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Abstract. For associative rings with anti-involution several homology theories exists, for in-
stance reflexive homology as studied by Graves and involutive Hochschild homology defined by
Fernàndez-València and Giansiracusa. We prove that the corresponding homology groups can
be identified with the homotopy groups of an equivariant Loday construction of the one-point
compactification of the sign-representation evaluated at the trivial orbit, if we assume that 2 is
invertible and if the underlying abelian group of the ring is flat. We also show a relative ver-
sion where we consider an associative k-algebra with an anti-involution where k is an arbitrary
ground ring.

1. Introduction

In [LRZb] we introduced equivariant Loday constructions. These generalize the non-equivariant
Loday constructions, which include (topological) Hochschild homology, higher order Hochschild
homology and torus homology.

In the equivariant case we fix a finite group G. The starting point for a Loday construction is
a G-commutative monoid in the sense of Hill and Hopkins [HH]. In the setting of G-equivariant
stable homotopy theory these are genuine G-commutative ring spectra whereas in the algebraic
setting of Mackey functors G-commutative monoids are G-Tambara functors. Some equivariant
homology theories such as the twisted cyclic nerve of Blumberg-Gerhardt-Hill-Lawson [BGHL19]
and Hesselholt-Madsen’s Real topological Hochschild homology, THR, [DMPR21] can be iden-
tified with such equivariant Loday constructions [LRZb, §7]. Here, THR is a homology theory
for associative algebra spectra with anti-involution A and we identified this in the commutative
case with the Loday construction over the one-point compactification of the sign-representation,
THR(A) ≃ LC2

Sσ(A). In [LRZb, Proposition 6.1], we show that for any G-simplicial set X, if we
apply the functor π0 levelwise to the equivariant Loday construction of a connective genuine
commutative G-algebra spectrum A to obtain a simplicial G-Tambara functor,

π0(LG
X(A)) ∼= LG

X(π0(A)),

which relates LC2
Sσ of C2-Tambara functors to THR.

There is an algebraic version of THR, called Real Hochschild homology [AKGH, Definition
6.15] that takes associative algebras with anti-involution as input. These are associative k-
algebras for some commutative ring k, such that τ(a) := ā satisfies ab = b̄ā and such that the
C2-action is k-linear. In her thesis Chloe Lewis developed a Bökstedt-type spectral sequence
for THR [Lew23] whose E2-term consists of Real Hochschild homology groups. Other homology
theories for associative algebras with anti-involution are reflexive homology [Gra24] and involu-
tive Hochschild homology [FVG18]. Reflexive homology, HR∗, is a homology theory associated
to the crossed simplicial group that is the cyclic group of order two, C2 = ⟨τ⟩, in every simplicial
degree, where we do not view C2 as a constant simplicial group, but let τ interact with the
category ∆ by reversing the simplicial structure. Involutive Hochschild homology, iHH∗, was
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defined in [FVG18]; the corresponding cohomology theory was developed by Braun [Bra14],
who developed a cohomology theory for involutive A∞-algebras, motivated by work of Costello
on open Klein topological conformal field theories [Cos07]. We slightly generalize the definition
in [FVG18] and work over arbitrary commutative rings instead of fields.

We prove the identification of reflexive homology as the homotopy groups of an equivariant
Loday construction in section 6 and the one for involutive Hochschild homology in section 7:

Theorem (Theorems 6.4 and 7.2) Assume that R is a commutative ring with involution
and that 2 is invertible in R. If the underlying abelian group of R is flat, then

iHHZ
∗ (R)

∼= π∗(LC2
Sσ(R

fix)(C2/C2)) ∼= HR+,Z
∗ (R,R).

If we work relative to a commutative ground ring k, then we obtain a corresponding result:

Theorem (Theorems 6.5 and 7.3) Assume that R is a commutative k-algebra with a k-linear
involution and that 2 is invertible in R. If the underlying module of R is flat over k, then

iHHk
∗(R)

∼= π∗(LC2,k
c

Sσ (Rfix)(C2/C2)) ∼= HR+,k
∗ (R,R).

In hindsight, this identifies the Loday construction over the C2-Burnside Tambara functor with
the Loday construction relative to Zc under the above assumptions. We consider the examples
of F2 and Z with the trivial C2-action in section 8 in order to understand what happens if we
drop these assumptions. There, the homotopy groups of the Loday constructions do not agree
with neither reflexive homology nor with involutive Hochschild homology.

The relationship to the Real Hochschild homology of [AKGH] is unsatisfactory: The latter
takes all dihedral groups into account and for D2 = C2 their definition agrees with ours. But
for the higher D2m the relationship to equivariant Loday constructions is unclear. We plan to
tackle this problem in future work.

In section 9 we extend our results to the associative case, where we consider associative
rings R and associative k-algebras with anti-involution where k is an arbitrary commutative
ground ring. Usually, one cannot form Loday constructions without assuming commutativitiy,
but the simplicial model of the one-point compactification of the sign-representation consists
of two glued copies of the simplicial 1-simplex with its intrinsic ordering, so we can extend the
definition to equivariant associative monoids in this case and we get results generalizing the
above theorems:

Theorem (Theorem 9.4) Assume that R is an associative ring with anti-involution and that
2 is invertible in R. If the underlying abelian group of R is flat, then

iHHZ
∗ (R)

∼= π∗(LC2
Sσ(R

fix)(C2/C2)) ∼= HR+,Z
∗ (R,R).

If we work relative to a commutative ground ring k, then we obtain a corresponding result:

Theorem (Theorem 9.6) Assume that A is an associative k-algebra with a k-linear anti-
involution and that 2 is invertible in A. If the underlying module of A is flat over k, then

iHHk
∗(A)

∼= π∗(LC2,k
c

Sσ (Afix)(C2/C2)) ∼= HR+,k
∗ (A,A).

The proofs, however, are different: In the case of an associative ring R with anti-involution
for instance the fixed point Mackey functor Rfix does not carry any multiplicative structure and
there is no norm construction. But we construct a substitute of the norm-restriction, ÑC2

e i∗eR
fix,

such that Rfix is a bimodule over it.
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2. Equivariant Loday constructions

We recall the basic facts about equivariant Loday constructions for G-Tambara functors from
[LRZb] for an arbitrary finite group G. We work with unital rings. We assume that ring maps
preserve the unit, and that the unit acts as the identity on any module over the ring.

We consider simplicial G-sets X that are finite in every degree and call them finite simplicial
G-sets. For every G-Tambara functor T and every such X the simplicial G-Tambara functor
LG
X(T ) is the G-Loday construction for X and T . In simplicial degree n we define:

LG
X(T )n = Xn ⊗ T

where the formation of the tensor product with the finite G-setXn uses the fact that G-Tambara
functors are the G-commutative monoids in the setting of G-Mackey functors. This was proved
by Mazur [Maz13] for cyclic p-groups for a prime p and by Hoyer [Hoy14] in the case of a
general finite group G. As they show that the construction Xn ⊗ T is functorial in Xn, the
Loday construction is well-defined.

The above tensor can be made explicit. Every finite G-set is isomorphic to a finite disjoint
union of orbits and Mazur and Hoyer show that for an orbit G/H we obtain

G/H ⊗ T ∼= NG
H i

∗
HT .

Here, i∗H restricts a G-Tambara functor to H, so for a finite H-set Y , i∗HT (Y ) := T (G ×H Y ).
The restriction functor has the norm functor NG

H as a left adjoint. A disjoint union of G-sets
X,X ′, X ⊔X ′ is sent to

(X ⊔X ′)⊗ T ∼= (X ⊗ T )□(X ′ ⊗ T ),

so this determines every Xn ⊗ T up to isomorphism.

3. Basic results about fixed-point Tambara functors

In this section we study C2-Mackey and Tambara functors. If L is an abelian group with
involution a 7→ ā, there is a C2-Mackey functor Lfix given by

Lfix =

{
LC2 at C2/C2,

L at C2/e,

where tr(a) = a + ā for all a ∈ L and res(a) = a for all a ∈ LC2 . If R is a commutative ring
whose multiplication is compatible with its involution, then we can define norm(a) = aā and
get a C2-Tambara functor structure on Rfix.

