
Linear Operads

Birgit Richter

17th of April 2025

Operads occur when you want to study objects with certain
algebraic properties, for instance, associative monoids.

You can
study them in the category of vector spaces or chain complexes or
topological space or simplicial sets or... So the object might look
rather different but the type of algebraic structure that you want
to study is the same.
Today, we will only consider linear operads and that means that
our underlying symmetric monoidal category is the one of k-vector
spaces for a field k . Most things also work if k is just a
commutative ring.
Later, we want to study Koszul duality and this duality for instance
relates Lie algebras and commutative algebras whereas the operad
that encodes an associative monoid structure turns out to be
self-dual.

The term operad was coined by Peter May in the setting of
topological spaces. He used them to study iterated loop spaces.

Operads occur when you want to study objects with certain
algebraic properties, for instance, associative monoids. You can
study them in the category of vector spaces or chain complexes or
topological space or simplicial sets or...

So the object might look
rather different but the type of algebraic structure that you want
to study is the same.
Today, we will only consider linear operads and that means that
our underlying symmetric monoidal category is the one of k-vector
spaces for a field k . Most things also work if k is just a
commutative ring.
Later, we want to study Koszul duality and this duality for instance
relates Lie algebras and commutative algebras whereas the operad
that encodes an associative monoid structure turns out to be
self-dual.

The term operad was coined by Peter May in the setting of
topological spaces. He used them to study iterated loop spaces.

Operads occur when you want to study objects with certain
algebraic properties, for instance, associative monoids. You can
study them in the category of vector spaces or chain complexes or
topological space or simplicial sets or... So the object might look
rather different but the type of algebraic structure that you want
to study is the same.

Today, we will only consider linear operads and that means that
our underlying symmetric monoidal category is the one of k-vector
spaces for a field k . Most things also work if k is just a
commutative ring.
Later, we want to study Koszul duality and this duality for instance
relates Lie algebras and commutative algebras whereas the operad
that encodes an associative monoid structure turns out to be
self-dual.

The term operad was coined by Peter May in the setting of
topological spaces. He used them to study iterated loop spaces.

Operads occur when you want to study objects with certain
algebraic properties, for instance, associative monoids. You can
study them in the category of vector spaces or chain complexes or
topological space or simplicial sets or... So the object might look
rather different but the type of algebraic structure that you want
to study is the same.

Today, we will only consider linear operads and that means that
our underlying symmetric monoidal category is the one of k-vector
spaces for a field k . Most things also work if k is just a
commutative ring.
Later, we want to study Koszul duality and this duality for instance
relates Lie algebras and commutative algebras whereas the operad
that encodes an associative monoid structure turns out to be
self-dual.

The term operad was coined by Peter May in the setting of
topological spaces. He used them to study iterated loop spaces.

Operads occur when you want to study objects with certain
algebraic properties, for instance, associative monoids. You can
study them in the category of vector spaces or chain complexes or
topological space or simplicial sets or... So the object might look
rather different but the type of algebraic structure that you want
to study is the same.
Today, we will only consider linear operads and that means that
our underlying symmetric monoidal category is the one of k-vector
spaces for a field k .

Most things also work if k is just a
commutative ring.
Later, we want to study Koszul duality and this duality for instance
relates Lie algebras and commutative algebras whereas the operad
that encodes an associative monoid structure turns out to be
self-dual.

The term operad was coined by Peter May in the setting of
topological spaces. He used them to study iterated loop spaces.

Operads occur when you want to study objects with certain
algebraic properties, for instance, associative monoids. You can
study them in the category of vector spaces or chain complexes or
topological space or simplicial sets or... So the object might look
rather different but the type of algebraic structure that you want
to study is the same.
Today, we will only consider linear operads and that means that
our underlying symmetric monoidal category is the one of k-vector
spaces for a field k . Most things also work if k is just a
commutative ring.

Later, we want to study Koszul duality and this duality for instance
relates Lie algebras and commutative algebras whereas the operad
that encodes an associative monoid structure turns out to be
self-dual.

The term operad was coined by Peter May in the setting of
topological spaces. He used them to study iterated loop spaces.

Operads occur when you want to study objects with certain
algebraic properties, for instance, associative monoids. You can
study them in the category of vector spaces or chain complexes or
topological space or simplicial sets or... So the object might look
rather different but the type of algebraic structure that you want
to study is the same.
Today, we will only consider linear operads and that means that
our underlying symmetric monoidal category is the one of k-vector
spaces for a field k . Most things also work if k is just a
commutative ring.
Later, we want to study Koszul duality and this duality for instance
relates Lie algebras and commutative algebras

whereas the operad
that encodes an associative monoid structure turns out to be
self-dual.

The term operad was coined by Peter May in the setting of
topological spaces. He used them to study iterated loop spaces.

Operads occur when you want to study objects with certain
algebraic properties, for instance, associative monoids. You can
study them in the category of vector spaces or chain complexes or
topological space or simplicial sets or... So the object might look
rather different but the type of algebraic structure that you want
to study is the same.
Today, we will only consider linear operads and that means that
our underlying symmetric monoidal category is the one of k-vector
spaces for a field k . Most things also work if k is just a
commutative ring.
Later, we want to study Koszul duality and this duality for instance
relates Lie algebras and commutative algebras whereas the operad
that encodes an associative monoid structure turns out to be
self-dual.

The term operad was coined by Peter May in the setting of
topological spaces. He used them to study iterated loop spaces.

Operads occur when you want to study objects with certain
algebraic properties, for instance, associative monoids. You can
study them in the category of vector spaces or chain complexes or
topological space or simplicial sets or... So the object might look
rather different but the type of algebraic structure that you want
to study is the same.
Today, we will only consider linear operads and that means that
our underlying symmetric monoidal category is the one of k-vector
spaces for a field k . Most things also work if k is just a
commutative ring.
Later, we want to study Koszul duality and this duality for instance
relates Lie algebras and commutative algebras whereas the operad
that encodes an associative monoid structure turns out to be
self-dual.

The term operad was coined by Peter May in the setting of
topological spaces. He used them to study iterated loop spaces.

Symmetric sequences and Schur functors

Definition
1. A symmetric sequence over k is a sequence

M := (M(0),M(1),M(2), . . .)

where every M(n) ∈ Vect is a right k[Σn]-module.
2. The corresponding category Vect-Σ has as morphisms

f : M → M ′ sequences f = (f0, f1, f2, . . .) where every
fn : M(n) → M ′(n) is k[Σn]-linear.

3. M is called reduced if M(0) = 0.
Remarks:
We can view M as a functor Σop → Vect, where Σ is the
category whose objects are N0 and whose morphisms are

Σ(n,m) =

{
∅, n ̸= m,

Σn, n = m.

Note that every M(n) is a Σn-representation, so the theory of
representations of the symmetric groups plays an important
role in this topic.

Symmetric sequences and Schur functors
Definition
1. A symmetric sequence over k is a sequence

M := (M(0),M(1),M(2), . . .)

where every M(n) ∈ Vect is a right k[Σn]-module.

2. The corresponding category Vect-Σ has as morphisms
f : M → M ′ sequences f = (f0, f1, f2, . . .) where every
fn : M(n) → M ′(n) is k[Σn]-linear.

3. M is called reduced if M(0) = 0.
Remarks:
We can view M as a functor Σop → Vect, where Σ is the
category whose objects are N0 and whose morphisms are

Σ(n,m) =

{
∅, n ̸= m,

Σn, n = m.

Note that every M(n) is a Σn-representation, so the theory of
representations of the symmetric groups plays an important
role in this topic.

