the arguments.

We will start by showing that there is a chain of stable equivalences between THH(A×B)
and THH(A)× THH(B). We use the following chain of identifications:

THH(A×B)

(prA,prB)

��

hocolim∆opTHH•(A×B)
'
1)
oo hocolim∆op

f
THH•(A×B)

'
2)

oo

hocolim∆op
f
THH•(A ∨B)

'3)

OO

R

��

hocolim∆op
f

(THH•(A) ∨ THH•(B))

'4)

��

J

OO

hocolim∆op
f
THH•(A) ∨ hocolim∆op

f
THH•(B)

'2)

��

THH(A)× THH(B) THH(A) ∨ THH(B)
'
5)
oo hocolim∆opTHH•(A) ∨ hocolim∆opTHH•(B)

'
1)
oo
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1) With [38, Proposition 4.27] we obtain a level equivalence between THH(A × B) and
hocolim∆opTHH•(A×B). Similarly, in the bottom row we can identify the homotopy colimit
with THH. This does not need any cofibrancy assumptions.

2) Let ∆f denote the subcategory of ∆ containing all objects but only injective maps. The
induced map on homotopy colimits

hocolim∆op
f
THH•(A×B)→ hocolim∆opTHH•(A×B)

is an equivalence because the homotopy colimit of symmetric spectra is defined levelwise [38,
Definition 2.2.1] and in every simplicial degree p and every level `, THHp(A×B)(`) is cofibrant
(because it is just a simplicial set) and hence the claim follows as in [11, Proposition 20.5].
An analoguous argument applies in the second occurence of 2).

3) We consider A ∨B as a non-unital ring spectrum via the multiplication map

(A ∨B) ∧ (A ∨B) ' (A ∧A) ∨ (A ∧B) ∨ (B ∧A) ∨ (B ∧B)→ (A ∧A) ∨ (B ∧B)→ A ∨B
where the first map sends the mixed terms to the terminal spectrum and the second one uses
the multiplication in A and B. Correspondingly, THH•(A ∨ B) is a presimplicial spectrum,
that only uses the face maps of the structure maps of THH.

The canonical map A ∨ B → A × B is a stable equivalence of non-unital symmetric ring
spectra and hence by adapting the argument in the proof of [38, Corollary 4.2.9] we get a
π∗-equivalence of the corresponding presimplicial objects

THH•(A ∨B) ' THH•(A×B).

Pointwise level equivalences give level equivalences on homotopy colimits [38, Proposition
2.2.2], so the map in 3) is a level equivalence.

4) Homotopy colimits commute with sums.
5) The product is stably equivalent to the sum.

To have a chain of stable equivalences between THH(A × B) and THH(A) × THH(B) it
remains to understand the effect of the maps J and R and we will control them in Lemma
8.3 below.

We claim that the product of the projections

prA : A×B → A, prB : A×B → B

produces an equivalence. Observe that we can apply the projection prA to every stage in
our diagram. On A ∨ B, this will induce the collapse map A ∨ B → A. By applying prA to
the entire chain of equivalences, we get a diagram of equivalences between various versions of
THH(A). We can do the same for prB. This gives a commutative diagram

THH(A×B)

(prA,prB)

��

chain of maps THH(A)× THH(B)

(prA,prB)

��

THH(A)× THH(B) (prA(the chain), prB(the chain)) THH(A)× THH(B)

where the chain is a zigzag of arrows going both ways. The chain on top has all its stages
equivalences. By the above discussion, so is the product of the chains on the bottom. And



26 BOBKOVA, HÖNING, LINDENSTRAUSS, POIRIER, RICHTER, AND ZAKHAREVICH

the map on the right is the identity. So working step by step in the zigzag from the right,
we show that the pair of projections (prA,prB) induces equivalences at all the intermediate
steps, until we get to the leftmost (prA,prB) which is therefore also an equivalence. �

We consider the map

j : THH•(A) ∨ THH•(B)→ THH•(A ∨B)

that is induced by the inclusions A ↪→ A ∨B and B ↪→ A ∨B. We let J be the induced map
on the homotopy colimit. It has a retraction R = hocolim∆op

f
r with

r : THH•(A ∨B)→ THH•(A) ∨ THH•(B)

that sends all mixed smash products to the terminal object. Note that R ◦ J = id.

Lemma 8.3. There is a presimplicial homotopy j ◦ r ' id.