For a set Y we denote by Z{Y } the free abelian group generated by Y and for y ∈ Y the
corresponding generator in Z{Y } is {y}. When R is a commutative ring with involution the
norm restriction of Rfix is given by

NC2
e i∗eR

fix =

{
(Z{R} ⊕ (R⊗R)/C2)/TR at C2/C2

R⊗R at C2/e,

where C2 acts on R ⊗ R via τ(a ⊗ b) = b̄ ⊗ ā, [a ⊗ b] denotes the equivalence class of a ⊗ b
in (R ⊗ R)/C2, and Tambara Reciprocity, TR, identifies {a + b} ∼ {a} + {b} + [a ⊗ b̄]. Here
norm(a ⊗ b) = {ab̄} and tr(a ⊗ b) = [a ⊗ b] for all a ⊗ b ∈ R ⊗ R, res({a}) = a ⊗ ā, and
res([a ⊗ b]) = a ⊗ b + b̄ ⊗ ā (see [HM19] for properties of the norm functor, especially Fact 4.4
in loc. cit.).

Lemma 3.1. Assume that M and N are two abelian groups with involution and assume that 2
is invertible in M or N . Then there is an equivalence of C2-Mackey functors

Mfix□Nfix ∼= (M ⊗N)fix
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which is natural in M and N . Here C2 acts on M⊗N by the diagonal action. If, in addition, M

and N are both commutative rings with involution, Mfix, Nfix, and (M ⊗N)fix are C2-Tambara
functors and the above equivalence is an equivalence of C2-Tambara functors.

Proof. Without loss of generality assume that 2 is invertible in M . At the free orbit C2/e, both
sides give M ⊗N , so we check the result at C2/C2, where

(Mfix□Nfix)(C2/C2) = (MC2 ⊗NC2 ⊕ (M ⊗N)/C2)/FR,

with Frobenius Reciprocity, FR, identifying (m+ m̄)⊗ n with [m⊗ n] for all m ∈M , n ∈ NC2

and m⊗ (n+ n̄) with [m⊗ n] for all m ∈MC2 , n ∈ N .
Any a ∈MC2 can be written as a = m+ m̄ for m = a/2. Here m is also fixed by C2 since 2

is invertible. Note that 2 is invertible in M ⊗N .
Frobenius Reciprocity in fact identifies the first summand MC2 ⊗NC2 into the second sum-

mand (M⊗N)/C2. A priori, a term of the form (m+m̄)⊗(n+n̄) could be identified in two ways
with (M⊗N)/C2, either as [m⊗(n+n̄)] = [m⊗n]+[m⊗n̄] or as [(m+m̄)⊗n] = [m⊗n]+[m̄⊗n].
But since [m⊗ n̄] = [m̄⊗ n], the two ways agree and so we are left with (M ⊗N)/C2 with no
new relations.

As 2 is invertible in M ⊗ N , the C2-fixed points and C2-coinvariants can be identified via
x 7→ [x/2], [x] 7→ x+ x̄. Since we argued that (Mfix□Nfix)(C2/C2) ∼= (M ⊗N)/C2, in order to
show the compatibility of res and tr with our identification we only need to show it for terms of

that form. For Mfix□Nfix, res([a⊗ b]) = a⊗ b+ ā⊗ b̄. This is exacly what we get in (M ⊗N)fix.

Similarly, tr(a ⊗ b) = [a ⊗ b] in Mfix□Nfix which is identified with a ⊗ b + ā ⊗ b̄, the trace in

(M ⊗N)fix. So our correspondence preserves the C2-Mackey structure.
IfM and N are commutative rings with involution, although the identification of fixed points

and coinvariants does not seem to be a ring map, it actually is: since res preserves the ring
structure, in Mfix□Nfix we have

res([a⊗ b] · [c⊗ d])) = res([a⊗ b])res([c⊗ d]) = (a⊗ b+ b̄⊗ ā)(c⊗ d+ c̄⊗ d̄)

= ac⊗ bd+ ac̄⊗ bd̄+ āc⊗ b̄d+ āc̄⊗ b̄d̄ = res([ac⊗ bd] + [āc⊗ b̄d]).

We already know that Mfix□Nfix ∼= (M ⊗N)fix as C2-Mackey functors and res is injective on

fixed-point Mackey functors. Hence we must have [a ⊗ b] · [c ⊗ d] = [ac ⊗ bd] + [āc ⊗ b̄d] in
Mfix□Nfix(C2/C2). Then the above calculation exactly says that the isomorphism [a ⊗ b] 7→
a⊗b+ā⊗b̄ from C2-coinvariants to C2-invariants (and therefore also its inverse) is multiplicative.
Note that the multiplicative unit of (M ⊗N)/C2 is [12 ⊗ 1].

When M and N , and therefore also M ⊗ N , are commutative rings with involution, then
in Mfix□Nfix, N(a ⊗ b) = aā ⊗ bb̄ ∈ MC2 ⊗ NC2 which gets identified with 1

2 [aā ⊗ bb̄] ∈
(M ⊗N)/C2 which in turn is identified with aā⊗ bb̄ = (a⊗ b)(ā⊗ b̄) in (M ⊗N)fix(C2/C2). So
our correspondence preserves the C2-Tambara structure. □

Lemma 3.2. If R is a commutative ring with involution in which 2 is invertible and if M is
an abelian group with an involution, then there is an equivalence of C2-Mackey functors

(3.1) (NC2
e i∗eR

fix)□Mfix ∼= (R⊗R⊗M)fix,

which is natural in M and R. Here, C2 acts on R⊗R⊗M by τ(a⊗ b⊗m) = b̄⊗ ā⊗m̄. If M is
also a commutative ring with involution, then (3.1) is an equivalence of C2-Tambara functors.

Proof. The formula for the box product (see e.g. [HM19, Definition 3.1]) gives

(NC2
e i∗eR

fix)□Mfix =

{(
(Z{R} ⊕ (R⊗R)/C2)/TR⊗MC2 ⊕ (R⊗R⊗M)/C2

)
/FR at C2/C2

R⊗R⊗M at C2/e,
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so we get the correct value at C2/e. At C2/C2, we can send the three summands to (R ⊗ R ⊗
M)C2 . We define the map as follows:

{a} ⊗m 7→ a⊗ ā⊗m for a ∈ R,m ∈MC2 ,

[a⊗ b]⊗m 7→ a⊗ b⊗m+ b̄⊗ ā⊗m for a, b ∈ R,m ∈MC2 ,

[a⊗ b⊗m] 7→ a⊗ b⊗m+ b̄⊗ ā⊗ m̄ for a, b ∈ R,m ∈M.

Then Tambara Reciprocity is respected since

({a+ b}− {a}− {b}− [a⊗ b̄])⊗m 7→ ((a+ b)⊗ (ā+ b̄)− a⊗ ā− b⊗ b̄− a⊗ b̄− b⊗ ā)⊗m = 0.

Frobenius Reciprocity is also respected:
It identifies tr(a⊗ b)⊗m with [a⊗ b⊗ res(m)] for all a, b ∈ R, m ∈MC2 , and by either name

this element is mapped to a⊗ b⊗m+ b̄⊗ ā⊗m.
The terms {a} ⊗ tr(m) are identified with [res({a}) ⊗m] for all a ∈ R, m ∈ M , and this is

mapped to

a⊗ ā⊗ (m+ m̄) = a⊗ ā⊗m+ a⊗ ā⊗ m̄.

Finally, FR gives [a ⊗ b] ⊗ tr(m) ∼ [res([a ⊗ b]) ⊗ m] for all a, b ∈ R, m ∈ M , and this is
mapped to

(a⊗ b+ b̄⊗ ā)⊗ (m+ m̄) = (a⊗ b+ b̄⊗ ā)⊗m+ (b̄⊗ ā+ a⊗ b)⊗ m̄.

