Mackey and Tambara functors

Birgit Richter

13th of January 2025

.

Let G be a finite group.

Let G be a finite group. The category, on which everything is based, is the category of G-Mackey functors.

Definition A Mackey functor is a pair of functors $\underline{M} = (M_*, M^*)$ from the category of finite *G*-sets, *G*-Sets^f, to abelian groups, such that

Definition A Mackey functor is a pair of functors $\underline{M} = (M_*, M^*)$ from the category of finite *G*-sets, *G*-Sets^f, to abelian groups, such that

• M_* is covariant and M^* is contravariant,

Definition A Mackey functor is a pair of functors $\underline{M} = (M_*, M^*)$ from the category of finite *G*-sets, *G*-Sets^f, to abelian groups, such that

• M_* is covariant and M^* is contravariant,

•
$$M_*(X) = M^*(X) =: \underline{M}(X)$$
 for all finite *G*-sets *X*,

Definition A Mackey functor is a pair of functors $\underline{M} = (M_*, M^*)$ from the category of finite *G*-sets, *G*-Sets^f, to abelian groups, such that

- M_* is covariant and M^* is contravariant,
- $M_*(X) = M^*(X) =: \underline{M}(X)$ for all finite G-sets X,
- for every pullback diagram of finite G-sets

we have $M^*(\delta) \circ M_*(\gamma) = M_*(\beta) \circ M^*(\alpha)$,

Definition A Mackey functor is a pair of functors $\underline{M} = (M_*, M^*)$ from the category of finite *G*-sets, *G*-Sets^f, to abelian groups, such that

- M_* is covariant and M^* is contravariant,
- $M_*(X) = M^*(X) =: \underline{M}(X)$ for all finite G-sets X,
- for every pullback diagram of finite G-sets

$$\begin{array}{ccc}
U & \stackrel{\alpha}{\longrightarrow} & V \\
\downarrow^{\beta} & & \downarrow^{\gamma} \\
W & \stackrel{\delta}{\longrightarrow} & Z
\end{array}$$

we have $M^*(\delta) \circ M_*(\gamma) = M_*(\beta) \circ M^*(\alpha)$,

▶ for every pair of finite *G*-sets *X* and *Y*, applying M_* to $X \to X \sqcup Y \leftarrow Y$ gives the component maps of an isomorphism $\underline{M}(X) \oplus \underline{M}(Y) \cong \underline{M}(X \sqcup Y)$.

Every finite *G*-set is of the form $X \cong G/H_1 \sqcup \ldots \sqcup G/H_n$, so a Mackey functor is determined by its values on all G/H_s .

Every finite *G*-set is of the form $X \cong G/H_1 \sqcup \ldots \sqcup G/H_n$, so a Mackey functor is determined by its values on all G/H_s .

The covariant part encodes transfer maps: For K < H < G and the canonical projection $p: G/K \to G/H$ we get a *transfer map* $M_*(p) = \operatorname{tr}_K^H: \underline{M}(G/K) \to \underline{M}(G/H).$

The contravariant part describes restriction maps.

The contravariant part describes *restriction maps*.

Of course G-Mackey functors form a category (what are the morphisms?) and we denote it by G-Mack.

Of course *G*-Mackey functors form a category (what are the morphisms?) and we denote it by *G*-Mack.

Example Let *B* be an abelian group with a *G*-action. Then the fixed point Mackey functor \underline{B}^{fix} has $\underline{B}^{fix}(G/H) = B^H \cong G$ -maps(G/H, B).

Of course G-Mackey functors form a category (what are the morphisms?) and we denote it by G-Mack.

Example Let *B* be an abelian group with a *G*-action. Then the fixed point Mackey functor \underline{B}^{fix} has $\underline{B}^{fix}(G/H) = B^H \cong G\text{-maps}(G/H, B).$ For K < H we have $p: G/K \to G/H$ and $B^H \subset B^K$.

Of course *G*-Mackey functors form a category (what are the morphisms?) and we denote it by *G*-Mack.

Example Let *B* be an abelian group with a *G*-action. Then the fixed point Mackey functor \underline{B}^{fix} has $\underline{B}^{fix}(G/H) = B^H \cong G$ -maps(G/H, B). For K < H we have $p: G/K \to G/H$ and $B^H \subset B^K$. This determines the *restriction map*

$$\operatorname{res}_{K}^{H} := (B^{fix})^{*}(p) \colon B^{H} \to B^{K}.$$

Of course G-Mackey functors form a category (what are the morphisms?) and we denote it by G-Mack.

Example Let *B* be an abelian group with a *G*-action. Then the fixed point Mackey functor \underline{B}^{fix} has $\underline{B}^{fix}(G/H) = B^H \cong G$ -maps(G/H, B). For K < H we have $p: G/K \to G/H$ and $B^H \subset B^K$. This determines the *restriction map*

$$\operatorname{res}_{K}^{H} := (B^{fix})^{*}(p) \colon B^{H} \to B^{K}.$$

The transfer $\operatorname{tr}_{K}^{H}$ for $p: G/K \to G/H$ sends an $f \in G$ -maps(G/K, B) to $\operatorname{tr}_{K}^{H}(f)(gH) = \sum_{x \in p^{-1}(gH)} f(x)$.

Definition The Lindner category, B_G^+ , has as objects finite G-sets.

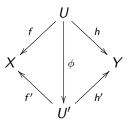
Definition The Lindner category, B_G^+ , has as objects finite G-sets. A morphism $f \in B_G^+$ from X to Y is an equivalence class of spans

$$X \stackrel{f}{\longleftarrow} U \stackrel{h}{\longrightarrow} Y.$$

Definition The Lindner category, B_G^+ , has as objects finite *G*-sets. A morphism $f \in B_G^+$ from X to Y is an equivalence class of spans

$$X \stackrel{f}{\longleftarrow} U \stackrel{h}{\longrightarrow} Y.$$

Here the above span is equivalent to $X \stackrel{f'}{\longleftarrow} U' \stackrel{h'}{\longrightarrow} Y$, if there is a bijection of finite *G*-sets $\phi: U \rightarrow U'$ such that

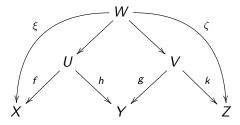


commutes.