Symmetric sequences and Schur functors
Definition
1. A symmetric sequence over k is a sequence

M := (M(0),M(1),M(2), . . .)

where every M(n) ∈ Vect is a right k[Σn]-module.
2. The corresponding category Vect-Σ has as morphisms

f : M → M ′ sequences f = (f0, f1, f2, . . .) where every
fn : M(n) → M ′(n) is k[Σn]-linear.

3. M is called reduced if M(0) = 0.
Remarks:
We can view M as a functor Σop → Vect, where Σ is the
category whose objects are N0 and whose morphisms are

Σ(n,m) =

{
∅, n ̸= m,

Σn, n = m.

Note that every M(n) is a Σn-representation, so the theory of
representations of the symmetric groups plays an important
role in this topic.

Symmetric sequences and Schur functors
Definition
1. A symmetric sequence over k is a sequence

M := (M(0),M(1),M(2), . . .)

where every M(n) ∈ Vect is a right k[Σn]-module.
2. The corresponding category Vect-Σ has as morphisms

f : M → M ′ sequences f = (f0, f1, f2, . . .) where every
fn : M(n) → M ′(n) is k[Σn]-linear.

3. M is called reduced if M(0) = 0.

Remarks:
We can view M as a functor Σop → Vect, where Σ is the
category whose objects are N0 and whose morphisms are

Σ(n,m) =

{
∅, n ̸= m,

Σn, n = m.

Note that every M(n) is a Σn-representation, so the theory of
representations of the symmetric groups plays an important
role in this topic.

Symmetric sequences and Schur functors
Definition
1. A symmetric sequence over k is a sequence

M := (M(0),M(1),M(2), . . .)

where every M(n) ∈ Vect is a right k[Σn]-module.
2. The corresponding category Vect-Σ has as morphisms

f : M → M ′ sequences f = (f0, f1, f2, . . .) where every
fn : M(n) → M ′(n) is k[Σn]-linear.

3. M is called reduced if M(0) = 0.
Remarks:
We can view M as a functor Σop → Vect, where Σ is the
category whose objects are N0 and whose morphisms are

Σ(n,m) =

{
∅, n ̸= m,

Σn, n = m.

Note that every M(n) is a Σn-representation, so the theory of
representations of the symmetric groups plays an important
role in this topic.

Symmetric sequences and Schur functors
Definition
1. A symmetric sequence over k is a sequence

M := (M(0),M(1),M(2), . . .)

where every M(n) ∈ Vect is a right k[Σn]-module.
2. The corresponding category Vect-Σ has as morphisms

f : M → M ′ sequences f = (f0, f1, f2, . . .) where every
fn : M(n) → M ′(n) is k[Σn]-linear.

3. M is called reduced if M(0) = 0.
Remarks:
We can view M as a functor Σop → Vect, where Σ is the
category whose objects are N0 and whose morphisms are

Σ(n,m) =

{
∅, n ̸= m,

Σn, n = m.

Note that every M(n) is a Σn-representation, so the theory of
representations of the symmetric groups plays an important
role in this topic.

In characteristic zero this is well-understood but in finite
characteristic classifying such representations is an open question.
Definition

If M and M ′ are two symmetric sequences, then we can form

1. their direct sum via (M ⊕M ′)(n) := M(n)⊕M ′(n),

2. their Hadamard tensor product is

M ⊗H M ′(n) := M(n)⊗M ′(n),

3. their tensor product is

(M ⊙M ′)(n) :=
⊕

p+q=n

M(p)⊗M ′(q)⊗k[Σp×Σq] k[Σn]

4. and their composite is

(M ◦M ′)(n) :=
⊕
ℓ⩾0

M(ℓ)⊗k[Σℓ] (M
′)⊙ℓ(n).

In characteristic zero this is well-understood but in finite
characteristic classifying such representations is an open question.
Definition
If M and M ′ are two symmetric sequences, then we can form

1. their direct sum via (M ⊕M ′)(n) := M(n)⊕M ′(n),

2. their Hadamard tensor product is

M ⊗H M ′(n) := M(n)⊗M ′(n),

3. their tensor product is

(M ⊙M ′)(n) :=
⊕

p+q=n

M(p)⊗M ′(q)⊗k[Σp×Σq] k[Σn]

4. and their composite is

(M ◦M ′)(n) :=
⊕
ℓ⩾0

M(ℓ)⊗k[Σℓ] (M
′)⊙ℓ(n).

In characteristic zero this is well-understood but in finite
characteristic classifying such representations is an open question.
Definition
If M and M ′ are two symmetric sequences, then we can form

1. their direct sum via (M ⊕M ′)(n) := M(n)⊕M ′(n),

2. their Hadamard tensor product is

M ⊗H M ′(n) := M(n)⊗M ′(n),

3. their tensor product is

(M ⊙M ′)(n) :=
⊕

p+q=n

M(p)⊗M ′(q)⊗k[Σp×Σq] k[Σn]

4. and their composite is

(M ◦M ′)(n) :=
⊕
ℓ⩾0

M(ℓ)⊗k[Σℓ] (M
′)⊙ℓ(n).

In characteristic zero this is well-understood but in finite
characteristic classifying such representations is an open question.
Definition
If M and M ′ are two symmetric sequences, then we can form

1. their direct sum via (M ⊕M ′)(n) := M(n)⊕M ′(n),

2. their Hadamard tensor product is

M ⊗H M ′(n) := M(n)⊗M ′(n),

3. their tensor product is

(M ⊙M ′)(n) :=
⊕

p+q=n

M(p)⊗M ′(q)⊗k[Σp×Σq] k[Σn]

4. and their composite is

(M ◦M ′)(n) :=
⊕
ℓ⩾0

M(ℓ)⊗k[Σℓ] (M
′)⊙ℓ(n).

In characteristic zero this is well-understood but in finite
characteristic classifying such representations is an open question.
Definition
If M and M ′ are two symmetric sequences, then we can form

1. their direct sum via (M ⊕M ′)(n) := M(n)⊕M ′(n),

2. their Hadamard tensor product is

M ⊗H M ′(n) := M(n)⊗M ′(n),

3. their tensor product is

(M ⊙M ′)(n) :=
⊕

p+q=n

M(p)⊗M ′(q)⊗k[Σp×Σq] k[Σn]

4. and their composite is

(M ◦M ′)(n) :=
⊕
ℓ⩾0

M(ℓ)⊗k[Σℓ] (M
′)⊙ℓ(n).

Remarks
The tensor product of symmetric sequences is actually the Day
convolution product in the functor category Fun(Σop,Vect).

Its
unit is the symmetric sequence (k , 0, 0, . . .).
One can be very explicit: for p + q = n the subgroup
Σp × Σq < Σn has the (p, q)-shuffle permutations as coset
representatives for Σp × Σq\Σn.
The composite of two symmetric sequences is a bit involved, but
can be made explicit:

(M ◦M ′)(n) =
⊕
ℓ⩾0

M(ℓ)⊗k[Σℓ] (M
′)⊙ℓ(n)

and this is

⊕
ℓ⩾0

M(ℓ)⊗k[Σℓ]

(⊕
p1+...+pℓ=n

M ′(p1)⊗ . . .⊗M ′(pℓ)⊗k[Σp1×...×Σpℓ
] k[Σn]

)
.

Remarks
The tensor product of symmetric sequences is actually the Day
convolution product in the functor category Fun(Σop,Vect). Its
unit is the symmetric sequence (k , 0, 0, . . .).