The relations described above explain how Frobenius Reciprocity actually identifies the first
two summands (Z{R} ⊕ (R ⊗ R)/C2)/TR ⊗ MC2 in (NC2

e i∗eR
fix□Mfix)(C2/C2) into the last

summand (R⊗R⊗M)/C2. We know that on this last summand, the map we used, [a⊗b⊗m] 7→
a⊗ b⊗m+ b̄⊗ ā⊗ m̄ is in fact an isomorphism between (R⊗R⊗M)/C2 and (R⊗R⊗M)C2

because 2 is invertible in R and hence in R⊗R⊗M . The fact that it can be extended to a map
(NC2

e i∗eR
fix□Mfix)(C2/C2) → (R ⊗ R ⊗M)C2 means that the Frobenius Reciprocity relations

did not impose additional relations within (R ⊗ R ⊗M)/C2, and so we get an isomorphism
(NC2

e i∗eR
fix□Mfix)(C2/C2) ∼= (R ⊗ R ⊗M)C2 . The proof that this identification respects the

C2-Mackey structure is completely analogous to that in the previous lemma.
If M is also a commutative ring with involution and so Mfix and NC2

e i∗eR
fix□Mfix as well as

Rfix and NC2
e i∗eR

fix are C2-Tambara functors, this isomorphism is multiplicative and respects
the norm: The product in (R ⊗ R ⊗ M)/C2 is, for similar reasons to those in the previous
lemma,

[a⊗ b⊗m] · [c⊗ d⊗ n] = [ac⊗ bd⊗mn] + [ad̄⊗ bc̄⊗mn̄]

and the identification of the coinvariants with the fixed points respects this. For a, b ∈ R and
m ∈M ,

N(a⊗ b⊗m) = {ab̄} ⊗mm̄

in (NC2
e i∗eR

fix)□Mfix maps to

ab̄⊗ āb⊗mm̄ = (a⊗ b⊗m)(b̄⊗ ā⊗m) = N(a⊗ b⊗m)

in (R⊗R⊗M)fix. □

Note also that for a map of commutative C2-rings f : R → C where 2 is invertible in both
rings, the sequence of maps

NC2
e i∗eR

fix□Cfix → Rfix□Cfix ∼= (R⊗ C)fix → (C ⊗ C)fix → Cfix

that is given by the counit of the (NC2
e , i∗e)-adjunction, the identification of Lemma 3.1, the map

f , and multiplication, the corresponding map (R⊗R⊗ C)fix → Cfix is given by the multiplica-
tion in R and the R-module structure on C induced by the map f .
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4. Working relative to a commutative ground ring

In [LRZb, §8] we defined a G-equivariant Loday construction relative to a map of G-Tambara
functors R→ T . In general, this construction is rather involved because its building blocks are
relative norm-restriction terms: For an orbit G/H we set

(4.1) G/H ⊗R T := (G/H ⊗ T )□(G/H⊗R)R = NG
H i

∗
H(T )□NG

H i∗H(R)R =: N
G,R
H i∗H(T ).

This uses the naturality of NG
H i

∗
H(−) and the counit of the augmentation NG

H i
∗
H(R) → R.

In [LRZb] we define the relative equivariant Loday construction for any finite simplicial G-set
X:

LG,R
X (T ) := LG

X(T )□LG
X(R)R.

If we consider fixed-point C2-Tambara functors and if we assume that 2 is invertible, then
these terms simplify drastically. If the C2-action on R is trivial, then we emphasize this by
writing Rfix = Rc and we call Rc the constant Tambara functor on R.

The purpose of this section is to relate the relative Loday construction of C2-Tambara functors
as follows to the fixed-point Tambara functor of the non-equivariant relative Loday construction:

Theorem 4.1. If k → R is a map of commutative C2-rings where C2 acts trivially on k and 2
is invertible in R,

LC2,k
c

X (Rfix) ∼= Lk
X(R)

fix
,

where C2 acts on each level Lk
Xn

(R) by simultaneously using the action induced from the C2-
action on Xn (exchanging copies of R as needed) by naturality and acting on all copies of R.

Proof. Theorem 4.1 follows directly from the following two results: Proposition 4.2 says that
for free orbits C2/e,

LC2,k
c

C2/e
(Rfix) ∼= Lk

C2/e
(R)

fix
.

Clearly for one-point orbits,

LC2,k
c

C2/C2
(Rfix) = Rfix = Lk

C2/C2
(R)

fix
.

If X and Y are disjoint C2-sets

LC2,k
c

X⊔Y (Rfix) ∼= LC2,k
c

X (Rfix)□kcLC2,k
c

Y (Rfix).

Then Lemma 4.4 implies that the identification for the free and trivial orbits can be assembled
into a statement about disjoint unions of orbits. □

It is important to remember that the equivariant Loday construction is not the Loday con-
struction relative to Zc, but rather the Loday construction relative to the C2-Burnside Tambara
functor, and these are different. For example, taking the relative norm-restriction term from

(4.1) N
C2,Zc

e i∗eZc gives Zc, whereas taking NC2
e i∗eZc gives the C2-Burnside Tambara functor as

explained for instance in [LRZb, (5.1)].

Proposition 4.2. Let k → R be a map of commutative C2-rings where C2 acts trivially on k,
and assume that 2 is invertible in R. Then

NC2,k
c

e i∗e(R
fix) ∼= (R⊗k R)

fix,

where C2 acts on R⊗k R by τ(a⊗ b) = b̄⊗ ā.

Proof. The relative box-product N
C2,k

c

e i∗e(R
fix) = NC2

e i∗e(R
fix)□

N
C2
e i∗e(k

c)
kc is the coequalizer of

the diagram

NC2
e i∗e(R

fix)□NC2
e i∗ek

c□kc
ν□id //

id□ν′
//NC2

e i∗e(R
fix)□kc
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where ν is the composite of the map NC2
e i∗ek

c → NC2
e i∗e(R

fix) and the multiplication map of
NC2

e i∗e(R
fix) and ν ′ uses the counit of the adjunction ε : NC2

e i∗ek
c → kc and the multiplication

in kc. As kc is the fixed-point Tambara functor for the trivial action we can use the fact that
i∗e and NC2

e are strong symmetric monoidal and Lemma 3.1 to get that

NC2
e i∗e(R

fix)□NC2
e i∗e(k

c) = NC2
e i∗e(R

fix□kc) = NC2
e i∗e(R

fix□kfix) ∼= NC2
e i∗e((R⊗ k)fix).

Then we can use Lemma 3.2 to rewrite the diagram as

((R⊗ k)⊗ (R⊗ k)⊗ k)fix
ν□id //

id□ν′
//(R⊗R⊗ k)fix

where now ν uses the map k → R and the induced k-module structure on R and ν ′ uses the
multiplication in k.

As R ⊗k R ∼= (R ⊗ R) ⊗k⊗k k, we will show that when 2 is invertible, taking the fixed-
point Tambara functor commutes with forming coequalizers. To this end we show that the
functor that assigns to a commutative C2-ring in which 2 is invertible its fixed-point C2-Tambara
functor is left adjoint to the functor from fixed-point Tambara functors where 2 is invertible to
commutative C2-rings where 2 is invertible that evaluates such a Tambara functor at the free
level C2/e.

Of course, if we have a map of C2-Tambara functors Sfix → T fix and if 2 is invertible in S and
T , then the map at the free level is a map of commutative C2-rings S → T and 2 is invertible
in S and T .

For the converse, assume that f : S → T is a map of commutative C2-rings and that 2 is
invertible in S and T . We claim that the map

g(x) :=
1

2
trf(res(x))

is a map at the trivial orbit C2/C2 such that the pair (g, f) is a map of fixed-point Tambara
functors (g, f) : Sfix → T fix. Note that the value g(x) can actually be identified with f(x)
because the restriction map is an inclusion and tr is just the multiplication by 2. We have to
show that g is a ring map and that it is compatible with res, tr and norm.

• As tr(1) = 2 in any fixed C2-Tambara functor and as f and res are ring maps, we obtain

g(1) =
1

2
trf(res(1)) =

1

2
tr(1) = 1.

• Our maps commute with the restriction maps because

resg(x) = res
1

2
trf(res(x)) =

1

2
(f(resx) + f(resx)),

and as x ∈ SC2 and as res just incluces SC2 into S, this is f(res(x)).
• The map g preserves products because f and res are ring maps, hence

g(xy) =
1

2
trf(res(xy)) =

1

2
tr(f(res(x))f(res(y))) =

1

2
· 2 · f(res(x))f(res(y)).

On the other hand

g(x)g(y) =
1

2
trf(res(x))

1

2
trf(res(y)) =

1

2
· 2 · f(res(x)) · 1

2
· 2 · f(res(y)).

• That g preserves addition follows because res and f are ring maps.
• We calculate

g(tr(y)) = g(y + ȳ) =
1

2
trf(res(y + ȳ)) = f(y + ȳ) = f(tr(y))

and hence our maps commute with tr.
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• For the compatibility with the norm map we observe that

g(norm(y)) =
1

2
trf(res(norm(y))) =

1

2
trf(y · ȳ) = f(y · ȳ) = f(norm(y)).