Proof. We consider the nth presimplicial degree of THHn(A ∨B):

THHn(A ∨B) = (A ∨B)n+1.

This is a sum of terms of the form A∧i1 ∧ B∧i2 ∧ . . . ∧ B∧ik ∧ A∧ik+1 for suitable k with
0 6 i1, ik+1 and 0 < ij for 1 < j < k + 1, so that

∑k+1
j=1 ij = n+ 1.

Restricted to such a summand we define hj : (A ∨B)n+1 → (A ∨B)n+2 for 0 6 j 6 n as

hj |A∧i1∧B∧i2∧...∧B∧ik∧A∧ik+1 =


idA∧j+1 ∧ ηA ∧ id, if j + 1 6 i1,

idB∧j+1 ∧ ηB ∧ id, if i1 = 0 and j + 1 6 i2,

∗, otherwise.

Then d0h0 = id, dn+1hn = j ◦ r and

dihj =


hj−1di, i < j,

dihj−1, i = j 6= 0,

hjdi−1, i > j + 1.

�

This implies that J ◦R ' id, so we get that

hocolim∆op
f
THH•(A ∨B) ' hocolim∆op

f
(THH•(A) ∨ THH•(B)).

For the general setting we work with commutative ring spectra and we return to the setting
of [17]. Note that the naturality of cofibrant replacements ensures that we get morphisms of
commutative ring spectra

Ac ← (A×B)c → Bc

and hence a weak equivalence (because the product of acyclic fibrations is an acyclic fibration)

(A×B)c → Ac ×Bc.

This proves the case of X = ∗ of the following proposition and is needed in the proof.
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Proposition 8.4. For any connected finite simplicial set X and commutative ring spectra A
and B, the projection maps prA : A×B → A and prB : A×B → B induce an equivalence

LX((A×B)c) ' LX(Ac)× LX(Bc)

and in particular, for all n > 1,

THH[n]((A×B)c) ' THH[n](Ac)× THH[n](Bc).

Proof. We prove the result for all finite connected simplicial sets X by induction on the
dimension n of the top non-degenerate simplex in X. Since the only finite connected simplicial
set with its only non-degenerate simplices in dimension zero is a point, the result is obvious
for n = 0.

For higher n, the crucial observation is that if we have simplicial sets X, Y , and Z so that
Z is a non-empty subset of both X and Y , then if the projection maps (A × B)c → Ac and
(A × B)c → Bc induce equivalences as given in the statement of this proposition for X, Y
and Z, then we also obtain an equivalence

(8.5) LX∪ZY ((A×B)c)
' //LX∪ZY (Ac)× LX∪ZY (Bc).

This is because then

LX∪ZY ((A×B)c) ' LX((A×B)c) ∧LZ((A×B)c) LY ((A×B)c)

' (LX(Ac)× LX(Bc)) ∧LLZ(Ac)×LZ(Bc) (LY (Ac)× LY (Bc))

' (LX(Ac) ∧LZ(Ac) LY (Ac))× (LX(Bc) ∧LZ(Bc) LY (Bc))

' LX∪ZY (Ac)× LX∪ZY (Bc).

For the first and last equivalence we use that the Loday construction sends pushouts to
homotopy pushouts and that for a cofibrant commutative ring spectrum the map LZ(R) →
LY (R) is a cofibration. For the second equivalence we use our assumption that the proposition
holds for X, Y and Z.

The third equivalence holds because LZ(Ac) acts trivially on LX(Bc) and on LY (Bc) thus it
sends the corresponding factors to the terminal ring spectrum; the same holds for the action of
LZ(Bc) on LX(Ac) and on LY (Ac). Therefore a Künneth spectral sequence argument shows
that we obtain a weak equivalence.

For n = 1, we use homotopy invariance of the Loday construction and the fact that any
finite connected simplicial set with non-degenerate simplices only in dimensions 0 and 1 is
homotopy equivalent to

∨m
i=1 S

1 for some m > 0. If m = 0, we deduce the proposition from
the n = 0 case above; if m = 1, we use Proposition 8.1, and for m > 1, we use induction and
Equation (8.5).

