Exercises in Algebra (master): Homological Algebra

Prof. Dr. Birgit Richter

Summer term 2021

Exercise sheet no 3

for the exercise class on the 28th of April 2021

 $\mathbf{1}$ (Injective abelian groups)

- Prove that an abelian group A is injective if and only if it is divisible, *i.e.*, for all $0 \neq n \in \mathbb{Z}$ the map $\cdot n \colon A \to A$ is surjective.
- Let A be a finitely generated abelian group. Construct an injective abelian group I together with a monomorphism $i: A \to I$. (You know that such injective modules together with such monomorphisms exist in broader generality. Find a small I.)

2 (Kernels and friends) Let C be an abelian category and let $f \in C(A, B)$.

- (1) Show that
 - the kernel of f is a monomorphism and
 - the cokernel of f is an epimorphism.
- (2) Prove that the image of f is a kernel of the cokernel of f.

3 ((Co)Products in poset categories) Let (X, \leq) be a poset and consider the associated category.

- What is an initial object in (X, \leq) and what is a terminal object in (X, \leq) ?
- What is a coproduct or product in (X, \leq) ? Find examples where these do not exist.