□

Remark 4.3. Beware that not all C2-Tambara functors satisfy tr(1) = 2, even if 2 is invertible.
For instance, let A[12 ] be the C2-Burnside Tambara functor with 2 inverted. Then A[12 ](C2/C2) =

Z[12 ][t]/t
2 − 2t and with s := 1

2 t this can be re-written as Z[12 ][s]/s
2 − s. As tr(1) = t, we get

tr(1) = 2s ̸= 2.

Lemma 4.4. If k is a commutative ring with trivial C2 action and M and N are two k-modules
with a k-linear involution and 2 is invertible in M or in N , then there is an equivalence of C2-
Mackey functors

Mfix□kcN
fix ∼= (M ⊗k N)fix

which is natural in M and N . Here C2 acts on M ⊗N by the diagonal action. If M and N are
both also commutative k-algebras, this is an equivalence of C2-Tambara functors.

Proof. Using Lemma 3.1 we know that

Mfix□kc□Nfix =Mfix□kfix□Nfix ∼= (M ⊗ k ⊗N)fix

and

Mfix□Nfix ∼= (M ⊗N)fix.

The result in the k-module case then followed from the fact that taking the fixed-point Mackey
functor commutes with forming coequalizers, which is completely analogous to the fact that the
fixed-point Tambara functor commutes with forming coequalizers which was shown in the proof
of Proposition 4.2 above. And in the case of k-algebras, it follows directly by the argument in
the proof there. □

5. Identifying LC2
Sσ(R

fix)

In this section we will continue to work with the cyclic group of order 2, C2 = ⟨τ | τ2 = e⟩,
and we will consider the C2-simplicial set Sσ which is the one-point compactification of the real
sign-representation,

•
Sσ =

•

aa<<

where the C2-action flips the two arcs.
By [LRZb, (7.4)], for any C2-Tambara functor T we can express the C2-Loday construction

of T with respect to Sσ as a two-sided bar construction

(5.1) LC2
Sσ(T ) ∼= B(T ,NC2

e i∗eT , T ).

We will simplify this for the C2-Tambara functor Rfix associated to a commutative ring R with
involution a 7→ ā. We will repeatedly use the commutative C2-algebra R⊗R, with

(5.2) τ(a⊗ b) = b̄⊗ ā.

For a ring spectrum A with an anti-involution, Dotto, Moi, Patchkoria and Reeh observed
[DMPR21, p. 84], that

B(A,NC2
e i∗eA,A) ≃ B(A,A ∧A,A),

where they use the flip-C2-action on A ∧ A (switching coordinates and acting on them, as
in (5.2)). They identify THR(A) with B(A,NC2

e i∗eA,A) in [DMPR21, Theorem 2.23] under a
flatness assumption on A.
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The following result is an algebraic version of this result where we use the C2-action on R⊗R
that exchanges the coordinates and acts on both.

Theorem 5.1. If R is a commutative ring with involution and 2 is invertible in R, then there
is a natural equivalence of simplicial C2-Tambara functors

LC2
Sσ(R

fix) ∼= B(Rfix, NC2
e i∗eR

fix, Rfix) ∼= B(R,R⊗R,R)fix

where C2 acts on R⊗R as in (5.2).

So in every simplicial degree n, LC2
Sσ(R

fix)n = Rfix□(NC2
e i∗eR

fix)□n□Rfix is the fixed-point
Tambara functor of the C2-ring R⊗ (R⊗R)⊗n ⊗R with C2-action given by

τ(a0 ⊗ (a1 ⊗ a2n+1)⊗ (a2 ⊗ a2n)⊗ · · · ⊗ (an ⊗ an+2)⊗ an+1)

= ā0 ⊗ (ā2n+1 ⊗ ā1)⊗ (ā2n ⊗ ā2)⊗ · · · ⊗ (ān+2 ⊗ ān)⊗ ān+1.

One can visualize this C2-action as

a1

a0
a2n+1

⊗

⊗
...

...

⊗

⊗⊗

⊗

an an+2⊗ ⊗
an+1

7→

ā2n+1

ā0
ā1

⊗

⊗
...

...

⊗

⊗⊗

⊗

ān+2 ān
⊗ ⊗
ān+1

Remark 5.2. Note that NC2
e i∗eR

fix is not equal to (R⊗R)fix, even in very simple cases! For

example, for R = Z with the trivial C2-action, (R⊗R)fix is just Zc with respect to the constant

action, while NC2
e i∗eZc is the C2-Burnside Tambara functor (see for instance [LRZb, (5.1)]).

We need an outer copy of Rfix in Theorem 5.1 as a catalyst in order to achieve the desired
simplification.

Proof. The proof follows by induction on n. The base case n = 0 is Lemma 3.1 applied to
M = N = R, and the inductive step can be done with the help of Lemma 3.2 for M =
R ⊗ (R ⊗ R)⊗(n−1) ⊗ R. Note that both lemmas proceed by identifying all the terms to the
C2-coinvariant (second) part of the box product on C2/C2, so these identifications of the term

Rfix□(NC2
e i∗eR

fix)□n□Rfix with (R⊗ (R⊗R)⊗n ⊗R)
fix

behave as one would expect for internal
multiplications. See also the comment below Lemma 3.2. Therefore, these identifications are
compatible with the simplicial structure maps. □

Remark 5.3. If R is a commutative ring with involution and ifM is an R-module with involution
compatible with the involution on R in the sense that rm = r̄m̄ for all r ∈ R, m ∈M , then the
C2-Mackey functor Mfix is a symmetric bimodule over the C2-Tambara functor Rfix.

Loday constructions on based G-simplicial sets of a G-Tambara functor with coefficients in a
G-Mackey functor which is a bimodule over the G-Tambara functor are defined analogously to
those in the non-equivariant case. We place the coefficients at the basepoint in each simplicial
degree.

The proof of Theorem 5.1 shows that if 2 is invertible in R, we obtain that

LC2
Sσ(R

fix;Mfix) ∼= B(Rfix, NC2
e i∗eR

fix,Mfix) ∼= B(R,R⊗R,M)fix

where C2 acts on R⊗R as in (5.2).



10 AYELET LINDENSTRAUSS AND BIRGIT RICHTER

6. Relating LC2
Sσ(R) to reflexive homology

Let us for now consider a more general context: Let k be a commutative ring and let A be
an associative k-algebra. We assume that A carries an anti-involution that we denote by a 7→ ā
and which we assume to be k-linear. Let M be an A-bimodule with an involution m 7→ m̄ that
is compatible with the bimodule structure over A in the sense that amb = b̄m̄ā for all a, b ∈ A,
m ∈M . All tensor products will be over k in this section, unless otherwise indicated.

Graves [Gra24, Definition 1.8] defines an involution on every level of the Hochschild complex

CHk
n(A;M) =M ⊗A⊗n by

(6.1) rn(m⊗ a1 ⊗ a2 ⊗ · · · ⊗ an) = m̄⊗ ān ⊗ · · · ⊗ ā2 ⊗ ā1.

For the face maps of the Hochschild complex we get that rn−1 ◦di = dn−i ◦rn, so these levelwise
maps do not preserve the simplicial structure but they reverse it. Since this relation implies
that d◦rn = (−1)nrn−1 ◦d, applying rn at each level n does not induce a map on the associated
chain complexes, unless we adjust the signs.

The C2-actions given by the rn-maps together with the simplicial structure maps on CHk
· (A;M)

turn CHk
· (A;M) into a functor from the crossed simplicial group ∆Rop in the sense of Fiedorowicz-

Loday [FL91] to the category of k-modules. In [Gra24, Definition 1.9], Graves defines reflexive
homology as functor homology as follows:

HR+,k
∗ (A;M) = Tor∆Rop

∗ (k∗,CHk
· (A;M)).

Here k∗ is the constant right ∆Rop-module with value k at all objects. In [Gra24, Definition
2.1], he defines a bicomplex C∗,∗ which is a bi-resolution of k∗. With its help he shows in

[Gra24, Proposition 2.4] that HR+,k
∗ (A;M) is the homology of the complex CHk

∗(A;M)/(1− r),
where r is obtained from the maps rn of (6.1) by

(6.2) r(m⊗ a1 ⊗ · · · ⊗ an) = (−1)
n(n+1)

2 rn(m⊗ a1 ⊗ · · · ⊗ an) = (−1)
n(n+1)

2 m̄⊗ ān ⊗ · · · ⊗ ā1.