Composition in B_G^+ is defined via pullbacks:

$$[Y \stackrel{g}{\longleftrightarrow} V \stackrel{k}{\longrightarrow} Z] \circ [X \stackrel{f}{\longleftrightarrow} U \stackrel{h}{\longrightarrow} Y] := [X \stackrel{\xi}{\longleftrightarrow} W \stackrel{\zeta}{\longrightarrow} Z]$$

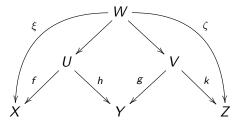
where W, ξ , and ζ are defined via the pullback diagram



Composition in B_G^+ is defined via pullbacks:

$$[Y \stackrel{g}{\longleftrightarrow} V \stackrel{k}{\longrightarrow} Z] \circ [X \stackrel{f}{\longleftrightarrow} U \stackrel{h}{\longrightarrow} Y] := [X \stackrel{\xi}{\longleftrightarrow} W \stackrel{\zeta}{\longrightarrow} Z]$$

where W, ξ , and ζ are defined via the pullback diagram



The set $B_G^+(X, Y)$ carries an abelian monoid structure defined via

$$[X \xleftarrow{f_1} U_1 \xrightarrow{h_1} Y] + [X \xleftarrow{f_2} U_2 \xrightarrow{h_2} Y] := [X \xleftarrow{(f_1, f_2)} U_1 \sqcup U_2 \xrightarrow{(h_1, h_2)} Y]$$

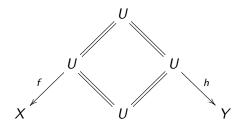
A Mackey functor can then be described as an additive functor $\underline{M}: B_{\mathcal{G}} \rightarrow Ab$.

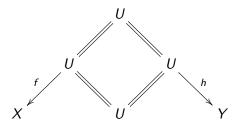
A Mackey functor can then be described as an additive functor $\underline{M} \colon B_{\mathcal{G}} \to Ab$.

The equivalence of the two definitions can be seen as follows:

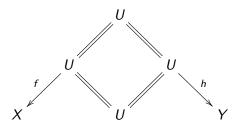
A Mackey functor can then be described as an additive functor $\underline{M} \colon B_{\mathcal{G}} \to Ab$.

The equivalence of the two definitions can be seen as follows: For a map $f: X \to Y$ of finite *G*-sets we consider the span $X = X \xrightarrow{f} Y$ which gives $M_*(f)$, and the span $Y \xleftarrow{f} X = X$ which yields $M^*(f)$.



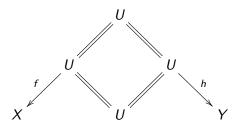


Further examples of Mackey functors are:



Further examples of Mackey functors are:

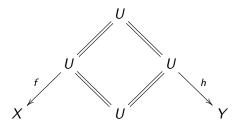
 If B is an arbitrary abelian group with trivial G-action, then the fixed point Mackey functor gives the so-called *constant* Mackey-functor, <u>B</u>^c.



Further examples of Mackey functors are:

 If B is an arbitrary abelian group with trivial G-action, then the fixed point Mackey functor gives the so-called *constant* Mackey-functor, <u>B</u>^c.

Beware that this is only constant on objects! For instance, the transfer map tr_{K}^{H} for K < H < G multiplies with the index of K in H.



Further examples of Mackey functors are:

If B is an arbitrary abelian group with trivial G-action, then the fixed point Mackey functor gives the so-called *constant* Mackey-functor, <u>B</u>^c.

Beware that this is only constant on objects! For instance, the transfer map tr_{K}^{H} for K < H < G multiplies with the index of K in H.

► The Burnside Mackey functor, <u>A</u>, for G sends a finite G-set X to the Grothendieck group of the abelian monoid of isomorphism classes of finite G-sets over X.

Here, two classes $[Y \rightarrow X]$ and $[Z \rightarrow X]$ are added to give $[Y \sqcup Z \rightarrow X]$.

Here, two classes $[Y \to X]$ and $[Z \to X]$ are added to give $[Y \sqcup Z \to X]$. A map $f : X \to W$ of finite *G*-sets induces $A_*(f) : \underline{A}(X) \to \underline{A}(W)$ by composition Here, two classes $[Y \rightarrow X]$ and $[Z \rightarrow X]$ are added to give $[Y \sqcup Z \rightarrow X]$.

A map $f: X \to W$ of finite *G*-sets induces $A_*(f): \underline{A}(X) \to \underline{A}(W)$ by composition and $A^*(f): \underline{A}(W) \to \underline{A}(X)$ by pullback: Here, two classes $[Y \to X]$ and $[Z \to X]$ are added to give $[Y \sqcup Z \to X]$. A map $f: X \to W$ of finite *G*-sets induces $A_*(f): \underline{A}(X) \to \underline{A}(W)$

by composition and $A^*(f) \colon \underline{A}(W) \to \underline{A}(X)$ by pullback:

$$A^*(f)[U \to W] := [X \times_W U \to X].$$

$$A^*(f)[U o W] := [X imes_W U o X].$$

Note that $\underline{A}(X) \cong B_G(G/G, X).$

$$A^*(f)[U \to W] := [X \times_W U \to X].$$

Note that $\underline{A}(X) \cong B_G(G/G, X)$. Why?

$$A^*(f)[U \to W] := [X \times_W U \to X].$$

Note that $\underline{A}(X) \cong B_G(G/G, X)$. Why?

Later, we'll need to change the group: If H < G, then we can restrict a *G*-Mackey functor <u>*M*</u> to an *H*-Mackey functor.

$$A^*(f)[U \to W] := [X \times_W U \to X].$$

Note that $\underline{A}(X) \cong B_G(G/G, X)$. Why?