One can be very explicit: for p + q = n the subgroup
Σp × Σq < Σn has the (p, q)-shuffle permutations as coset
representatives for Σp × Σq\Σn.
The composite of two symmetric sequences is a bit involved, but
can be made explicit:

(M ◦M ′)(n) =
⊕
ℓ⩾0

M(ℓ)⊗k[Σℓ] (M
′)⊙ℓ(n)

and this is

⊕
ℓ⩾0

M(ℓ)⊗k[Σℓ]

(⊕
p1+...+pℓ=n

M ′(p1)⊗ . . .⊗M ′(pℓ)⊗k[Σp1×...×Σpℓ
] k[Σn]

)
.

Remarks
The tensor product of symmetric sequences is actually the Day
convolution product in the functor category Fun(Σop,Vect). Its
unit is the symmetric sequence (k , 0, 0, . . .).
One can be very explicit: for p + q = n the subgroup
Σp × Σq < Σn has the (p, q)-shuffle permutations as coset
representatives for Σp × Σq\Σn.

The composite of two symmetric sequences is a bit involved, but
can be made explicit:

(M ◦M ′)(n) =
⊕
ℓ⩾0

M(ℓ)⊗k[Σℓ] (M
′)⊙ℓ(n)

and this is

⊕
ℓ⩾0

M(ℓ)⊗k[Σℓ]

(⊕
p1+...+pℓ=n

M ′(p1)⊗ . . .⊗M ′(pℓ)⊗k[Σp1×...×Σpℓ
] k[Σn]

)
.

Remarks
The tensor product of symmetric sequences is actually the Day
convolution product in the functor category Fun(Σop,Vect). Its
unit is the symmetric sequence (k , 0, 0, . . .).
One can be very explicit: for p + q = n the subgroup
Σp × Σq < Σn has the (p, q)-shuffle permutations as coset
representatives for Σp × Σq\Σn.
The composite of two symmetric sequences is a bit involved, but
can be made explicit:

(M ◦M ′)(n) =
⊕
ℓ⩾0

M(ℓ)⊗k[Σℓ] (M
′)⊙ℓ(n)

and this is

⊕
ℓ⩾0

M(ℓ)⊗k[Σℓ]

(⊕
p1+...+pℓ=n

M ′(p1)⊗ . . .⊗M ′(pℓ)⊗k[Σp1×...×Σpℓ
] k[Σn]

)
.

Remarks
The tensor product of symmetric sequences is actually the Day
convolution product in the functor category Fun(Σop,Vect). Its
unit is the symmetric sequence (k , 0, 0, . . .).
One can be very explicit: for p + q = n the subgroup
Σp × Σq < Σn has the (p, q)-shuffle permutations as coset
representatives for Σp × Σq\Σn.
The composite of two symmetric sequences is a bit involved, but
can be made explicit:

(M ◦M ′)(n) =
⊕
ℓ⩾0

M(ℓ)⊗k[Σℓ] (M
′)⊙ℓ(n)

and this is

⊕
ℓ⩾0

M(ℓ)⊗k[Σℓ]

(⊕
p1+...+pℓ=n

M ′(p1)⊗ . . .⊗M ′(pℓ)⊗k[Σp1×...×Σpℓ
] k[Σn]

)
.

Definition
If M is a symmetric sequence, then its Schur functor is

M̃ : Vect → Vect, V 7→ M̃(V) =
⊕

M(n)⊗k[Σn] V
⊗n.

Here, ⊗ = ⊗k and Σn acts on the left on V⊗n by

σ.(v1 ⊗ . . .⊗ vn) = vσ−1(1) ⊗ . . .⊗ vσ−1(n).

With respect to the tensor product and the composite of
symmetric sequences one can show the following compatibility
results for Schur functors:

▶ M̃ ⊙M ′ ∼= M̃ ⊗ M̃ ′, i.e., M̃ ⊙M ′(V) ∼= M̃(V)⊗ M̃ ′(V).

▶ M̃ ◦M ′ ∼= M̃ ◦ M̃ ′, i.e., M̃ ◦M ′(V) ∼= M̃(M̃ ′(V)).

The first isomorphism of functors is rather straightforward, but the
last one is more painful.

Definition
If M is a symmetric sequence, then its Schur functor is

M̃ : Vect → Vect, V 7→ M̃(V) =
⊕

M(n)⊗k[Σn] V
⊗n.

Here, ⊗ = ⊗k and Σn acts on the left on V⊗n by

σ.(v1 ⊗ . . .⊗ vn) = vσ−1(1) ⊗ . . .⊗ vσ−1(n).

With respect to the tensor product and the composite of
symmetric sequences one can show the following compatibility
results for Schur functors:

▶ M̃ ⊙M ′ ∼= M̃ ⊗ M̃ ′, i.e., M̃ ⊙M ′(V) ∼= M̃(V)⊗ M̃ ′(V).

▶ M̃ ◦M ′ ∼= M̃ ◦ M̃ ′, i.e., M̃ ◦M ′(V) ∼= M̃(M̃ ′(V)).

The first isomorphism of functors is rather straightforward, but the
last one is more painful.

Definition
If M is a symmetric sequence, then its Schur functor is

M̃ : Vect → Vect, V 7→ M̃(V) =
⊕

M(n)⊗k[Σn] V
⊗n.

Here, ⊗ = ⊗k and Σn acts on the left on V⊗n by

σ.(v1 ⊗ . . .⊗ vn) = vσ−1(1) ⊗ . . .⊗ vσ−1(n).

With respect to the tensor product and the composite of
symmetric sequences one can show the following compatibility
results for Schur functors:

▶ M̃ ⊙M ′ ∼= M̃ ⊗ M̃ ′, i.e., M̃ ⊙M ′(V) ∼= M̃(V)⊗ M̃ ′(V).

▶ M̃ ◦M ′ ∼= M̃ ◦ M̃ ′, i.e., M̃ ◦M ′(V) ∼= M̃(M̃ ′(V)).

The first isomorphism of functors is rather straightforward, but the
last one is more painful.

Definition
If M is a symmetric sequence, then its Schur functor is

M̃ : Vect → Vect, V 7→ M̃(V) =
⊕

M(n)⊗k[Σn] V
⊗n.

Here, ⊗ = ⊗k and Σn acts on the left on V⊗n by

σ.(v1 ⊗ . . .⊗ vn) = vσ−1(1) ⊗ . . .⊗ vσ−1(n).

With respect to the tensor product and the composite of
symmetric sequences one can show the following compatibility
results for Schur functors:

▶ M̃ ⊙M ′ ∼= M̃ ⊗ M̃ ′, i.e., M̃ ⊙M ′(V) ∼= M̃(V)⊗ M̃ ′(V).

▶ M̃ ◦M ′ ∼= M̃ ◦ M̃ ′, i.e., M̃ ◦M ′(V) ∼= M̃(M̃ ′(V)).

The first isomorphism of functors is rather straightforward, but the
last one is more painful.

Definition
If M is a symmetric sequence, then its Schur functor is

M̃ : Vect → Vect, V 7→ M̃(V) =
⊕

M(n)⊗k[Σn] V
⊗n.

Here, ⊗ = ⊗k and Σn acts on the left on V⊗n by

σ.(v1 ⊗ . . .⊗ vn) = vσ−1(1) ⊗ . . .⊗ vσ−1(n).

With respect to the tensor product and the composite of
symmetric sequences one can show the following compatibility
results for Schur functors:

▶ M̃ ⊙M ′ ∼= M̃ ⊗ M̃ ′, i.e., M̃ ⊙M ′(V) ∼= M̃(V)⊗ M̃ ′(V).

▶ M̃ ◦M ′ ∼= M̃ ◦ M̃ ′, i.e., M̃ ◦M ′(V) ∼= M̃(M̃ ′(V)).