With this choice of sign, the map r is a chain map, so the quotient by 1 − r is still a chain
complex.

Theorem 6.1. Assume that k is a commutative ring, that A is an associative k-algebra with
an anti-involution as above whose underlying k-module is flat. Let M be an A-bimodule with
a compatible involution as above, and assume that 2 is invertible in A. Then there is a C2-
equivariant quasi-isomorphism of chain complexes

(6.3) Bk
∗ (A,A⊗Aop,M) → CHk

∗(A;M).

Here the generator τ of C2 acts diagonally on Bk
∗ (A,A⊗Aop,M), where the action on A⊗Aop

is given by τ(a⊗ b) = b̄⊗ ā. On the Hochschild chain complex C2 acts via r.

Corollary 6.2. Under the assumptions of Theorem 6.1, we get homology isomorphisms

(6.4) H∗(B
k
∗ (A,A⊗Aop,M)) ∼= HHk

∗(A;M)

(6.5) H∗(B
k
∗ (A,A⊗Aop,M)C2) ∼= HR+,k

∗ (A;M).

Proof. We get the first isomorphism because the map of Theorem 6.1 is a quasi-isomorphism.
It also follows from the fact that both complexes calculate TorA⊗Aop

∗ (A,M) because of the
assumption that A is flat over k. Note that in the case M = A the first isomorphism also
follows from the fact that the bar construction on the left is isomorphic to the Segal-Quillen
subdivision of the Hochschild complex [Seg73].

The second isomorphism follows from the fact that 2 is invertible in both complexes: As 2 is
invertible in A, the unit of A, k → A factors through k[12 ]. We can express every level of each
of the complexes as the direct sum of the +1-eigenspace and the −1-eigenspace of the action of
the generator of C2 on them. Since the actions commute with d, in fact each of the complexes
breaks up as the direct sum of a positive subcomplex and a negative subcomplex.
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Since the quasi-isomorphism is a C2-map, it preserves this decomposition, and as it is a
quasi-isomorphism, it must be a quasi-isomorphism on the positive and negative subcomplexes,
respectively. That means that we get a quasi-isomorphism

H∗(B
k
∗ (A,A⊗Aop,M)C2) → H∗(CH

k
∗(A;M)C2),

but since 2 is invertible, we have a chain isomorphism

CHk
∗(A;M)C2 → CHk

∗(A;M)C2 = CHk
∗(A;M)/(1− r),

and hence the claim follows with [Gra24, Proposition 2.4]. □

Proof of Theorem 6.1. We consider two A⊗Aop-flat resolutions of A: We use Bk
∗ (A,A⊗Aop, A⊗

Aop) with A⊗ Aop acting on the rightmost coordinate and Bk
∗ (A,A,A) where A

op acts on the
left and A on the right, as in the Tor-identification of Hochschild homology. We let C2 act on
B∗(A,A ⊗ Aop, A ⊗ Aop) by acting diagonally on all the coordinates, and denote the action of
the generator on it by τ . This action is simplicial, and therefore commutes with d. We let C2

act on Bk
∗ (A,A,A) by setting

r(a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1) = (−1)
n(n+1)

2 ān+1 ⊗ ān ⊗ · · · ⊗ ā1 ⊗ ā0.

Because of the sign adjustment, r is a chain map. We only know that the two resolutions are
flat, not that they are projective. But any chain map between them that covers the identity
on A induces an isomorphism on H0, which is the only nontrivial homology group for both
complexes, and therefore is a quasi-isomorphism.

We define fn : B
k
n(A,A⊗Aop, A⊗Aop) → Bk

n(A,A,A) as

fn(a0⊗(a1 ⊗ a2n+2)⊗ (a2 ⊗ a2n+1)⊗ · · · ⊗ (an+1 ⊗ an+2))

=an+2an+3 · · · a2n+1a2n+2a0 ⊗ a1 ⊗ a2 ⊗ · · · ⊗ an+1.

This is a simplicial A⊗Aop-map, and covers the identity on the A being resolved since in level 0
it sends a0⊗ (a1⊗a2) to a2a0⊗a1 and both of these map down to a2a0a1 ∈ A. This map is not
C2-equivariant, but if we define g := r◦f ◦τ , we get gn : Bk

n(A,A⊗Aop, A⊗Aop) → Bk
n(A,A,A)

with

gn(a0⊗(a1 ⊗ a2n+2)⊗ (a2 ⊗ a2n+1)⊗ · · · ⊗ (an+1 ⊗ an+2))

=(−1)
n(n+1)

2 an+2 ⊗ an+3 ⊗ · · · ⊗ a2n+1 ⊗ a2n+2 ⊗ a0a1a2 · · · an+1.

This is not a simplicial map but it is an A ⊗ Aop-map and it is a chain map since r, f , and τ
are chain maps. Again, it covers the identity on A since on level 0, a0 ⊗ (a1 ⊗ a2) 7→ a2 ⊗ a0a1
and both of these map down to a2a0a1 ∈ A.

We now use the fact that 2 is invertible in A and consider the map

f + g

2
: Bk

∗ (A,A⊗Aop, A⊗Aop) → Bk
∗ (A,A,A),

which is an A⊗Aop-map and covers the identity on A since f and g are such maps. This map
is also equivariant because

r ◦ f + g

2
= r ◦ f + r ◦ f ◦ τ

2
=
r ◦ f + f ◦ τ

2
=
r ◦ f ◦ τ + f

2
◦ τ =

f + g

2
◦ τ.

So f+g
2 is a quasi-isomorphism of flat A⊗Aop-complexes. By Lemma 6.3 below, if we tensor it

over A⊗Aop with the A⊗Aop-module M , we get a quasi-isomorphism

f + g

2
⊗ idM : Bk

∗ (A,A⊗Aop,M) → CHk
∗(A;M).

This map is equivariant because it is the tensor product of two equivariant maps. □



12 AYELET LINDENSTRAUSS AND BIRGIT RICHTER

Lemma 6.3. Let R be an associative ring and let ϕ : C∗ → D∗ be a quasi-isomorphism between
two bounded below chain complexes of flat right R-modules. Let M be a left R-module. Then
ϕ⊗ idM : C∗ ⊗R M → D∗ ⊗R M is a quasi-isomorphism as well.

Proof. Since ϕ is a quasi-isomorphism, its mapping cone, cone(ϕ), is acyclic. The mapping
cone is also a bounded-below chain complex of flat right R-modules, so it can be viewed as a
flat resolution of the 0-module, possibly with a shift. We suspend it, so that Σacone(ϕ) is a
non-negative chain complex whose bottom chain group is in degree zero. Since flat resolutions
can be used to calculate Tor,

H∗(Σ
acone(ϕ)⊗R M) ∼= TorR∗ (0,M) = 0

for all ∗. So Σacone(ϕ)⊗R M and hence cone(ϕ)⊗R M = cone(ϕ⊗R idM ) is acyclic. But that
forces ϕ⊗R idM to be a quasi-isomorphism. □

Taking our identification of LC2
Sσ(R) with B(R,R⊗R,R)fix from Theorem 5.1 together with

Corollary 6.2 we obtain the following comparison result between the homology groups of the
C2-Loday construction for the circle Sσ and Rfix on the one hand and the reflexive homology
groups on the other hand:

Theorem 6.4. Assume that R is a commutative ring with involution and that 2 is invertible
in R. If the underlying abelian group of R is flat over Z, then

π∗(LC2
Sσ(R

fix)(C2/C2)) ∼= HR+,Z
∗ (R,R).

The relative version follows directly from Corollary 6.2, Theorem 4.1, and the identification
in (5.1):

Theorem 6.5. Assume that R is a commutative k-algebra with a k-linear involution and that
2 is invertible in R. If the underlying module of R is flat over k, then

π∗(LC2,k
c

Sσ (Rfix)(C2/C2)) ∼= HR+,k
∗ (R,R).

7. Involutive Hochschild homology as a Loday construction

Involutive Hochschild cohomology was defined in [Bra14]. Fernàndez-València and Giansira-
cusa extended the definition to involutive homology. The input is an associative algebra with
anti-involution and in [FVG18] the authors work relative to a field k.

A straightforward generalization of their definition [FVG18, Definition 3.3.1] to arbitrary
commutative ground rings is as follows:

Definition 7.1. Let k be a commutative ring, let A be an associative algebra with anti-
involution and let M be an involutive A-bimodule. The involutive Hochschild homology groups
of A with coefficients in M are

iHHk
∗(A;M) = TorA

ie

∗ (A;M).