Later, we'll need to change the group: If H < G, then we can restrict a *G*-Mackey functor <u>M</u> to an *H*-Mackey functor. We'll denote this by $i_{H}^{*}(\underline{M})$.

$$A^*(f)[U \to W] := [X \times_W U \to X].$$

Note that $\underline{A}(X) \cong B_G(G/G, X)$. Why?

Later, we'll need to change the group: If H < G, then we can restrict a *G*-Mackey functor \underline{M} to an *H*-Mackey functor. We'll denote this by $i_{H}^{*}(\underline{M})$. Explicitly: $i_{H}^{*}(\underline{M})(T) := \underline{M}(G \times_{H} T)$ for any *H*-set *T*. Here, two classes $[Y \to X]$ and $[Z \to X]$ are added to give $[Y \sqcup Z \to X]$. A map $f: X \to W$ of finite *G*-sets induces $A_*(f): \underline{A}(X) \to \underline{A}(W)$

by composition and $A^*(f) \colon \underline{A}(W) \to \underline{A}(X)$ by pullback:

$$A^*(f)[U \to W] := [X \times_W U \to X].$$

Note that $\underline{A}(X) \cong B_G(G/G, X)$. Why?

Later, we'll need to change the group: If H < G, then we can restrict a *G*-Mackey functor \underline{M} to an *H*-Mackey functor. We'll denote this by $i_{H}^{*}(\underline{M})$. Explicitly: $i_{H}^{*}(\underline{M})(T) := \underline{M}(G \times_{H} T)$ for any *H*-set *T*.

We can also induce an *H*-Mackey functor \underline{N} up to a *G*-Mackey functor by sending a *G*-set *S* to $\operatorname{ind}_{H}^{G}\underline{N}(S) := \underline{N}(S)$ where we view *S* just as an *H*-set.

Lewis diagrams tell you right away what you need to know about a given Mackey functor [Gaunce Lewis, 1988].

Lewis diagrams tell you right away what you need to know about a given Mackey functor [Gaunce Lewis, 1988]. As Mackey functors are determined by their value on orbits, you just denote those.

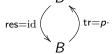
Lewis diagrams tell you right away what you need to know about a given Mackey functor [Gaunce Lewis, 1988]. As Mackey functors are determined by their value on orbits, you just denote those. You place the trivial orbit G/G on top and the free orbit G/e at the bottom and then you fill in the transfer and restriction maps;

Lewis diagrams tell you right away what you need to know about a given Mackey functor [Gaunce Lewis, 1988]. As Mackey functors are determined by their value on orbits, you just denote those. You place the trivial orbit G/G on top and the free orbit G/e at the bottom and then you fill in the transfer and restriction maps; often, the Weyl group action $W_G(H)$ at level G/H is indicated.

Lewis diagrams tell you right away what you need to know about a given Mackey functor [Gaunce Lewis, 1988]. As Mackey functors are determined by their value on orbits, you just denote those. You place the trivial orbit G/G on top and the free orbit G/e at the bottom and then you fill in the transfer and restriction maps; often, the Weyl group action $W_G(H)$ at level G/H is indicated. For example, you'd denote the constant C_p -Mackey functor on an abelian group B as

$$\operatorname{res=id} \left(\begin{array}{c} B \\ B \end{array} \right) \operatorname{tr} = p \cdot$$

Lewis diagrams tell you right away what you need to know about a given Mackey functor [Gaunce Lewis, 1988]. As Mackey functors are determined by their value on orbits, you just denote those. You place the trivial orbit G/G on top and the free orbit G/e at the bottom and then you fill in the transfer and restriction maps; often, the Weyl group action $W_G(H)$ at level G/H is indicated. For example, you'd denote the constant C_p -Mackey functor on an abelian group B as



For the C_2 -fixed point Mackey functor of $\mathbb{Z}[i]$ the Lewis diagram is

$$\mathbb{Z} = \mathbb{Z}[i]^{C_2}$$

res=inclusion $\left({
ight)} \operatorname{tr}(1)=2, \operatorname{tr}(i)=i-i=0$ $\mathbb{Z}[i]$

 $W_{C_2}(e) = C_2, 1 \mapsto 1, i \mapsto -i.$

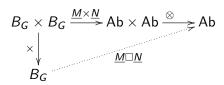
For abelian groups we have the symmetric monoidal structure induced by the tensor product. For *G*-Mackey functors there is a *box-product*.

For abelian groups we have the symmetric monoidal structure induced by the tensor product. For *G*-Mackey functors there is a *box-product*. Formally, it can be defined as a left Kan extension: Assume that \underline{M} and \underline{N} are in *G*-Mack, then $\underline{M} \Box \underline{N}$ is defined via the following diagram:

For abelian groups we have the symmetric monoidal structure induced by the tensor product. For *G*-Mackey functors there is a *box-product*. Formally, it can be defined as a left Kan extension: Assume that \underline{M} and \underline{N} are in *G*-Mack, then $\underline{M}\Box \underline{N}$ is defined via the following diagram:

$$\begin{array}{c|c} B_G \times B_G \xrightarrow{\underline{M} \times \underline{N}} Ab \times Ab \xrightarrow{\otimes} Ab \\ \times & & \\ B_G & \underline{M} \square \underline{N} \end{array}$$

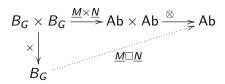
For abelian groups we have the symmetric monoidal structure induced by the tensor product. For *G*-Mackey functors there is a *box-product*. Formally, it can be defined as a left Kan extension: Assume that \underline{M} and \underline{N} are in *G*-Mack, then $\underline{M}\Box \underline{N}$ is defined via the following diagram:



Explicitly,

$$\underline{M} \Box \underline{N}(X) = \operatorname{colim}_{Y \times Z \to X} \underline{M}(Y) \otimes \underline{N}(Z).$$