For the inductive step, assume that n > 1 and we know that the proposition holds for any
finite connected simplicial set with non-degenerate cells in dimensions < n, and in particular
for ∂∆n, the boundary of the standard n-simplex. Assume that we have a finite simplicial
set X for which the proposition holds. We then prove that the proposition also holds for
X ∪∂∆n ∆n, that is: X with an additional n-simplex glued to it along the boundary. Without
loss of generality, we may assume that the boundary of the new n-simplex is embedded in



28 BOBKOVA, HÖNING, LINDENSTRAUSS, POIRIER, RICHTER, AND ZAKHAREVICH

X: if it is not, apply four-fold edgewise subdivision to everything, and then X ∪∂∆n ∆n will
consist of the central small n-simplex inside the original n-simplex that was added that does
not touch the boundary of the originally added n-simplex and all the rest of the subdivided
complex. But the rest of the subdivided complex is homotopy equivalent to the original X,
so the proposition holds for it, and the central small n-simplex does indeed have its boundary
embedded in the four-fold edgewise subdivision of X ∪∂∆n ∆n.

Then by assumption, the proposition holds for X, by the inductive hypothesis it holds for
∂∆n, by homotopy invariance it holds for ∆n ' ∗, and so by Equation (8.5) it holds for
X ∪∂∆n ∆n. �

For later use we need a version of Proposition 8.4 with coefficients. Again, we choose
cofibrant models (A×B)c, Ac and Bc and we assume M c is a cofibrant Ac-module spectrum,
N c is a cofibrant Bc-module spectrum and (M×N)c is a cofibrant (A×B)c-module spectrum,
such that these cofibrant replacements are compatible with the projection maps on (A×B)c

and (M ×N)c.

Corollary 8.6. For all connected pointed finite simplicial sets there is an equivalence

LX((A×B)c; (M ×N)c)→ LX(Ac;M c)× LX(Bc;N c).

Proof. The argument in the proof of Proposition 8.4 can be adapted to pointed finite simplicial
sets. We know that

LX((A×B)c; (M ×N)c) ' LX((A×B)c) ∧(A×B)c ((M ×N)c)

and by the result above this is equivalent to

(LX(Ac)× LX(Bc)) ∧LAc×Bc (M c ×N c)

Again, we can identify the coequalizers because the action of Ac on N c and the one of Bc on
M c is trivial and obtain

(LX(Ac) ∧Ac M c)× (LX(Bc) ∧Bc N c) ' LX(Ac;M c)× LX(Bc;N c).

�

9. Applications

9.1. THH[n](Z/pm;Z/p). This example was our original motivation for obtaining the splitting
result of Theorem 7.6. We apply it to the case where R = Z, p is a prime, and m > 2. As a
special case of Theorem 7.6 we obtain the following splitting.

Theorem 9.1.

THH[n](Z/pm;Z/p) ' THH[n](Z;Z/p) ∧LHZ/p THH
[n],Z(Z/pm;Z/p)

∼= THH[n](Z;Z/p) ∧LHZ/p Sh
[n],Z(Z/pm;Z/p).

This gives a direct calculation of

THH
[n]
∗ (Z/pm;Z/p) ∼= THH

[n]
∗ (Z;Z/p)⊗ Sh

[n],Z
∗ (Z/pm;Z/p)
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for all n because in [13, Theorem 3.1] we determine THH
[n]
∗ (Z;Z/p) to be an iterated Tor-

algebra Bn
Fp

(x) ⊗Fp B
n+1
Fp

(y) where |x| = 2p, |y| = 2p − 2, B1
Fp

(z) = Fp[z] and Bn
Fp

(z) =

Tor
Bn−1

Fp (z)

∗ (Fp,Fp). We determined Sh[n],Z(Z/pm;Z/p) in Proposition 5.3.
The case n = 1 was calculated in [34], [9] and later as well in [1].

Remark 9.2. Note that we cannot use the sequence of canonical projection maps

. . . //Z/pm+1Z //Z/pmZ // . . . //Z/p2Z //Z/pZ
in order to compare the groups THH(Z/pm;Z/p) for varying m because while the tensor
factors coming from THH∗(Z;Z/p) are mapped isomorphically from THH(Z/pm+1;Z/p) to

THH(Z/pm;Z/p), the tensor factor Sh[n],Z(Z/pm+1;Z/p) is mapped via the augmentation

map to Sh[n],Z(Z/pm;Z/p) in each step of the sequence. This is straightforward to see with
the help of the explicit resolutions used in the proof of Lemma 7.3.