Here Aie is the involutive enveloping algebra. As in the classical case its role is to describe
(involutive) A-bimodules: There is an equivalence of categories between the category of invo-
lutive A-bimodules and the category of modules over Aie [FVG18, Proposition 2.2.1]. As a
k-module

Aie = A⊗k A⊗k k[C2]

and the multiplication on Aie is determined by

(a⊗ b⊗ τ i) · (c⊗ d⊗ τ j) = (a⊗ b) · τ i(c⊗ d)⊗ τ i+j .

Here, τ(c⊗ d) is again d̄⊗ c̄, so

(a⊗ b⊗ τ) · (c⊗ d⊗ τ j) = (ad̄⊗ c̄b)⊗ τ1+j .
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Hence we can view Aie as a twisted group algebra (A ⊗ Aop)[C2]. As before, every involutive
algebra A is an involutive A-bimodule.

Of course we know from the classical setting of Hochschild homology that the above definition
does not yield what you want if A is not flat as a k-module.

We obtain a comparison theorem between involutive Hochschild homology and the homology
of the C2-Loday construction of the circle Sσ for Rfix.

Theorem 7.2. Let R be a commutative ring with a C2-action. Assume that 2 is invertible in
R and that the underlying abelian group of R is flat. Then

π∗(LC2
Sσ(R

fix)(C2/C2)) ∼= iHHZ
∗ (R).

And again over a general commutative k, there is a relative version:

Theorem 7.3. Let k be a commutative ring and let R be a commutative k-algebra with a k-
linear C2-action. Assume that 2 is invertible in R and that the underlying k-module of R is
flat. Then

π∗(LC2,k
c

Sσ (Rfix)(C2/C2)) ∼= iHHk
∗(R).

We prove Theorem 7.2 by comparing iHH∗(R;M) for an involutive R-bimodule M to the

C2/C2-level of the Mackey functor B(R,R⊗Rop,M)fix where C2 acts on R⊗R by τ(a⊗ b) =

b̄⊗ ā. The lemmata below should be used for k = Z. The proof of Theorem 7.3 is similar, just
over a general commutative ground ring k.

In the following we will always assume that R is a commutative k-algebra with a k-linear
C2-action, that 2 is invertible in R and that the underlying k-module of R is flat over k.

Lemma 7.4.
π0(B

k
∗ (R,R⊗k R,M)

fix
(C2/C2)) ∼= R⊗Rie M.

Proof. As 2 is invertible, taking C2-fixed points is isomorphic to taking C2-coinvariants and
both functors are exact. Thus we have to identify the quotient of (R ⊗M)C2 by the bimodule
action and this yields (R⊗R⊗kRM)C2 which is isomorphic to (M/{am−ma, a ∈ R,m ∈M})C2 .
By [FVG18, Proposition 2.4.1], R⊗Rie M is isomorphic to the pushout of

M //

��

MC2

M/{am−ma, a ∈ R,m ∈M}

and this proves the claim. □

Lemma 7.5. Assume that 0 → M1 → M2 → M3 → 0 is a short exact sequence of Rie-

modules and abbreviate Bk(R,R⊗k R,Mi)
fix
(C2/C2) by BMi. Then we get an induced long

exact sequence

. . . // πnBM1
// πnBM2

// πnBM3

// πn−1BM1
// . . .

Proof. As we assume that R is flat over k, tensoring with R is exact, and as 2 is invertible,
taking fixed points is exact. Therefore, in every simplicial degree n, the sequence

0 → (BM1)n → (BM2)n → (BM3)n → 0

is short exact and hence we obtain a short exact sequence of the associated chain complexes

0 → C∗(BM1) → C∗(BM2) → C∗(BM3) → 0

and an induced long exact sequence on homology. As H∗C∗(BMi) ∼= π∗(BMi), the claim
follows. □
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Lemma 7.6. Assume that P is a projective Rie-module. Then πnB
k(R,R⊗k R,P )

fix
(C2/C2) ∼=

0 for all positive n.

Proof. In the category of Rie-modules, Rie is a projective generator and every module can be
written as a quotient of a direct sum of copies of Rie. Our construction sends a direct sum
of modules to a direct sum of simplicial objects, yielding a direct sum of associated chain
complexes. Retracts of modules give retracts of the associated chain complexes. It therefore
suffices to check the claim for P = Rie.

If D is any k-module with a C2-action such that 2 acts invertibly on D, then there is an
isomorphism

(D ⊗k k[C2])
C2 ∼= D

where on the left hand side we consider the diagonal C2-action: First note that D⊗k k[C2] with
the diagonal action is isomorphic to D ⊗k k[C2] where the C2-action is only on the right-hand
factor. The isomorphism ψ : D ⊗k k[C2] → D ⊗k k[C2] sends a generator d ⊗ τ i to τ−id ⊗ τ i.
Then, as 2 acts invertibly, we have

(D ⊗k k[C2])
C2 ∼= (D ⊗k k[C2])C2 = (D ⊗k k[C2])⊗k[C2] k.

So in total, (D ⊗k k[C2])
C2 ∼= D.

Therefore, in every simplicial degree n we can identify

Bk
n(R,R⊗k R,R

ie)
fix
(C2/C2) = (R⊗k (R⊗k R)

⊗kn ⊗k (R⊗k R⊗k k[C2]))
C2

with R⊗k (R⊗kR)
⊗kn⊗k (R⊗kR). But then we are left with the bar construction Bk(R,R⊗k

R,R⊗k R) and this has trivial homotopy groups in positive degrees.
□

Proposition 7.7. Assume that R is a commutative k-algebra with a k-linear involution such
that 2 is invertible in R and assume that M is an involutive R-bimodule. Then

π∗B
k(R,R⊗k R,M)

fix
(C2/C2) ∼= iHHk

∗(R;M).

Proof. Lemmata 7.4, 7.5 and 7.6 imply that π∗B
k(R,R⊗k R,−)

fix
(C2/C2) has the same ax-

iomatic description as TorR
ie

∗ (R;−). □

Proof of Theorems 7.2 and 7.3. Theorem 7.2 is a special case of Proposition 7.7 working with
k = Z (although we are working over the C2-Burnside Tambara functor, not over Zc) and with
M = R. Theorem 7.3 is the relative version. □

Remark 7.8. Graves states a comparison result in [Gra24, Theorem 9.1] between reflexive ho-

mology, HR+,k
∗ (A;M), and involutive Hochschild homology, iHHk

∗(A;M). The assumptions are
slightly too restrictive there: Fernàndez-València and Giansiracusa prove in [FVG18, Proposi-

tion 3.3.3] that iHHk
∗(A;M) ∼= HHk

∗(A;M)C2 if the characteristic of the ground field is different

from 2 and Graves shows in [Gra24, Proposition 2.4], that HHk
∗(A;M)C2

∼= HR+,k
∗ (A;M) if 2 is

invertible in the ground ring. The assumption on A being projective as a k[C2]-module comes
for free if we work over a field of characteristic different from 2 thanks to Maschke’s theorem.
For an arbitrary ring R, we also get that an arbitrary R[G]-module M is projective if M is
projective as an R-module and if |G| is invertible in R [Mer17, Proposition 4.4].

Remark 7.9. If a finite group G carries a homomorphism ε : G→ C2, then one can consider an
associated crossed simplicial group and the corresponding (co)homology theory, see for instance
[KP18,AKMP].

For an arbitrary finite group C2 ̸= G ̸= {e} without an interesting homomorphism to C2,
there is only the version of an associated crossed simplicial group by viewing G as a constant
simplicial group because there is no meaningful way in which G can act on the simplicial
category. Then the group elements commute with the simplicial structure maps.
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On the other hand, if G is a group with n elements {g1, . . . , gn}, we can consider the unreduced
suspension of G, SG. This is the graph

•

. . .

•

g1

88

g2

DD

gn−1

ZZ

gn

ff

and the group G acts by sending an element g ∈ G and an edge labelled by gi to the edge ggi.
We will view this graph as a finite simplicial G-set.

Thus if R is a commutative algebra with a G-action, then

(7.1) π∗LG
SG(R

fix)(G/G)

is a perfectly fine homology theory. We propose (7.1) as a generalization of reflexive homology
to arbitrary finite groups, at least if |G| is invertible, and will investigate its properties in future
work.