For abelian groups we have the symmetric monoidal structure induced by the tensor product. For *G*-Mackey functors there is a *box-product*. Formally, it can be defined as a left Kan extension: Assume that \underline{M} and \underline{N} are in *G*-Mack, then $\underline{M}\Box \underline{N}$ is defined via the following diagram:

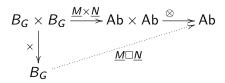


Explicitly,

$$\underline{M} \Box \underline{N}(X) = \operatorname{colim}_{Y \times Z \to X} \underline{M}(Y) \otimes \underline{N}(Z).$$

This is also called a *Day convolution product* after Day, who defined this is his thesis in 1970:

For abelian groups we have the symmetric monoidal structure induced by the tensor product. For *G*-Mackey functors there is a *box-product*. Formally, it can be defined as a left Kan extension: Assume that \underline{M} and \underline{N} are in *G*-Mack, then $\underline{M} \Box \underline{N}$ is defined via the following diagram:



Explicitly,

$$\underline{M} \Box \underline{N}(X) = \operatorname{colim}_{Y \times Z \to X} \underline{M}(Y) \otimes \underline{N}(Z).$$

This is also called a *Day convolution product* after Day, who defined this is his thesis in 1970: You merge the symmetric monoidal structures \times for finite *G*-sets and \otimes for abelian groups to get \Box for the functor category.

Often, we want to describe the box product with the help of a Lewis diagram.

Often, we want to describe the box product with the help of a Lewis diagram. In general, this is hard.

Formulas can for instance be found in Hill-Mazur 2019.

Formulas can for instance be found in Hill-Mazur 2019. As the only subgroups of $C_p = \langle t \mid t^p \rangle$ are the trivial subgroup *e* and the full group, we omit them from the notation.

Formulas can for instance be found in Hill-Mazur 2019. As the only subgroups of $C_p = \langle t \mid t^p \rangle$ are the trivial subgroup e and the full group, we omit them from the notation. $\underline{M} \Box \underline{N}$ is:

$$C_{p}/C_{p}:\left(\underline{M}(C_{p}/C_{p})\otimes\underline{N}(C_{p}/C_{p})\oplus[\underline{M}(C_{p}/e)\otimes\underline{N}(C_{p}/e)]/C_{p}\right)/\mathrm{FR}$$

$$\overset{\mathrm{res}}{\underset{C_{p}/e:}{\overset{}}}\overset{}{\overset{}}\overset{\mathrm{tr}}{\underset{\underline{M}(C_{p}/e)\otimes\underline{N}(C_{p}/e)}{\overset{}}}$$

Formulas can for instance be found in Hill-Mazur 2019. As the only subgroups of $C_p = \langle t \mid t^p \rangle$ are the trivial subgroup e and the full group, we omit them from the notation. $\underline{M} \Box \underline{N}$ is:

$$C_{p}/C_{p}:\left(\underline{M}(C_{p}/C_{p})\otimes\underline{N}(C_{p}/C_{p})\oplus[\underline{M}(C_{p}/e)\otimes\underline{N}(C_{p}/e)]/C_{p}\right)/\mathrm{FR}$$

$$\overset{\mathrm{res}}{\underset{C_{p}/e:}{\overset{}}}\overset{}{\underbrace{M}(C_{p}/e)\otimes\underline{N}(C_{p}/e)}$$

Let's unravel that: The C_p -quotient is wrt the coordinatewise action. We denote the equivalence class of $x \otimes y$ wrt that action by $[x \otimes y]$.

Formulas can for instance be found in Hill-Mazur 2019. As the only subgroups of $C_p = \langle t \mid t^p \rangle$ are the trivial subgroup e and the full group, we omit them from the notation. $\underline{M} \Box \underline{N}$ is:

$$C_{p}/C_{p}:\left(\underline{M}(C_{p}/C_{p})\otimes\underline{N}(C_{p}/C_{p})\oplus[\underline{M}(C_{p}/e)\otimes\underline{N}(C_{p}/e)]/C_{p}\right)/\mathrm{FR}$$

$$\overset{\mathrm{res}}{\underset{C_{p}/e:}{\overset{}}}\overset{}{\underbrace{M}(C_{p}/e)\otimes\underline{N}(C_{p}/e)}$$

Let's unravel that: The C_p -quotient is wrt the coordinatewise action. We denote the equivalence class of $x \otimes y$ wrt that action by $[x \otimes y]$. The transfer sends $m \otimes n \in \underline{M}(C_p/e) \otimes \underline{N}(C_p/e)$ to $[m \otimes n] \in (\underline{M}(C_p/e) \otimes \underline{N}(C_p/e))/C_p$.

$$\operatorname{res}(u\otimes v)=\operatorname{res}(u)\otimes\operatorname{res}(v)$$

for $u \otimes v \in \underline{M}(C_p/C_p) \otimes \underline{N}(C_p/C_p)$

$$\operatorname{res}(u \otimes v) = \operatorname{res}(u) \otimes \operatorname{res}(v)$$

for $u \otimes v \in \underline{M}(C_p/C_p) \otimes \underline{N}(C_p/C_p)$ and
$$\operatorname{res}[x \otimes y] = \sum_{i=1}^p t^i x \otimes t^i y.$$

$$\operatorname{res}(u \otimes v) = \operatorname{res}(u) \otimes \operatorname{res}(v)$$

for $u \otimes v \in \underline{M}(C_p/C_p) \otimes \underline{N}(C_p/C_p)$ and
$$\operatorname{res}[x \otimes y] = \sum_{i=1}^p t^i x \otimes t^i y.$$

Frobinius-Reciprocity (FR) identifies:

 $\operatorname{tr}(m) \otimes n \sim [m \otimes \operatorname{res}(n)], m \in \underline{M}(C_p/e), n \in \underline{N}(C_p/C_p) \\ m \otimes \operatorname{tr}(n) \sim [\operatorname{res}(m) \otimes n], m \in \underline{M}(C_p/C_p), n \in \underline{N}(C_p/e).$

$$\operatorname{res}(u \otimes v) = \operatorname{res}(u) \otimes \operatorname{res}(v)$$

for $u \otimes v \in \underline{M}(C_p/C_p) \otimes \underline{N}(C_p/C_p)$ and
$$\operatorname{res}[x \otimes y] = \sum_{i=1}^p t^i x \otimes t^i y.$$