The first isomorphism of functors is rather straightforward, but the
last one is more painful.

Definition
If M is a symmetric sequence, then its Schur functor is

M̃ : Vect → Vect, V 7→ M̃(V) =
⊕

M(n)⊗k[Σn] V
⊗n.

Here, ⊗ = ⊗k and Σn acts on the left on V⊗n by

σ.(v1 ⊗ . . .⊗ vn) = vσ−1(1) ⊗ . . .⊗ vσ−1(n).

With respect to the tensor product and the composite of
symmetric sequences one can show the following compatibility
results for Schur functors:

▶ M̃ ⊙M ′ ∼= M̃ ⊗ M̃ ′, i.e., M̃ ⊙M ′(V) ∼= M̃(V)⊗ M̃ ′(V).

▶ M̃ ◦M ′ ∼= M̃ ◦ M̃ ′, i.e., M̃ ◦M ′(V) ∼= M̃(M̃ ′(V)).

The first isomorphism of functors is rather straightforward, but the
last one is more painful.

Linear operads and their algebras

Lemma
The category Vect-Σ with the composition ◦ is a monoidal
category (not symmetric!). The unit of this structure is the
symmetric sequence e = (0, k , 0, . . .).
We can use this lemma in order to define operads and algebras
over them in the most elegant and concise (but maybe
obscure?) manner:

Definition We consider the monoidal category (Vect-Σ, ◦, e):
1. A (linear) operad O is a monoid in this category.
2. Let A be a vector space. We consider the symmetric

sequence A = (A, 0, 0, . . .). We say that A is an algebra
over the operad O, if A is a left O-module in Vect-Σ, i.e.,
if there is a map θA : O ◦ A → A that is associative and
the map η : e → O sits in a commuting diagram:

e ◦ A

∼=

;;
η◦id //O ◦ A θA //A.

Linear operads and their algebras

Lemma
The category Vect-Σ with the composition ◦ is a monoidal
category (not symmetric!). The unit of this structure is the
symmetric sequence e = (0, k , 0, . . .).

We can use this lemma in order to define operads and algebras
over them in the most elegant and concise (but maybe
obscure?) manner:

Definition We consider the monoidal category (Vect-Σ, ◦, e):
1. A (linear) operad O is a monoid in this category.
2. Let A be a vector space. We consider the symmetric

sequence A = (A, 0, 0, . . .). We say that A is an algebra
over the operad O, if A is a left O-module in Vect-Σ, i.e.,
if there is a map θA : O ◦ A → A that is associative and
the map η : e → O sits in a commuting diagram:

e ◦ A

∼=

;;
η◦id //O ◦ A θA //A.

Linear operads and their algebras

Lemma
The category Vect-Σ with the composition ◦ is a monoidal
category (not symmetric!). The unit of this structure is the
symmetric sequence e = (0, k , 0, . . .).
We can use this lemma in order to define operads and algebras
over them in the most elegant and concise (but maybe
obscure?) manner:

Definition We consider the monoidal category (Vect-Σ, ◦, e):
1. A (linear) operad O is a monoid in this category.
2. Let A be a vector space. We consider the symmetric

sequence A = (A, 0, 0, . . .). We say that A is an algebra
over the operad O, if A is a left O-module in Vect-Σ, i.e.,
if there is a map θA : O ◦ A → A that is associative and
the map η : e → O sits in a commuting diagram:

e ◦ A

∼=

;;
η◦id //O ◦ A θA //A.

Linear operads and their algebras

Lemma
The category Vect-Σ with the composition ◦ is a monoidal
category (not symmetric!). The unit of this structure is the
symmetric sequence e = (0, k , 0, . . .).
We can use this lemma in order to define operads and algebras
over them in the most elegant and concise (but maybe
obscure?) manner:

Definition We consider the monoidal category (Vect-Σ, ◦, e):
1. A (linear) operad O is a monoid in this category.

2. Let A be a vector space. We consider the symmetric
sequence A = (A, 0, 0, . . .). We say that A is an algebra
over the operad O, if A is a left O-module in Vect-Σ, i.e.,
if there is a map θA : O ◦ A → A that is associative and
the map η : e → O sits in a commuting diagram:

e ◦ A

∼=

;;
η◦id //O ◦ A θA //A.

Linear operads and their algebras

Lemma
The category Vect-Σ with the composition ◦ is a monoidal
category (not symmetric!). The unit of this structure is the
symmetric sequence e = (0, k , 0, . . .).
We can use this lemma in order to define operads and algebras
over them in the most elegant and concise (but maybe
obscure?) manner:

Definition We consider the monoidal category (Vect-Σ, ◦, e):
1. A (linear) operad O is a monoid in this category.
2. Let A be a vector space. We consider the symmetric

sequence A = (A, 0, 0, . . .).

We say that A is an algebra
over the operad O, if A is a left O-module in Vect-Σ, i.e.,
if there is a map θA : O ◦ A → A that is associative and
the map η : e → O sits in a commuting diagram:

e ◦ A

∼=

;;
η◦id //O ◦ A θA //A.

Linear operads and their algebras

Lemma
The category Vect-Σ with the composition ◦ is a monoidal
category (not symmetric!). The unit of this structure is the
symmetric sequence e = (0, k , 0, . . .).
We can use this lemma in order to define operads and algebras
over them in the most elegant and concise (but maybe
obscure?) manner:

Definition We consider the monoidal category (Vect-Σ, ◦, e):
1. A (linear) operad O is a monoid in this category.
2. Let A be a vector space. We consider the symmetric

sequence A = (A, 0, 0, . . .). We say that A is an algebra
over the operad O, if A is a left O-module in Vect-Σ, i.e.,
if there is a map θA : O ◦ A → A that is associative and
the map η : e → O sits in a commuting diagram:

e ◦ A

∼=

;;
η◦id //O ◦ A θA //A.

So what does that say?

First, let’s unravel the definition of an operad: We have a collection
of vector spaces O(n) with a right Σn-action for n ∈ N0, together
with a unit morphism η : k → O(1), and composition morphisms

γ : O(n)⊗ O(k1)⊗ . . .⊗ O(kn) → O

(
n∑

i=1

ki

)

for n ⩾ 1 and ki ⩾ 0.
You might want to think about an wm ∈ O(m) as a device that
can digest m inputs and gives back one output:

?

? ?
. . .

1 m

wm

So what does that say?
First, let’s unravel the definition of an operad:

We have a collection
of vector spaces O(n) with a right Σn-action for n ∈ N0, together
with a unit morphism η : k → O(1), and composition morphisms

γ : O(n)⊗ O(k1)⊗ . . .⊗ O(kn) → O

(
n∑

i=1

ki

)

for n ⩾ 1 and ki ⩾ 0.
You might want to think about an wm ∈ O(m) as a device that
can digest m inputs and gives back one output:

?

? ?
. . .

1 m

wm

So what does that say?
First, let’s unravel the definition of an operad: We have a collection
of vector spaces O(n) with a right Σn-action for n ∈ N0,

together
with a unit morphism η : k → O(1), and composition morphisms

γ : O(n)⊗ O(k1)⊗ . . .⊗ O(kn) → O

(
n∑

i=1

ki

)

for n ⩾ 1 and ki ⩾ 0.
You might want to think about an wm ∈ O(m) as a device that
can digest m inputs and gives back one output:

?

? ?
. . .

1 m

wm

So what does that say?
First, let’s unravel the definition of an operad: We have a collection
of vector spaces O(n) with a right Σn-action for n ∈ N0, together
with a unit morphism η : k → O(1), and composition morphisms

γ : O(n)⊗ O(k1)⊗ . . .⊗ O(kn) → O

(
n∑

i=1

ki

)

for n ⩾ 1 and ki ⩾ 0.