8. The cases F2
c and Zc

For our results we had to assume that 2 is invertible in our commutative ring and that the
underlying abelian group is flat. So it is a natural question to ask what happens if we drop
these assumptions. We first study the simplest and most extreme case.

8.1. Comparison for F2
c. We consider F2 with the trivial C2-action, so the fixed point Tam-

bara functor is the constant Tambara functor: F2
c = F2

fix. Graves calculated reflexive homology
of the ground ring in [Gra24, Proposition 5.1] and in the case of F2 we obtain

HR+,F2
∗ (F2) ∼= H∗(BC2,F2)

and this is F2 in all non-negative degrees. Note that here it doesn’t matter whether we view F2

as a commutative F2-algebra or as a commutative ring (a commutative Z-algebra). Similarly,
we can calculate the involutive Hochschild homology of F2 as an involutive F2-algebra (or as a
commutative Z-algebra) and obtain

iHHF2
∗ (F2;F2) = TorF2[C2]

n (F2,F2) ∼= H∗(BC2;F2).

Hence, involutive Hochschild homology and reflexive homology agree in this case.

If we compare this to the 2-sided bar construction B(F2,F2 ⊗ F2,F2) ∼= BF2(F2,F2 ⊗ F2,F2),
then this bar construction is just the constant simplicial object with value F2 and therefore here
we obtain

πnB(F2,F2 ⊗ F2,F2)
fix(C2/C2) = πnB(F2,F2 ⊗ F2,F2) =

{
F2, n = 0,

0, otherwise.

Hence in this case π∗B(F2,F2 ⊗ F2,F2)
fix(C2/C2) agrees neither with reflexive homology nor

with involutive Hochschild homology.

What about π∗B(F2
c, NC2

e (F2)(C2/C2),F2
c)(C2/C2)? Note that

NC2
e (F2)(C2/C2) ∼= Z/4Z and NC2

e (F2)(C2/e) ∼= F2.
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In F2
c□NC2

e (F2) we obtain:

C2/C2 : (F2 ⊗ Z/4Z⊕ (F2 ⊗ F2 ⊗ F2)/C2) /FR

C2/e : F2 ⊗ F2 ⊗ F2
∼= F2

The C2-Weyl action is trivial on F2 ⊗ F2 ⊗ F2
∼= F2. Frobenius reciprocity yields

[1⊗ 1⊗ 1] = [res(1)⊗ 1⊗ 1] ∼ 1⊗ tr(1⊗ 1) = 2 · 1⊗ 1⊗ 1 = 0

so at the C2/C2-level we are left with one copy of F2 and we obtain F2
c□NC2

e (F2) ∼= F2
c.

This identifies B(F2
fix, NC2

e (F2)(C2/C2),F2
fix)(C2/C2) with the constant simplicial object

with value F2, and therefore

πnLC2
Sσ(F2

fix)(C2/C2) ∼=

{
F2, n = 0,

0, otherwise.

At the free orbit, we also get the constant simplicial object with value F2, an in total we get
an isomorphism of simplicial Tambara functors between LC2

Sσ(F2
c) and B(F2,F2 ⊗ F2,F2)

c.

8.2. Comparison for Zc. We consider the ring of integers and this only carries a trivial C2-
action. We know that norm restriction of Zc gives the C2-Burnside Tambara functor, NC2

e i∗eZc ∼=
A. This is the monoidal unit for the □-product. We showed in [LRZa, Lemma 5.1] that for two
arbitrary commutative rings A and B, Ac□Bc ∼= (A⊗B)c and hence

Zc□Zc ∼= (Z⊗ Z)c ∼= Zc.

Proposition 8.1. There is an isomorphism of simplicial C2-Tambara functors

LC2
Sσ(Zc) ∼= Zc

where the right-hand side denotes the constant simplicial C2-Tambara functor with value Zc.

Proof. By the above arguments we get for an arbitrary simplicial degree n:

LC2
Sσ(Zc)n = Zc□(NC2

e i∗eZc)□n□Zc

∼= Zc□Zc

∼= Zc.

The simplicial structure maps induce the identity maps under these isomorphisms. □

Corollary 8.2. The homotopy groups of LC2
Sσ(Zc) are

π∗(LC2
Sσ(Zc)) ∼=

{
Zc, ∗ = 0,

0, ∗ > 0.

Corollary 8.3. For the C2-Tambara functor Zc the homotopy groups

π∗(LC2
Sσ(Zc))(C2/C2)

are neither isomorphic to HR+,Z
∗ (Z) nor to iHHZ

∗ (Z).

Proof. We saw above that π∗(LC2
Sσ(Zc))(C2/C2) is concentrated in degree ∗ = 0 with value Z

whereas HR+,Z
∗ (Z) and iHHZ

∗ (Z) both give H∗(C2;Z). □
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9. The case of associative C2-Green functors

We assume now that R is an associative ring with anti-involution. The fixed point Mackey
functor Rfix then has no multiplicative structure: For a, b ∈ RC2 we get that τ(ab) = b̄ā = ba
and as a and b do not necessarily commute, ab is not, in general, a fixed point. But we can
still define a replacement of the norm-restriction object that we call ÑC2

e i∗e(R
fix) in order to

avoid confusion with the commutative case. We claim that this can be done in the setting of
associative C2-Green functors.

Definition 9.1. We define ÑC2
e i∗e(R

fix) at the free level as

ÑC2
e i∗e(R

fix)(C2/e) := R⊗Rop

and at the trivial orbit C2/C2 we define

ÑC2
e i∗e(R

fix)(C2/C2) := (Z{R} ⊕ (R⊗Rop)/C2)/TR,

where the Tambara reciprocity relation, TR, identifies {a + b} ∼ {a} + {b} + [a ⊗ b̄] for all
a, b ∈ R, just as in the norm-restriction construction in the commutative case.

Lemma 9.2. We can endow ÑC2
e i∗e(R

fix) with the structure of an associative C2-Green functor.

Proof. We first establish the structure of a C2-Mackey functor.
The restriction map is

res{a} := a⊗ ā, res[a⊗ b] := a⊗ b+ b̄⊗ ā

and the transfer sends a⊗ b to
tr(a⊗ b) := [a⊗ b].

Then this is completely analogous to the commutative case, so indeed, this does define a C2-
Mackey functor.

For the structure of a Green functor we have to specify a multiplication and its compatibility
with respect to the restriction map.

The multiplication is set to the usual multiplication on R⊗Rop at the free level and

{a}{b} := {ab},
{a}[b⊗ c] := [ab⊗ cā],

[a⊗ b]{c} := [ac⊗ c̄b],

[a⊗ b][c⊗ d] := [ac⊗ db] + [ad̄⊗ c̄b].

Straighforward calculations yield

{a}[b⊗ c] = {a}[c̄⊗ b̄] and [a⊗ b]{c} = [b̄⊗ ā]{c}
and also

[a⊗ b][c⊗ d] = [b̄⊗ ā][c⊗ d] = [a⊗ b][d̄⊗ c̄]

so that the multiplication is well-defined on the Weyl-classes. Another direct calculation shows
that the multiplication is associative.

For the unit map A → ÑC2
e i∗eR

fix we don’t have any choice at the free level: There we
have to send Z = A(C2/e) to R ⊗ Rop by sending 1 to 1 ⊗ 1. At the trivial level we have to
send 1 ∈ A(C2/C2) = Z[t]/t2 − 2t to {1} and the compatibility with tr forces us to send t to
tr(1⊗ 1) = [1⊗ 1]. It is straightforward to check that this actually defines units of the rings at
each level.

Restriction is multiplicative on norms because

res{ab} = ab⊗ ab = ab⊗ b̄ā = a⊗ ā · b⊗ b̄ = res{a} · res{b}.
It is also multiplicative on transfers:

res[a⊗ b] · res[c⊗ d] = ac⊗ db+ ad̄⊗ c̄b+ b̄c⊗ dā+ b̄d̄⊗ c̄ā
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and this agrees with

res([a⊗ b][c⊗ d]) = res([ac⊗ db] + [ad̄⊗ c̄b])

= (ac⊗ db+ db⊗ ac) + (ad̄⊗ c̄b+ c̄b⊗ ad̄).