Frobinius-Reciprocity (FR) identifies:

$$\operatorname{tr}(m) \otimes n \sim [m \otimes \operatorname{res}(n)], m \in \underline{M}(C_p/e), n \in \underline{N}(C_p/C_p) \\ m \otimes \operatorname{tr}(n) \sim [\operatorname{res}(m) \otimes n], m \in \underline{M}(C_p/C_p), n \in \underline{N}(C_p/e).$$

This is a lot of structure...

$$\operatorname{res}(u \otimes v) = \operatorname{res}(u) \otimes \operatorname{res}(v)$$

for $u \otimes v \in \underline{M}(C_p/C_p) \otimes \underline{N}(C_p/C_p)$ and
$$\operatorname{res}[x \otimes y] = \sum_{i=1}^p t^i x \otimes t^i y.$$

Frobinius-Reciprocity (FR) identifies:

$$\operatorname{tr}(m) \otimes n \sim [m \otimes \operatorname{res}(n)], m \in \underline{M}(C_p/e), n \in \underline{N}(C_p/C_p) \\ m \otimes \operatorname{tr}(n) \sim [\operatorname{res}(m) \otimes n], m \in \underline{M}(C_p/C_p), n \in \underline{N}(C_p/e).$$

This is a lot of structure...

Example Let's take the *G*-Burnside Mackey functor with $\underline{A}(X) \cong B_G(G/G, X)$.

$$\operatorname{res}(u \otimes v) = \operatorname{res}(u) \otimes \operatorname{res}(v)$$

for $u \otimes v \in \underline{M}(C_p/C_p) \otimes \underline{N}(C_p/C_p)$ and
$$\operatorname{res}[x \otimes y] = \sum_{i=1}^p t^i x \otimes t^i y.$$

Frobinius-Reciprocity (FR) identifies:

$$\operatorname{tr}(m) \otimes n \sim [m \otimes \operatorname{res}(n)], m \in \underline{M}(C_p/e), n \in \underline{N}(C_p/C_p)$$

 $m \otimes \operatorname{tr}(n) \sim [\operatorname{res}(m) \otimes n], m \in \underline{M}(C_p/C_p), n \in \underline{N}(C_p/e).$

This is a lot of structure...

Example Let's take the *G*-Burnside Mackey functor with $\underline{A}(X) \cong B_G(G/G, X)$. As $G/G \times Y \cong Y$ for all finite *G*-sets *Y* and by abstract non-sense about representable functors and Day convolution products, we get that \underline{A} is the unit for \Box :

$$\operatorname{res}(u \otimes v) = \operatorname{res}(u) \otimes \operatorname{res}(v)$$

for $u \otimes v \in \underline{M}(C_p/C_p) \otimes \underline{N}(C_p/C_p)$ and
$$\operatorname{res}[x \otimes y] = \sum_{i=1}^p t^i x \otimes t^i y.$$

Frobinius-Reciprocity (FR) identifies:

$$\operatorname{tr}(m)\otimes n\sim [m\otimes\operatorname{res}(n)], m\in \underline{M}(\mathcal{C}_p/e), n\in \underline{N}(\mathcal{C}_p/\mathcal{C}_p)$$

 $m\otimes\operatorname{tr}(n)\sim [\operatorname{res}(m)\otimes n], m\in \underline{M}(\mathcal{C}_p/\mathcal{C}_p), n\in \underline{N}(\mathcal{C}_p/e).$

This is a lot of structure...

Example Let's take the *G*-Burnside Mackey functor with $\underline{A}(X) \cong B_G(G/G, X)$. As $G/G \times Y \cong Y$ for all finite *G*-sets *Y* and by abstract non-sense about representable functors and Day convolution products, we get that \underline{A} is the unit for \Box : For all $\underline{M} \in G$ -Mack

$$\underline{A} \Box \underline{M} \cong \underline{M} \cong \underline{M} \Box \underline{A}.$$

So far we have the following analogy:

So far we have the following analogy:

abelian groups	G-Mackey functors
tensor product \otimes	box product 🗆
unit $\mathbb Z$	unit <u>A</u>

So far we have the following analogy:

abelian groups	G-Mackey functors
tensor product \otimes	box product 🗆
unit $\mathbb Z$	unit <u>A</u>

In non-equivariant algebra, commutative rings are just commutative monoids in (Ab,\otimes)

So far we have the following analogy:

abelian groups	G-Mackey functors
tensor product \otimes	box product 🗆
unit $\mathbb Z$	unit <u>A</u>

In non-equivariant algebra, commutative rings are just commutative monoids in (Ab, \otimes) and we can tensor any commutative ring R with a finite set $X: X \otimes R = \bigotimes_{x \in X} R$ in a way that is functorial in X.

So far we have the following analogy:

abelian groups	G-Mackey functors
tensor product \otimes	box product 🗆
unit $\mathbb Z$	unit <u>A</u>

In non-equivariant algebra, commutative rings are just commutative monoids in (Ab, \otimes) and we can tensor any commutative ring R with a finite set $X: X \otimes R = \bigotimes_{x \in X} R$ in a way that is functorial in X. This is where the analogy breaks down...

So far we have the following analogy:

abelian groups	G-Mackey functors
tensor product \otimes	box product 🗆
unit $\mathbb Z$	unit <u>A</u>

In non-equivariant algebra, commutative rings are just commutative monoids in (Ab, \otimes) and we can tensor any commutative ring R with a finite set $X: X \otimes R = \bigotimes_{x \in X} R$ in a way that is functorial in X. This is where the analogy breaks down...

Commutative monoids in $(G-Mack, \Box)$ are commutative Green functors.