You might want to think about an wm ∈ O(m) as a device that
can digest m inputs and gives back one output:

?

? ?
. . .

1 m

wm

So what does that say?
First, let’s unravel the definition of an operad: We have a collection
of vector spaces O(n) with a right Σn-action for n ∈ N0, together
with a unit morphism η : k → O(1), and composition morphisms

γ : O(n)⊗ O(k1)⊗ . . .⊗ O(kn) → O

(
n∑

i=1

ki

)

for n ⩾ 1 and ki ⩾ 0.
You might want to think about an wm ∈ O(m) as a device that
can digest m inputs and gives back one output:

?

? ?
. . .

1 m

wm

So what does that say?
First, let’s unravel the definition of an operad: We have a collection
of vector spaces O(n) with a right Σn-action for n ∈ N0, together
with a unit morphism η : k → O(1), and composition morphisms

γ : O(n)⊗ O(k1)⊗ . . .⊗ O(kn) → O

(
n∑

i=1

ki

)

for n ⩾ 1 and ki ⩾ 0.
You might want to think about an wm ∈ O(m) as a device that
can digest m inputs and gives back one output:

?

? ?
. . .

1 m

wm

We can stack n such devices with ki inputs and one output on top
of a device with n inputs, in order to create something with
k1 + . . .+ kn inputs and one output:

?

? ?
. . .

1 k1

?

? ?
. . .

1 kn

?

wk1 wkn

wn

. . .

We can stack n such devices with ki inputs and one output on top
of a device with n inputs, in order to create something with
k1 + . . .+ kn inputs and one output:

?

? ?
. . .

1 k1

?

? ?
. . .

1 kn

?

wk1 wkn

wn

. . .

Associativity: Let k be
∑n

i=1 ki and let mi be the sum k1+ . . .+ ki .

O(k)⊗(
⊗∑n

i=1 ki
j=1 O(ℓj))

γ

��

O(n)⊗(
⊗n

i=1 O(ki))⊗(
⊗∑n

i=1 ki
j=1 O(ℓj))

γ⊗1
44

shuffle

��

O(
∑k

j=1 ℓj).

O(n)⊗(
⊗n

i=1(O(ki)⊗O(ℓmi−1+1)⊗...⊗O(ℓmi
)))

1⊗γ⊗n
**

O(n)⊗(
⊗n

i=1 O(ℓmi−1+1+...+ℓmi
))

γ

BB

Associativity: Let k be
∑n

i=1 ki and let mi be the sum k1+ . . .+ ki .

O(k)⊗(
⊗∑n

i=1 ki
j=1 O(ℓj))

γ

��

O(n)⊗(
⊗n

i=1 O(ki))⊗(
⊗∑n

i=1 ki
j=1 O(ℓj))

γ⊗1
44

shuffle

��

O(
∑k

j=1 ℓj).

O(n)⊗(
⊗n

i=1(O(ki)⊗O(ℓmi−1+1)⊗...⊗O(ℓmi
)))

1⊗γ⊗n
**

O(n)⊗(
⊗n

i=1 O(ℓmi−1+1+...+ℓmi
))

γ

BB

The unit map η : k → O(1) fits into the following commutative
diagrams:

O(n)⊗ k⊗n

id⊗η⊗n

��

∼= // O(n)

O(n)⊗ O(1)⊗n

γ

88 and k ⊗ O(k)

η⊗id
��

∼= // O(k).

O(1)⊗ O(k)

γ

88

We require the following two equivariance conditions:
1) If σ ∈ Σn, then we denote by σ(k1, . . . , kn) the permutation in
Σk that permutes the blocks ki−1 + 1, . . . , ki for 1 ⩽ i ⩽ n as σ
permutes the numbers 1, . . . , n. Then, the following diagram must
commute:

O(n)⊗ O(k1)⊗ . . .⊗ O(kn)
σ⊗σ−1
//

γ

��

O(n)⊗ O(kσ(1))⊗ . . .⊗ O(kσ(n))

γ

��
O(k)

σ(kσ(1),...,kσ(n)) // O(k).

The unit map η : k → O(1) fits into the following commutative
diagrams:

O(n)⊗ k⊗n

id⊗η⊗n

��

∼= // O(n)

O(n)⊗ O(1)⊗n

γ

88

and k ⊗ O(k)

η⊗id
��

∼= // O(k).

O(1)⊗ O(k)

γ

88

We require the following two equivariance conditions:
1) If σ ∈ Σn, then we denote by σ(k1, . . . , kn) the permutation in
Σk that permutes the blocks ki−1 + 1, . . . , ki for 1 ⩽ i ⩽ n as σ
permutes the numbers 1, . . . , n. Then, the following diagram must
commute:

O(n)⊗ O(k1)⊗ . . .⊗ O(kn)
σ⊗σ−1
//

γ

��

O(n)⊗ O(kσ(1))⊗ . . .⊗ O(kσ(n))

γ

��
O(k)

σ(kσ(1),...,kσ(n)) // O(k).

The unit map η : k → O(1) fits into the following commutative
diagrams:

O(n)⊗ k⊗n

id⊗η⊗n

��

∼= // O(n)

O(n)⊗ O(1)⊗n

γ

88 and k ⊗ O(k)

η⊗id
��

∼= // O(k).

O(1)⊗ O(k)

γ

88

We require the following two equivariance conditions:
1) If σ ∈ Σn, then we denote by σ(k1, . . . , kn) the permutation in
Σk that permutes the blocks ki−1 + 1, . . . , ki for 1 ⩽ i ⩽ n as σ
permutes the numbers 1, . . . , n. Then, the following diagram must
commute:

O(n)⊗ O(k1)⊗ . . .⊗ O(kn)
σ⊗σ−1
//

γ

��

O(n)⊗ O(kσ(1))⊗ . . .⊗ O(kσ(n))

γ

��
O(k)

σ(kσ(1),...,kσ(n)) // O(k).

The unit map η : k → O(1) fits into the following commutative
diagrams:

O(n)⊗ k⊗n

id⊗η⊗n

��

∼= // O(n)

O(n)⊗ O(1)⊗n

γ

88 and k ⊗ O(k)

η⊗id
��

∼= // O(k).

O(1)⊗ O(k)

γ

88

We require the following two equivariance conditions:

1) If σ ∈ Σn, then we denote by σ(k1, . . . , kn) the permutation in
Σk that permutes the blocks ki−1 + 1, . . . , ki for 1 ⩽ i ⩽ n as σ
permutes the numbers 1, . . . , n. Then, the following diagram must
commute:

O(n)⊗ O(k1)⊗ . . .⊗ O(kn)
σ⊗σ−1
//

γ

��

O(n)⊗ O(kσ(1))⊗ . . .⊗ O(kσ(n))

γ

��
O(k)

σ(kσ(1),...,kσ(n)) // O(k).

The unit map η : k → O(1) fits into the following commutative
diagrams:

O(n)⊗ k⊗n

id⊗η⊗n

��

∼= // O(n)

O(n)⊗ O(1)⊗n

γ

88 and k ⊗ O(k)

η⊗id
��

∼= // O(k).

O(1)⊗ O(k)

γ

88

We require the following two equivariance conditions:
1) If σ ∈ Σn, then we denote by σ(k1, . . . , kn) the permutation in
Σk that permutes the blocks ki−1 + 1, . . . , ki for 1 ⩽ i ⩽ n as σ
permutes the numbers 1, . . . , n.