9.2. Number rings. As a warm-up we consider R = Z[i], p = 1 − i and 2 ∈ (p)2. Then we
get that

THH[n](Z[i]/2;Z[i]/(1− i)) ' THH[n](Z[i];Z[i]/(1− i)) ∧HZ[i]/(1−i) Sh
[n],Z[i](Z[i]/2;Z[i]/(1− i)).

Note that Z[i]/(1− i) ∼= Z/2 and Z[i]/2 ∼= F2[x]/x2. Thus we can calculate

THH[n](Z[i]/2;Z[i](1− i)) ∼= THH[n](F2[x]/x2;F2)

using the flow chart in [6] and we know from [13, Theorem 4.3] that THH
[n]
∗ (Z[i];Z[i]/(1− i))

can also be computed using iterated Tor’s. The term Sh[n],Z[i](Z[i]/2;Z[i]/(1 − i)) can be
computed as an iterated Tor by Proposition 5.3. Thus all of the components of the above
expression are known. What was not known before is that THH[n](Z[i]/2;Z[i]/(1 − i)) splits
in the above manner.

The general case is as follows: Consider p ∈ Z a prime, and let K be a number field such
that p is ramified in OK , so p = pe11 · · · perr where ei > 1 for at least one i. The Chinese
Remainder Theorem let’s us split OK/p as a ring as

OK/p ∼=
r∏
j=1

OK/p
ej
j

and OK/pi as an OK/p-module is then isomorphic to 0 × . . . × Ok/pi × . . . × 0 with the
non-trivial component sitting in spot number i. With Corollary 8.6 we obtain the following
result.

Theorem 9.3.

(9.4) THH[n](OK/p;OK/pi) ' THH[n](OK ;OK/pi) ∧HOK/pi THH
[n],OK (OK/p;OK/pi).

Again, OK/p ∼= (OK)pi/p is isomorphic to OK/pi[π]/πei where π is the uniformizer,

hence OK/pi[π]/πei ∼= OK/pi[x]/xei so we can calculate THH[n](OK/p;OK/pi) using Propo-

sition 2.5. We can determine THH[n](OK ;OK/pi) using [13, Theorem 4.3] and we calculated

THH[n],OK (OK/p;OK/pi) in Proposition 5.3. Using these calculations one can deduce right
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away that there is a splitting on the level of homotopy groups of THH
[n]
∗ (OK/p;OK/pi).

But (9.4) yields a splitting of THH[n](OK/p;OK/pi) on the level of augmented commutative
HOK/pi-algebra spectra.

9.3. Galois descent. In [36, Definition 9.2.1] John Rognes defines a map of commutative
S-algebras f : A → B to be formally THH-étale if the unit map B → THHA(B) is a weak
equivalence. Note that this implies that the augmentation map THHA(B) → B that is
induced by multiplying all B-entries in THHA(B) together, is also a weak equivalence because
the compositve B → THHA(B)→ B is the identity on B.

Therefore, applying the Brun juggling formula of Theorem 4.1 in this case to X = S1 we
obtain

THH[2](A) ∧LA B ' THH[2](A;B) ' B ∧THH(B) THH
A(B) ' B ∧LTHH(B) B ' THH[2](B).

We can slightly generalize this:

Definition 9.5. Let X be a pointed simplicial set. A morphism f : A→ B is formally X-étale
if the unit map B → LAX(B) is a weak equivalence.

For formally X-étale morphisms f : A → B the Brun juggling formula of Theorem 4.1 for
X implies

LΣX(A) ∧LA B ' LΣX(A;B) ' B ∧LX(B) LAX(B) ' B ∧LX(B) B ' LΣX(B).

This statement is related to Akhil Mathew’s result [30, Proposition 5.2] where he shows
that LY (A;B) ' LY (B) if f : A → B is a faithful finite G-Galois extension and if Y is a
simply-connected pointed simplicial set. Such Galois extensions are formally THH-étale by
[36, Lemma 9.2.6].

9.4. Algebraic function fields over Fp. In several of our splitting formulas higher THH of
the ground field is a tensor factor. So far we have only considered prime fields or rather simple-
minded algebraic extensions of those. Topological Hochschild homology groups of algebraic
function fields are an important class of examples.

Let L be an algebraic function field over Fp. Then there is a transcendence basis (x1, . . . , xd)
such that L is a finite separable extension of Fp(x1, . . . , xd) [32, Theorem 9.27]. As separable
extensions do not contribute anything substantial to topological Hochschild homology we
obtain the following result:

Theorem 9.6. Let L be an algebraic function field over Fp, then

THH∗(L) ∼= L⊗Fp THH∗(Fp)⊗Fp ΛFp(εx1, . . . , εxd).