So far we have the following analogy:

abelian groups	G-Mackey functors
tensor product \otimes	box product 🗆
unit $\mathbb Z$	unit <u>A</u>

In non-equivariant algebra, commutative rings are just commutative monoids in (Ab, \otimes) and we can tensor any commutative ring R with a finite set $X: X \otimes R = \bigotimes_{x \in X} R$ in a way that is functorial in X. This is where the analogy breaks down...

Commutative monoids in $(G-Mack, \Box)$ are commutative Green functors. They *cannot* be tensored with finite *G*-sets in a functorial manner.

So far we have the following analogy:

abelian groups	G-Mackey functors
tensor product \otimes	box product 🗆
unit $\mathbb Z$	unit <u>A</u>

In non-equivariant algebra, commutative rings are just commutative monoids in (Ab, \otimes) and we can tensor any commutative ring R with a finite set $X: X \otimes R = \bigotimes_{x \in X} R$ in a way that is functorial in X. This is where the analogy breaks down...

Commutative monoids in $(G-Mack, \Box)$ are commutative Green functors. They *cannot* be tensored with finite *G*-sets in a functorial manner. In order to have for instance maps $G/K \otimes \underline{R} \rightarrow G/H \otimes \underline{R}$ for K < H < G we need more structure. Tambara functors are Mackey functors with an additional multiplicative structure and with multiplicative norms:

For the map $p: G/K \to G/H$ we have a multiplicative map $N_p: \underline{R}(G/K) \to \underline{R}(G/H).$

For the map $p: G/K \to G/H$ we have a multiplicative map $N_p: \underline{R}(G/K) \to \underline{R}(G/H).$

These maps have to satisfy several compatiblity relations...

For the map $p: G/K \to G/H$ we have a multiplicative map $N_p: \underline{R}(G/K) \to \underline{R}(G/H).$

These maps have to satisfy several compatiblity relations...

Example If R is a commutative ring with a G-action. Then the Mackey functor \underline{R}^{fix} is actually a G-Tambara functor:

For the map $p: G/K \to G/H$ we have a multiplicative map $N_p: \underline{R}(G/K) \to \underline{R}(G/H).$

These maps have to satisfy several compatiblity relations...

Example If R is a commutative ring with a G-action. Then the Mackey functor \underline{R}^{fix} is actually a G-Tambara functor: The norm N_p for $p: G/K \to G/H$ sends an $f \in G$ -maps(G/K, R) to $N_p(f)(gH) = \prod_{x \in p^{-1}(gH)} f(x)$.

For the map $p: G/K \to G/H$ we have a multiplicative map $N_p: \underline{R}(G/K) \to \underline{R}(G/H).$

These maps have to satisfy several compatiblity relations...

Example If R is a commutative ring with a G-action. Then the Mackey functor \underline{R}^{fix} is actually a G-Tambara functor: The norm N_p for $p: G/K \to G/H$ sends an $f \in G$ -maps(G/K, R) to $N_p(f)(gH) = \prod_{x \in p^{-1}(gH)} f(x)$.

Example If R is a commutative ring with a trivial G-action, then we stress this by calling \underline{R}^{fix} the constant Tambara functor: \underline{R}^{c} .

For the map $p: G/K \to G/H$ we have a multiplicative map $N_p: \underline{R}(G/K) \to \underline{R}(G/H).$

These maps have to satisfy several compatiblity relations...

Example If *R* is a commutative ring with a *G*-action. Then the Mackey functor \underline{R}^{fix} is actually a *G*-Tambara functor: The norm N_p for $p: G/K \to G/H$ sends an $f \in G$ -maps(G/K, R) to $N_p(f)(gH) = \prod_{x \in p^{-1}(gH)} f(x)$.

Example If R is a commutative ring with a trivial G-action, then we stress this by calling \underline{R}^{fix} the constant Tambara functor: \underline{R}^{c} . Example The Burnside G-Tambara functor, \underline{A} .

For the map $p: G/K \to G/H$ we have a multiplicative map $N_p: \underline{R}(G/K) \to \underline{R}(G/H).$

These maps have to satisfy several compatiblity relations...

Example If *R* is a commutative ring with a *G*-action. Then the Mackey functor \underline{R}^{fix} is actually a *G*-Tambara functor: The norm N_p for $p: G/K \to G/H$ sends an $f \in G$ -maps(G/K, R) to $N_p(f)(gH) = \prod_{x \in p^{-1}(gH)} f(x)$.

Example If *R* is a commutative ring with a trivial *G*-action, then we stress this by calling \underline{R}^{fix} the constant Tambara functor: \underline{R}^c . **Example** The Burnside *G*-Tambara functor, <u>A</u>. It sends a finite *G*-set *X* to the group completion of the abelian monoid of iso classes of finite *G*-sets over *X*.

For the map $p: G/K \to G/H$ we have a multiplicative map $N_p: \underline{R}(G/K) \to \underline{R}(G/H).$

These maps have to satisfy several compatiblity relations...

Example If R is a commutative ring with a G-action. Then the Mackey functor \underline{R}^{fix} is actually a G-Tambara functor: The norm N_p for $p: G/K \to G/H$ sends an $f \in G$ -maps(G/K, R) to $N_p(f)(gH) = \prod_{x \in p^{-1}(gH)} f(x)$.

Example If *R* is a commutative ring with a trivial *G*-action, then we stress this by calling \underline{R}^{fix} the constant Tambara functor: \underline{R}^c . **Example** The Burnside *G*-Tambara functor, \underline{A} . It sends a finite *G*-set *X* to the group completion of the abelian monoid of iso classes of finite *G*-sets over *X*.

<u>*A*</u> is initial in Tamb_{*G*} with the product induced by the product of finite *G*-sets.

For a map of finite G-sets $f: X \to Y$ we consider the pullback functor that sends $h: B \to Y$ to $X \times_Y B \to X$.