Then, the following diagram must
commute:

O(n)⊗ O(k1)⊗ . . .⊗ O(kn)
σ⊗σ−1
//

γ

��

O(n)⊗ O(kσ(1))⊗ . . .⊗ O(kσ(n))

γ

��
O(k)

σ(kσ(1),...,kσ(n)) // O(k).

The unit map η : k → O(1) fits into the following commutative
diagrams:

O(n)⊗ k⊗n

id⊗η⊗n

��

∼= // O(n)

O(n)⊗ O(1)⊗n

γ

88 and k ⊗ O(k)

η⊗id
��

∼= // O(k).

O(1)⊗ O(k)

γ

88

We require the following two equivariance conditions:
1) If σ ∈ Σn, then we denote by σ(k1, . . . , kn) the permutation in
Σk that permutes the blocks ki−1 + 1, . . . , ki for 1 ⩽ i ⩽ n as σ
permutes the numbers 1, . . . , n. Then, the following diagram must
commute:

O(n)⊗ O(k1)⊗ . . .⊗ O(kn)
σ⊗σ−1
//

γ

��

O(n)⊗ O(kσ(1))⊗ . . .⊗ O(kσ(n))

γ

��
O(k)

σ(kσ(1),...,kσ(n)) // O(k).

We also need the permutation τ1 ⊕ . . .⊕ τn ∈ Σk1+...+kn for
τi ∈ Σki for 1 ⩽ i ⩽ n, which is the concatenation of the τi s.

Then
the diagram

O(n)⊗ O(k1)⊗ . . .⊗ O(kn)

γ

��

1O(n)⊗τ1⊗...⊗τn// O(n)⊗ O(k1)⊗ . . .⊗ O(kn)

γ

��
O(k)

τ1⊕...⊕τn // O(k)

is commutative.
The vector space O(n) is often called the n-ary part of the operad.
There is a particularly sleak description of operads due to Martin
Markl in terms of ◦i products: one requires maps

◦i : O(m)⊗ O(n) → O(m + n − 1)

that have to satisfy several coherence conditions. In terms of the
classical definition, you can define the ◦i map as

w ◦i ν := γ(w ⊗ id⊗ . . .⊗ id⊗ ν ⊗ id⊗ . . .⊗ id)

where you insert the operation ν into the i-th spot of w .

We also need the permutation τ1 ⊕ . . .⊕ τn ∈ Σk1+...+kn for
τi ∈ Σki for 1 ⩽ i ⩽ n, which is the concatenation of the τi s. Then
the diagram

O(n)⊗ O(k1)⊗ . . .⊗ O(kn)

γ

��

1O(n)⊗τ1⊗...⊗τn// O(n)⊗ O(k1)⊗ . . .⊗ O(kn)

γ

��
O(k)

τ1⊕...⊕τn // O(k)

is commutative.

The vector space O(n) is often called the n-ary part of the operad.
There is a particularly sleak description of operads due to Martin
Markl in terms of ◦i products: one requires maps

◦i : O(m)⊗ O(n) → O(m + n − 1)

that have to satisfy several coherence conditions. In terms of the
classical definition, you can define the ◦i map as

w ◦i ν := γ(w ⊗ id⊗ . . .⊗ id⊗ ν ⊗ id⊗ . . .⊗ id)

where you insert the operation ν into the i-th spot of w .

We also need the permutation τ1 ⊕ . . .⊕ τn ∈ Σk1+...+kn for
τi ∈ Σki for 1 ⩽ i ⩽ n, which is the concatenation of the τi s. Then
the diagram

O(n)⊗ O(k1)⊗ . . .⊗ O(kn)

γ

��

1O(n)⊗τ1⊗...⊗τn// O(n)⊗ O(k1)⊗ . . .⊗ O(kn)

γ

��
O(k)

τ1⊕...⊕τn // O(k)

is commutative.
The vector space O(n) is often called the n-ary part of the operad.

There is a particularly sleak description of operads due to Martin
Markl in terms of ◦i products: one requires maps

◦i : O(m)⊗ O(n) → O(m + n − 1)

that have to satisfy several coherence conditions. In terms of the
classical definition, you can define the ◦i map as

w ◦i ν := γ(w ⊗ id⊗ . . .⊗ id⊗ ν ⊗ id⊗ . . .⊗ id)

where you insert the operation ν into the i-th spot of w .

We also need the permutation τ1 ⊕ . . .⊕ τn ∈ Σk1+...+kn for
τi ∈ Σki for 1 ⩽ i ⩽ n, which is the concatenation of the τi s. Then
the diagram

O(n)⊗ O(k1)⊗ . . .⊗ O(kn)

γ

��

1O(n)⊗τ1⊗...⊗τn// O(n)⊗ O(k1)⊗ . . .⊗ O(kn)

γ

��
O(k)

τ1⊕...⊕τn // O(k)

is commutative.
The vector space O(n) is often called the n-ary part of the operad.
There is a particularly sleak description of operads due to Martin
Markl in terms of ◦i products:

one requires maps

◦i : O(m)⊗ O(n) → O(m + n − 1)

that have to satisfy several coherence conditions. In terms of the
classical definition, you can define the ◦i map as

w ◦i ν := γ(w ⊗ id⊗ . . .⊗ id⊗ ν ⊗ id⊗ . . .⊗ id)

where you insert the operation ν into the i-th spot of w .

We also need the permutation τ1 ⊕ . . .⊕ τn ∈ Σk1+...+kn for
τi ∈ Σki for 1 ⩽ i ⩽ n, which is the concatenation of the τi s. Then
the diagram

O(n)⊗ O(k1)⊗ . . .⊗ O(kn)

γ

��

1O(n)⊗τ1⊗...⊗τn// O(n)⊗ O(k1)⊗ . . .⊗ O(kn)

γ

��
O(k)

τ1⊕...⊕τn // O(k)

is commutative.
The vector space O(n) is often called the n-ary part of the operad.
There is a particularly sleak description of operads due to Martin
Markl in terms of ◦i products: one requires maps

◦i : O(m)⊗ O(n) → O(m + n − 1)

that have to satisfy several coherence conditions.

In terms of the
classical definition, you can define the ◦i map as

w ◦i ν := γ(w ⊗ id⊗ . . .⊗ id⊗ ν ⊗ id⊗ . . .⊗ id)

where you insert the operation ν into the i-th spot of w .

We also need the permutation τ1 ⊕ . . .⊕ τn ∈ Σk1+...+kn for
τi ∈ Σki for 1 ⩽ i ⩽ n, which is the concatenation of the τi s. Then
the diagram

O(n)⊗ O(k1)⊗ . . .⊗ O(kn)

γ

��

1O(n)⊗τ1⊗...⊗τn// O(n)⊗ O(k1)⊗ . . .⊗ O(kn)

γ

��
O(k)

τ1⊕...⊕τn // O(k)

is commutative.
The vector space O(n) is often called the n-ary part of the operad.
There is a particularly sleak description of operads due to Martin
Markl in terms of ◦i products: one requires maps

◦i : O(m)⊗ O(n) → O(m + n − 1)

that have to satisfy several coherence conditions. In terms of the
classical definition, you can define the ◦i map as

w ◦i ν := γ(w ⊗ id⊗ . . .⊗ id⊗ ν ⊗ id⊗ . . .⊗ id)

where you insert the operation ν into the i-th spot of w .

Examples of operads

1) Let V be a vector space. The endomorphism operad on V ,
End(V), has as the n-ary part the vector space

End(V)(n) = Homk(V
⊗n,V).