Proof. McCarthy and Minasian show in [31, 5.5, 5.6] that THH has étale descent in our case.
Therefore

THH(L) ' HL ∧LHFp(x1,...,xd) THH(Fp(x1, . . . , xd))

' HL ∧LHFp(x1,...,xd) HFp(x1, . . . , xd) ∧LHFp[x1,...,xd] THH(Fp[x1, . . . , xd])

' HL ∧LHFp[x1,...,xd] THH(Fp[x1, . . . , xd]).
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But the topological Hochschild homology of monoid rings is known by [20, Theorem 7.1] and
hence π∗THH(Fp[x1, . . . , xd]) ∼= THH∗(Fp)⊗Fp HH∗(Fp[x1, . . . , xd]). As

HH∗(Fp[x1, . . . , xd]) ∼= Fp[x1, . . . , xd]⊗Fp ΛFp(εx1, . . . , εxd)

we get the result. �

McCarthy and Minasian actually show more in [31, 5.5,5.6], and we can adapt the above
proof to a more general situation.

Theorem 9.7. Let X be a connected pointed simplicial set X. Then

LX(HL) ' HL ∧LHFp[x1,...,xd] LX(Fp[x1, . . . , xd]).

The Loday construction on pointed monoid algebras satisfies a splitting of the form

LX(HFp[Π+]) ' LX(HFp) ∧HFp L
HFp

X (HFp[Π+]),

see [20, Theorem 7.1]. Therefore LX(Fp[x1, . . . , xd]) splits as LX(HFp)∧HFpL
HFp

X (HFp[x1, . . . , xd]).

In particular, for X = Sn we get an explicit formula for THH[n](L):

Corollary 9.8. For all n > 1:

THH[n](L) ' HL ∧LHFp[x1,...,xd] (THH[n](Fp) ∧HFp THH
[n],Fp(Fp[x1, . . . , xd])).

Recall that we know

π∗THH
[n],Fp(Fp[x1, . . . , xd]) = HH

[n],Fp
∗ (Fp[x1, . . . , xd])

∼= HH
[n],Fp
∗ (Fp[x]⊗Fpd)

∼= HH
[n],Fp
∗ (Fp[x])⊗Fpd

and we determined HH
[n],Fp
∗ (Fp[x]) in [6, Theorem 8.6].

Remark 9.9. Topological Hochschild homology of L considers HL as an S-algebra and this
allows us to consider L over the prime field. The Hochschild homology of an algebraic function
field L over a general field K was for instance determined in [8, Corollary 5.3] and is more
complicated.

Remark 9.10. Note that Theorem 9.6 contradicts the statement of [18, Remark 7.2]. In that
remark, it is crucial to assume that one works in an augmented setting; in the above situation,
this is not the case.

9.5. THH[n](Z/pm). We close with the open problem of computing THH[n](Z/pm) for higher
n.

The juggling formula of Theorem 3.3 applied to the sequence S → HZ→ HZ/pm = HZ/pm
for m > 2 yields the equivalence

THH[n](Z/pm) ' THH[n](Z;Z/pm) ∧L
THH[n−1],Z(HZ/pm)

HZ/pm.



32 BOBKOVA, HÖNING, LINDENSTRAUSS, POIRIER, RICHTER, AND ZAKHAREVICH

Up to n = 2 we know THH
[n]
∗ (HZ): The case n = 1 is Bökstedt’s calculation [7] and n = 2

is [14, Theorem 2.1]. Therefore we can determine THH
[n]
∗ (Z;Z/pm) up to n = 2. As pm is

regular in Z,

THHZ
∗ (Z/pm) = ShZ∗ (Z/pm) ∼= ΓZ/pm(x2)

with |x2| = 2. If we could determine the right ShZ∗ (Z/pm)-module structure on THH
[2]
∗ (Z;Z/pm),

then this would allow us to calculate the E2-term of the Künneth spectral sequence for

THH
[2]
∗ (Z/pm),

E2
p,q = Tor

ΓZ/pm (x2)
p,q (THH

[2]
∗ (Z;Z/pm),Z/pm)⇒ THH

[2]
∗ (Z/pm).
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