For a map of finite *G*-sets $f: X \to Y$ we consider the pullback functor that sends $h: B \to Y$ to $X \times_Y B \to X$. This is a functor from the category of finite *G*-sets over *Y* to finite *G*-sets over *X*.

$$\prod_{f} A := \{(y,s) \mid y \in Y, s \colon f^{-1}(y) \to A \text{ with } ps(x) = x \forall x \in f^{-1}(y)\}.$$

$$\prod_{f} A := \{(y,s) \mid y \in Y, s \colon f^{-1}(y) \to A \text{ with } ps(x) = x \forall x \in f^{-1}(y)\}.$$

Hence s is a local section of p.

$$\prod_{f} A := \{(y,s) \mid y \in Y, s \colon f^{-1}(y) \to A \text{ with } ps(x) = x \forall x \in f^{-1}(y)\}.$$

Hence s is a local section of p. The map q sends (y, s) to y and

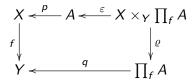
$$\prod_{f} A := \{(y,s) \mid y \in Y, s \colon f^{-1}(y) \to A \text{ with } ps(x) = x \forall x \in f^{-1}(y)\}.$$

Hence s is a local section of p. The map q sends (y, s) to y and G acts on $\prod_f A$ via $g(y, s) = (gy, {}^g s)$ where ${}^g s(x) = gs(g^{-1}x)$.

$$\prod_{f} A := \{(y,s) \mid y \in Y, s \colon f^{-1}(y) \to A \text{ with } ps(x) = x \forall x \in f^{-1}(y)\}.$$

Hence s is a local section of p. The map q sends (y, s) to y and G acts on $\prod_f A$ via $g(y, s) = (gy, {}^g s)$ where ${}^g s(x) = gs(g^{-1}x)$.

A diagram isomorphic to



is called an *exponential diagram*. (Here, $\varepsilon(x, (y, s)) = s(x)$, $\varrho(x, (y, s)) = (y, s)$.)

Definition The category \mathcal{P}^{G} has as objects finite *G*-sets

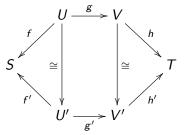
Definition The category \mathcal{P}^G has as objects finite *G*-sets and a morphism from *S* to *T* is an isomorphism class of diagrams

$$S \stackrel{f}{\longleftrightarrow} U \stackrel{g}{\longrightarrow} V \stackrel{h}{\longrightarrow} T$$

Definition The category \mathcal{P}^{G} has as objects finite *G*-sets and a morphism from *S* to *T* is an isomorphism class of diagrams

$$S \stackrel{f}{\longleftrightarrow} U \stackrel{g}{\longrightarrow} V \stackrel{h}{\longrightarrow} T$$

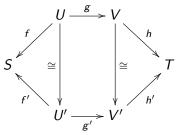
where two diagrams are isomorphic if there is a commutative diagram



Definition The category \mathcal{P}^G has as objects finite *G*-sets and a morphism from *S* to *T* is an isomorphism class of diagrams

$$S \stackrel{f}{\longleftrightarrow} U \stackrel{g}{\longrightarrow} V \stackrel{h}{\longrightarrow} T$$

where two diagrams are isomorphic if there is a commutative diagram

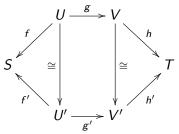


Composition of morphisms is a bit involved.

Definition The category \mathcal{P}^{G} has as objects finite *G*-sets and a morphism from *S* to *T* is an isomorphism class of diagrams

$$S \stackrel{f}{\longleftrightarrow} U \stackrel{g}{\longrightarrow} V \stackrel{h}{\longrightarrow} T$$

where two diagrams are isomorphic if there is a commutative diagram



Composition of morphisms is a bit involved. We define restriction, norm and transfer associated to a map:

Let $f: S \to T$ be a map of finite *G*-sets.

Let $f: S \to T$ be a map of finite *G*-sets. The restriction associated with *f*, *R*_{*f*}, is $[T \leftarrow f = S = S]$. Let $f: S \rightarrow T$ be a map of finite *G*-sets.

The restriction associated with f, R_f , is $[T \leftarrow f = S = S]$. The norm associated with f, N_f , is $[S = S \rightarrow T = T]$. Let $f: S \rightarrow T$ be a map of finite *G*-sets.

The restriction associated with f, R_f , is $[T \leftarrow f = S = S]$. The norm associated with f, N_f , is $[S = S \xrightarrow{f} T = T]$. The transfer associated with f, T_f , is $[S = S \xrightarrow{f} T]$. Let $f: S \to T$ be a map of finite *G*-sets.

The restriction associated with f, R_f , is $[T \leftarrow f = S = S]$. The norm associated with f, N_f , is $[S = S \xrightarrow{f} T = T]$. The transfer associated with f, T_f , is $[S = S \xrightarrow{f} T]$. We interpret $[S \leftarrow f = U \xrightarrow{g} V \xrightarrow{h} T]$ as $T_h \circ N_g \circ R_f$. Let $f: S \to T$ be a map of finite *G*-sets.

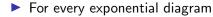
The restriction associated with f, R_f , is $[T \leftarrow f = S = S]$. The norm associated with f, N_f , is $[S = S \xrightarrow{f} T = T]$. The transfer associated with f, T_f , is $[S = S \xrightarrow{f} T]$. We interpret $[S \leftarrow f = U \xrightarrow{g} V \xrightarrow{h} T]$ as $T_h \circ N_g \circ R_f$. Proposition

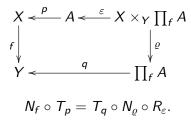
 R is a contravariant functor from finite G-sets to P^G and N, T are covariant ones. Let $f: S \to T$ be a map of finite *G*-sets.