The operad structure is just given by insertion of
homomorphisms: For f ∈ End(V)(n) and hi ∈ End(V)(ki):

γ(f ⊗ h1 ⊗ . . .⊗ hn) = f ◦ (h1 ⊗ . . .⊗ hn).

2) The operad Com has Com(n) = k for all n with trivial
Σn-action. The composition uses iterations of the canonical
identification k ⊗k k ∼= k .
3) The operad As has the k vector space with basis Σn as
n-ary part: As(n) = k{Σn}. The composition is dictated by
the equivariance condition in any operad: Explicitly,
(σ, τ1, . . . , τn) ∈ Σn × Σk1 × . . .× Σkn is sent to

γ(σ, τ1, . . . , τn) = (τσ−1(1) ⊕ . . .⊕ τσ−1(n)) ◦ σ(k1, . . . , kn).

Examples of operads
1) Let V be a vector space. The endomorphism operad on V ,
End(V), has as the n-ary part the vector space

End(V)(n) = Homk(V
⊗n,V).

The operad structure is just given by insertion of
homomorphisms: For f ∈ End(V)(n) and hi ∈ End(V)(ki):

γ(f ⊗ h1 ⊗ . . .⊗ hn) = f ◦ (h1 ⊗ . . .⊗ hn).

2) The operad Com has Com(n) = k for all n with trivial
Σn-action. The composition uses iterations of the canonical
identification k ⊗k k ∼= k .
3) The operad As has the k vector space with basis Σn as
n-ary part: As(n) = k{Σn}. The composition is dictated by
the equivariance condition in any operad: Explicitly,
(σ, τ1, . . . , τn) ∈ Σn × Σk1 × . . .× Σkn is sent to

γ(σ, τ1, . . . , τn) = (τσ−1(1) ⊕ . . .⊕ τσ−1(n)) ◦ σ(k1, . . . , kn).

Examples of operads
1) Let V be a vector space. The endomorphism operad on V ,
End(V), has as the n-ary part the vector space

End(V)(n) = Homk(V
⊗n,V).

The operad structure is just given by insertion of
homomorphisms:

For f ∈ End(V)(n) and hi ∈ End(V)(ki):

γ(f ⊗ h1 ⊗ . . .⊗ hn) = f ◦ (h1 ⊗ . . .⊗ hn).

2) The operad Com has Com(n) = k for all n with trivial
Σn-action. The composition uses iterations of the canonical
identification k ⊗k k ∼= k .
3) The operad As has the k vector space with basis Σn as
n-ary part: As(n) = k{Σn}. The composition is dictated by
the equivariance condition in any operad: Explicitly,
(σ, τ1, . . . , τn) ∈ Σn × Σk1 × . . .× Σkn is sent to

γ(σ, τ1, . . . , τn) = (τσ−1(1) ⊕ . . .⊕ τσ−1(n)) ◦ σ(k1, . . . , kn).

Examples of operads
1) Let V be a vector space. The endomorphism operad on V ,
End(V), has as the n-ary part the vector space

End(V)(n) = Homk(V
⊗n,V).

The operad structure is just given by insertion of
homomorphisms: For f ∈ End(V)(n) and hi ∈ End(V)(ki):

γ(f ⊗ h1 ⊗ . . .⊗ hn) = f ◦ (h1 ⊗ . . .⊗ hn).

2) The operad Com has Com(n) = k for all n with trivial
Σn-action. The composition uses iterations of the canonical
identification k ⊗k k ∼= k .
3) The operad As has the k vector space with basis Σn as
n-ary part: As(n) = k{Σn}. The composition is dictated by
the equivariance condition in any operad: Explicitly,
(σ, τ1, . . . , τn) ∈ Σn × Σk1 × . . .× Σkn is sent to

γ(σ, τ1, . . . , τn) = (τσ−1(1) ⊕ . . .⊕ τσ−1(n)) ◦ σ(k1, . . . , kn).

Examples of operads
1) Let V be a vector space. The endomorphism operad on V ,
End(V), has as the n-ary part the vector space

End(V)(n) = Homk(V
⊗n,V).

The operad structure is just given by insertion of
homomorphisms: For f ∈ End(V)(n) and hi ∈ End(V)(ki):

γ(f ⊗ h1 ⊗ . . .⊗ hn) = f ◦ (h1 ⊗ . . .⊗ hn).

2) The operad Com has Com(n) = k for all n with trivial
Σn-action.

The composition uses iterations of the canonical
identification k ⊗k k ∼= k .
3) The operad As has the k vector space with basis Σn as
n-ary part: As(n) = k{Σn}. The composition is dictated by
the equivariance condition in any operad: Explicitly,
(σ, τ1, . . . , τn) ∈ Σn × Σk1 × . . .× Σkn is sent to

γ(σ, τ1, . . . , τn) = (τσ−1(1) ⊕ . . .⊕ τσ−1(n)) ◦ σ(k1, . . . , kn).

Examples of operads
1) Let V be a vector space. The endomorphism operad on V ,
End(V), has as the n-ary part the vector space

End(V)(n) = Homk(V
⊗n,V).

The operad structure is just given by insertion of
homomorphisms: For f ∈ End(V)(n) and hi ∈ End(V)(ki):

γ(f ⊗ h1 ⊗ . . .⊗ hn) = f ◦ (h1 ⊗ . . .⊗ hn).

2) The operad Com has Com(n) = k for all n with trivial
Σn-action. The composition uses iterations of the canonical
identification k ⊗k k ∼= k .

3) The operad As has the k vector space with basis Σn as
n-ary part: As(n) = k{Σn}. The composition is dictated by
the equivariance condition in any operad: Explicitly,
(σ, τ1, . . . , τn) ∈ Σn × Σk1 × . . .× Σkn is sent to

γ(σ, τ1, . . . , τn) = (τσ−1(1) ⊕ . . .⊕ τσ−1(n)) ◦ σ(k1, . . . , kn).

Examples of operads
1) Let V be a vector space. The endomorphism operad on V ,
End(V), has as the n-ary part the vector space

End(V)(n) = Homk(V
⊗n,V).

The operad structure is just given by insertion of
homomorphisms: For f ∈ End(V)(n) and hi ∈ End(V)(ki):

γ(f ⊗ h1 ⊗ . . .⊗ hn) = f ◦ (h1 ⊗ . . .⊗ hn).

2) The operad Com has Com(n) = k for all n with trivial
Σn-action. The composition uses iterations of the canonical
identification k ⊗k k ∼= k .
3) The operad As has the k vector space with basis Σn as
n-ary part: As(n) = k{Σn}.

The composition is dictated by
the equivariance condition in any operad: Explicitly,
(σ, τ1, . . . , τn) ∈ Σn × Σk1 × . . .× Σkn is sent to

γ(σ, τ1, . . . , τn) = (τσ−1(1) ⊕ . . .⊕ τσ−1(n)) ◦ σ(k1, . . . , kn).

Examples of operads
1) Let V be a vector space. The endomorphism operad on V ,
End(V), has as the n-ary part the vector space

End(V)(n) = Homk(V
⊗n,V).

The operad structure is just given by insertion of
homomorphisms: For f ∈ End(V)(n) and hi ∈ End(V)(ki):

γ(f ⊗ h1 ⊗ . . .⊗ hn) = f ◦ (h1 ⊗ . . .⊗ hn).

2) The operad Com has Com(n) = k for all n with trivial
Σn-action. The composition uses iterations of the canonical
identification k ⊗k k ∼= k .
3) The operad As has the k vector space with basis Σn as
n-ary part: As(n) = k{Σn}. The composition is dictated by
the equivariance condition in any operad:

Explicitly,
(σ, τ1, . . . , τn) ∈ Σn × Σk1 × . . .× Σkn is sent to

γ(σ, τ1, . . . , τn) = (τσ−1(1) ⊕ . . .⊕ τσ−1(n)) ◦ σ(k1, . . . , kn).