As the C2-action is an anti-involution, these terms agree. Similarly,

res({a}[b⊗ c]) = res[ab⊗ cā] = ab⊗ cā+ ac̄⊗ b̄ā = res{a} · res[b⊗ c]

and res([a⊗ b]{c}) = res[a⊗ b] · res{c}. Therefore res is a ring map.
Tambara reciprocity is compatible with the multiplication: {a + b} · {c} agrees with ({a} +

{b}+ [a⊗ b̄]){c} and this also holds for the reversed product. On mixed terms we obtain

{a+ b}[c⊗ d] = [(a+ b)c⊗ d(ā+ b̄)]

= [ac⊗ dā] + [ac⊗ db̄] + [bc⊗ dā] + [bc⊗ db̄]

= [ac⊗ dā] + [bc⊗ db̄] + [ac⊗ db̄] + [ad̄⊗ c̄b̄]

= {a}[c⊗ d] + {b}[c⊗ d] + [a⊗ b̄][c⊗ d].

Here, we have used the Weyl equivalence

[ad̄⊗ c̄b̄] = [c̄b̄⊗ ad̄] = [bc⊗ dā].

□

Proposition 9.3. The C2-Mackey functor Rfix is an ÑC2
e i∗e(R

fix)-bimodule.

Proof. We know that

(ÑC2
e i∗eR

fix)□Rfix =

{(
(Z{R} ⊕ (R⊗Rop)/C2)/TR⊗RC2 ⊕ (R⊗Rop ⊗R)/C2

)
/FR at C2/C2

R⊗Rop ⊗R at C2/e.

We define the left ÑC2
e i∗eR

fix-module structure of Rfix by

(a⊗ b)⊗ c 7→ acb

at the free level. At the trivial level we have three types of terms:

(1) For a ∈ R and x ∈ RC2 we send {a} ⊗ x to axā.
(2) Whereas for a, b ∈ R and x ∈ RC2 we define

[a⊗ b]⊗ x 7→ axb+ b̄xā.

The resulting elements are fixed points under the anti-involution.
(3) The C2-action on R ⊗ Rop ⊗ R sends a generator a ⊗ b ⊗ y to b̄ ⊗ ā ⊗ ȳ. We send a

C2-equivalence class [a⊗ b⊗ y] to ayb+ b̄ȳā.

We have to check that this action is well-defined and satisfies associativity and a unit condi-
tion.

A direct inspection shows that [a⊗ b]⊗x and [b̄⊗ ā]⊗x map to the same element. Similarly,
the value on [a⊗ b⊗ y] and [b̄⊗ ā⊗ ȳ] agrees. It is also straightforward to see that the module
structure respects Tambara reciprocity. For Frobenius reciprocity we have to compare three
expressions:

• [a⊗ b]⊗ x is tr(a⊗ b)⊗ x and this is identified with [a⊗ b⊗ res(x)] = [a⊗ b⊗ x]. Both
terms are mapped to axb+ b̄xā because x is a fixed point.

• A term {a} ⊗ tr(y) is sent to a(y + ȳ)ā. It is identified with [res{a} ⊗ y] = [a ⊗ ā ⊗ y]
and this goes to ayā+ aȳā.

• We have

[a⊗ b]⊗ (y + ȳ) = [a⊗ b]⊗ tr(y) = res([a⊗ b])⊗ y.

All these terms are mapped to ayb+ b̄yā+ aȳb+ b̄ȳā.
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As {1} acts neutrally at the trivial level and as 1⊗ 1 acts neutrally at the free level, the unit
condition is satisfied. Associativity can be proven with a very tedious calculation.

This shows that the map ÑC2
e i∗eR

fix□Rfix → Rfix defined above yields a left ÑC2
e i∗eR

fix-module
structure on Rfix.

The following is a sketch of the construction of the right ÑC2
e i∗eR

fix-module structure on Rfix:

We have to define Rfix□ÑC2
e i∗eR

fix → Rfix, that is: a map from

Rfix□(ÑC2
e i∗eR

fix) =

{
RC2 ⊗

(
(Z{R} ⊕ (R⊗Rop)/C2)/TR⊕ (R⊗R⊗Rop)/C2

)
/FR at C2/C2

R⊗R⊗Rop at C2/e

to Rfix. At the free level we send a⊗ (b⊗ c) to cab and this propagates to the trivial level where
we map [y⊗ a⊗ b] to bya+ āȳb̄ and x⊗ [a⊗ b] to bxa+ āxb̄. A term x⊗{a} goes to āxa. Then
a proof dual to the above shows that this indeed gives a well-defined right module structure
and that this right-module structure is compatible with the left-module structure so that we
actually obtain a bimodule structure. □

We use this pseudo norm-restriction term and the bimodule structure of Rfix over ÑC2
e i∗e(R

fix)

for the definition of LC2
Sσ(R

fix) by declaring C2/e⊗Rfix to be ÑC2
e i∗e(R

fix) and of course C2/C2⊗
Rfix is just Rfix. As the simplices in Sσ are lined up on two copies of ∆(−, [1]), that are just glued
at the endpoints, the associativity of R suffices to obtain well-defined face maps and therefore
a well-defined Loday construction LC2

Sσ(R
fix). As a simplicial C2-Mackey functor, LC2

Sσ(R
fix) is

isomorphic to B(Rfix, ÑC2
e i∗e(R

fix), Rfix).
We now state and prove the analogue of Theorems 6.4 and 7.2:

Theorem 9.4. Assume that R is an associative ring with anti-involution and that 2 is invertible
in R. If the underlying abelian group of R is flat, then

iHHZ
∗ (R)

∼= π∗(LC2
Sσ(R

fix)(C2/C2)) ∼= HR+,Z
∗ (R,R).

Proof. We only point out where the differences to the proof in the commutative case are. As
in Lemma 3.2, we can show (by literally using the same proof) that there is an isomorphism of
C2-Mackey functors

ÑC2
e i∗eR

fix□Mfix ∼= (R⊗Rop ⊗M)fix

as C2-Mackey functors, if 2 is invertible in R and if R is an associative ring with anti-involution.
The arguments in §5 go through with the difference that we have to replace R⊗R by R⊗Rop

and Theorem 5.1 gives an isomorphism of C2-Mackey functors

LC2
Sσ(R

fix) ∼= B(Rfix, ÑC2
e i∗eR

fix, Rfix) ∼= B(R,R⊗Rop, R)fix.

Section 6 is already formulated for associative algebras and also the homological algebra ar-
guments in section 7 go through but we have to replace R ⊗ R by the enveloping algebra
R⊗Rop. □

In the setting where we choose a commutative ring k and A is an associative k-algebra with
an anti-involution that fixes k, we first have to define a relative analogue of the norm.

Note that the unit map k → A induces a map of C2-Green functors NC2
e i∗ek

c → ÑC2
e i∗eA

fix.

Definition 9.5. We define Ñ
C2,k

c

e (Afix) as

ÑC2,k
c

e (Afix) := ÑC2
e i∗eA

fix□
N

C2
e i∗ek

ck
c.

With this we can define LC2,k
c

Sσ (Afix) for an associative k-algebra A with anti-involution and
obtain an isomorphism of simplicial C2-Mackey functors

LC2,k
c

Sσ (Afix) ∼= B(Afix, ÑC2,k
c

e (Afix), Afix).

We get an analogue of Theorems 6.5 and 7.3.
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Theorem 9.6. Assume that A is an associative k-algebra with a k-linear anti-involution and
that 2 is invertible in A. If the underlying module of A is flat over k, then

iHHk
∗(A)

∼= π∗(LC2,k
c

Sσ (Afix)(C2/C2)) ∼= HR+,k
∗ (A,A).

Proof. We have to adapt the statement and the proof of Proposition 4.2 and claim that for an
associative k-algebra A with anti-involution we obtain that

ÑC2,k
c

e i∗e(A
fix) ∼= (A⊗k A

op)fix,

where C2 acts on A⊗k A
op by τ(a⊗ b) = b̄⊗ ā, if 2 is invertible in A.

The proof almost goes through, but we have to change the adjunction to run between the
category of C2-fixed point Mackey functors of associative rings with anti-involution with 2
invertible and the category of rings with anti-involution and with 2 invertible. Then the proof
of the adjunction can be copied and we can use the same map g that worked in the commutative
case. This yields an analogue of Theorem 4.1 in the associative setting.

LC2,k
c

Sσ (Afix) ∼= Lk
Sσ(A)

fix

The other changes are similar to the absolute case of an associative ring with anti-involution
but of course now we have to replace A⊗k A by the enveloping algebra A⊗k A

op.
□
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