The restriction associated with f, R_f , is $[T \leftarrow S = S = S]$. The norm associated with f, N_f , is $[S = S \xrightarrow{f} T = T]$. The transfer associated with f, T_f , is $[S = S \xrightarrow{f} T]$. We interpret $[S \leftarrow U \xrightarrow{g} V \xrightarrow{h} T]$ as $T_h \circ N_g \circ R_f$. Proposition

- R is a contravariant functor from finite G-sets to P^G and N, T are covariant ones.
- For a pullback diagram in finite G sets

$$R_g \circ N_f = N_{f'} \circ R_{g'}$$
 and $R_g \circ T_f = T_{f'} \circ R_{g'}$





Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a functor

$$(-)\otimes (-)\colon G\operatorname{-Sets}^{\mathsf{f}} \times \operatorname{Tamb}_{G} \to \operatorname{Tamb}_{G}$$

 $(X, R) \mapsto X \otimes R$

which satisfies the following properties:

Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a functor

$$(-)\otimes (-)\colon G\operatorname{-Sets}^f imes \operatorname{Tamb}_G o \operatorname{Tamb}_G$$

 $(X,R)\mapsto X\otimes R$

which satisfies the following properties:

1. For all X and Y in G-Sets^f and <u>R</u>, <u>T</u> in Tamb_G, there are natural isomorphisms $(X \sqcup Y) \otimes \underline{R} \cong (X \otimes \underline{R}) \Box (Y \otimes \underline{R})$

Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a functor

$$(-)\otimes (-)\colon G\operatorname{-Sets}^{\mathsf{f}} imes \operatorname{Tamb}_{G} o \operatorname{Tamb}_{G}$$

 $(X,R) \mapsto X\otimes R$

which satisfies the following properties:

1. For all X and Y in G-Sets^f and <u>R</u>, <u>T</u> in Tamb_G, there are natural isomorphisms $(X \sqcup Y) \otimes \underline{R} \cong (X \otimes \underline{R}) \Box (Y \otimes \underline{R})$ and $X \otimes (\underline{R} \Box \underline{T}) \cong (X \otimes \underline{R}) \Box (X \otimes \underline{T})$.

Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a functor

$$(-)\otimes (-)\colon G\operatorname{-Sets}^{\mathsf{f}} imes \operatorname{Tamb}_{G} o \operatorname{Tamb}_{G}$$

 $(X,R) \mapsto X\otimes R$

which satisfies the following properties:

- 1. For all X and Y in G-Sets^f and <u>R</u>, <u>T</u> in Tamb_G, there are natural isomorphisms $(X \sqcup Y) \otimes \underline{R} \cong (X \otimes \underline{R}) \Box (Y \otimes \underline{R})$ and $X \otimes (\underline{R} \Box \underline{T}) \cong (X \otimes \underline{R}) \Box (X \otimes \underline{T}).$
- 2. There is a natural isomorphism $X \otimes (Y \otimes \underline{R}) \cong (X \times Y) \otimes \underline{R}$.

Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a functor

$$(-)\otimes (-)\colon G\operatorname{-Sets}^{\mathsf{f}} imes \operatorname{Tamb}_{G} o \operatorname{Tamb}_{G}$$

 $(X,R) \mapsto X\otimes R$

which satisfies the following properties:

- 1. For all X and Y in G-Sets^f and <u>R</u>, <u>T</u> in Tamb_G, there are natural isomorphisms $(X \sqcup Y) \otimes \underline{R} \cong (X \otimes \underline{R}) \Box (Y \otimes \underline{R})$ and $X \otimes (\underline{R} \Box \underline{T}) \cong (X \otimes \underline{R}) \Box (X \otimes \underline{T}).$
- 2. There is a natural isomorphism $X \otimes (Y \otimes \underline{R}) \cong (X \times Y) \otimes \underline{R}$.
- 3. On the category with objects finite sets with trivial *G*-action and morphisms consisting only of isomorphisms, the functor restricts to exponentiation $X \otimes \underline{R} = \prod_{x \in X} \underline{R}$.

Definition Let G be a finite group, $\underline{R} \in \text{Tamb}_G$ and let X be a finite simplicial G-set.

$$\mathcal{L}_X^G(\underline{R})_n := X_n \otimes \underline{R}.$$

$$\mathcal{L}_X^G(\underline{R})_n := X_n \otimes \underline{R}.$$

Remarks As $X_n \otimes \underline{R}$ is functorical in X_n , this is a well-defined object.

$$\mathcal{L}_X^G(\underline{R})_n := X_n \otimes \underline{R}.$$

Remarks As $X_n \otimes \underline{R}$ is functorical in X_n , this is a well-defined object.

Mazur and Hoyer show that

$$G/H\otimes \underline{R}\cong N_{H}^{G}i_{H}^{*}\underline{R}$$

gives a well-defined way of tensoring finite G-sets with G-Tambara functors.

$$\mathcal{L}_X^G(\underline{R})_n := X_n \otimes \underline{R}.$$

Remarks As $X_n \otimes \underline{R}$ is functorical in X_n , this is a well-defined object.

Mazur and Hoyer show that

$$G/H\otimes \underline{R}\cong N_{H}^{G}i_{H}^{*}\underline{R}$$

gives a well-defined way of tensoring finite *G*-sets with *G*-Tambara functors. Here i_H^* : Tamb_{*G*} \rightarrow Tamb_{*H*} is the restriction functor and N_H^G : Tamb_{*H*} \rightarrow Tamb_{*G*} is a norm functor.

$$\mathcal{L}_X^G(\underline{R})_n := X_n \otimes \underline{R}.$$

Remarks As $X_n \otimes \underline{R}$ is functorical in X_n , this is a well-defined object.

Mazur and Hoyer show that

$$G/H\otimes \underline{R}\cong N_{H}^{G}i_{H}^{*}\underline{R}$$

gives a well-defined way of tensoring finite *G*-sets with *G*-Tambara functors. Here i_H^* : Tamb_{*G*} \rightarrow Tamb_{*H*} is the restriction functor and N_H^G : Tamb_{*H*} \rightarrow Tamb_{*G*} is a norm functor. The pair (N_H^G, i_H^*) is an adjoint functor pair.