Examples of operads
1) Let V be a vector space. The endomorphism operad on V ,
End(V), has as the n-ary part the vector space

End(V)(n) = Homk(V
⊗n,V).

The operad structure is just given by insertion of
homomorphisms: For f ∈ End(V)(n) and hi ∈ End(V)(ki):

γ(f ⊗ h1 ⊗ . . .⊗ hn) = f ◦ (h1 ⊗ . . .⊗ hn).

2) The operad Com has Com(n) = k for all n with trivial
Σn-action. The composition uses iterations of the canonical
identification k ⊗k k ∼= k .
3) The operad As has the k vector space with basis Σn as
n-ary part: As(n) = k{Σn}. The composition is dictated by
the equivariance condition in any operad: Explicitly,
(σ, τ1, . . . , τn) ∈ Σn × Σk1 × . . .× Σkn is sent to

γ(σ, τ1, . . . , τn) = (τσ−1(1) ⊕ . . .⊕ τσ−1(n)) ◦ σ(k1, . . . , kn).

4) The operad Lie has as Lie(n) the k-sub vector space of the free
Lie algebra on n generators Lie(x1, . . . , xn), generated by Lie-words
in which every generator occurs exactly once.

For instance for
n = 4 you have

[[[x3, x2], x1], x4] + [[x4, x3], [x1, x2]] ∈ Lie(4).

Beware of the antisymmetry condition if the characteristic is two!
In finite characteristic you might want to model restricted Lie
algebras. These need operadic algebras with divided powers.
Free Lie algebras have many different bases, called Hall bases.
Some of these are more amenable to generalizations to non-linear
situations than others.

4) The operad Lie has as Lie(n) the k-sub vector space of the free
Lie algebra on n generators Lie(x1, . . . , xn), generated by Lie-words
in which every generator occurs exactly once. For instance for
n = 4 you have

[[[x3, x2], x1], x4] + [[x4, x3], [x1, x2]] ∈ Lie(4).

Beware of the antisymmetry condition if the characteristic is two!
In finite characteristic you might want to model restricted Lie
algebras. These need operadic algebras with divided powers.
Free Lie algebras have many different bases, called Hall bases.
Some of these are more amenable to generalizations to non-linear
situations than others.

4) The operad Lie has as Lie(n) the k-sub vector space of the free
Lie algebra on n generators Lie(x1, . . . , xn), generated by Lie-words
in which every generator occurs exactly once. For instance for
n = 4 you have

[[[x3, x2], x1], x4] + [[x4, x3], [x1, x2]] ∈ Lie(4).

Beware of the antisymmetry condition if the characteristic is two!

In finite characteristic you might want to model restricted Lie
algebras. These need operadic algebras with divided powers.
Free Lie algebras have many different bases, called Hall bases.
Some of these are more amenable to generalizations to non-linear
situations than others.

4) The operad Lie has as Lie(n) the k-sub vector space of the free
Lie algebra on n generators Lie(x1, . . . , xn), generated by Lie-words
in which every generator occurs exactly once. For instance for
n = 4 you have

[[[x3, x2], x1], x4] + [[x4, x3], [x1, x2]] ∈ Lie(4).

Beware of the antisymmetry condition if the characteristic is two!
In finite characteristic you might want to model restricted Lie
algebras.

These need operadic algebras with divided powers.
Free Lie algebras have many different bases, called Hall bases.
Some of these are more amenable to generalizations to non-linear
situations than others.

4) The operad Lie has as Lie(n) the k-sub vector space of the free
Lie algebra on n generators Lie(x1, . . . , xn), generated by Lie-words
in which every generator occurs exactly once. For instance for
n = 4 you have

[[[x3, x2], x1], x4] + [[x4, x3], [x1, x2]] ∈ Lie(4).

Beware of the antisymmetry condition if the characteristic is two!
In finite characteristic you might want to model restricted Lie
algebras. These need operadic algebras with divided powers.

Free Lie algebras have many different bases, called Hall bases.
Some of these are more amenable to generalizations to non-linear
situations than others.

4) The operad Lie has as Lie(n) the k-sub vector space of the free
Lie algebra on n generators Lie(x1, . . . , xn), generated by Lie-words
in which every generator occurs exactly once. For instance for
n = 4 you have

[[[x3, x2], x1], x4] + [[x4, x3], [x1, x2]] ∈ Lie(4).

Beware of the antisymmetry condition if the characteristic is two!
In finite characteristic you might want to model restricted Lie
algebras. These need operadic algebras with divided powers.
Free Lie algebras have many different bases, called Hall bases.

Some of these are more amenable to generalizations to non-linear
situations than others.

4) The operad Lie has as Lie(n) the k-sub vector space of the free
Lie algebra on n generators Lie(x1, . . . , xn), generated by Lie-words
in which every generator occurs exactly once. For instance for
n = 4 you have

[[[x3, x2], x1], x4] + [[x4, x3], [x1, x2]] ∈ Lie(4).

Beware of the antisymmetry condition if the characteristic is two!
In finite characteristic you might want to model restricted Lie
algebras. These need operadic algebras with divided powers.
Free Lie algebras have many different bases, called Hall bases.
Some of these are more amenable to generalizations to non-linear
situations than others.

We unravel what an algebra A over an operad O is:

A vector space
A is an O-algebra if there are linear maps θn : O(n)⊗ A⊗n → A for
all n that are associative, unital, and equivariant in the following
sense:
1) The action maps are associative. For all k =

∑n
i=1 ki , the

diagram

O(n)⊗ O(k1)⊗ . . .⊗ O(kn)⊗ A⊗k γ⊗1 //

shuffle
��

O(k)⊗ A⊗k

θk

��

O(n)⊗ O(k1)⊗ A⊗k1 ⊗ . . .⊗ O(kn)⊗ A⊗kn

1⊗θk1⊗...⊗θkn
��

O(n)⊗ A⊗n θn // A

commutes.

We unravel what an algebra A over an operad O is: A vector space
A is an O-algebra if there are linear maps θn : O(n)⊗ A⊗n → A for
all n that are associative, unital, and equivariant in the following
sense:

1) The action maps are associative. For all k =
∑n

i=1 ki , the
diagram

O(n)⊗ O(k1)⊗ . . .⊗ O(kn)⊗ A⊗k γ⊗1 //

shuffle
��

O(k)⊗ A⊗k

θk

��

O(n)⊗ O(k1)⊗ A⊗k1 ⊗ . . .⊗ O(kn)⊗ A⊗kn

1⊗θk1⊗...⊗θkn
��

O(n)⊗ A⊗n θn // A

commutes.

We unravel what an algebra A over an operad O is: A vector space
A is an O-algebra if there are linear maps θn : O(n)⊗ A⊗n → A for
all n that are associative, unital, and equivariant in the following
sense:
1) The action maps are associative.

For all k =
∑n

i=1 ki , the
diagram

O(n)⊗ O(k1)⊗ . . .⊗ O(kn)⊗ A⊗k γ⊗1 //

shuffle
��

O(k)⊗ A⊗k

θk

��

O(n)⊗ O(k1)⊗ A⊗k1 ⊗ . . .⊗ O(kn)⊗ A⊗kn

1⊗θk1⊗...⊗θkn
��

O(n)⊗ A⊗n θn // A

commutes.

We unravel what an algebra A over an operad O is: A vector space
A is an O-algebra if there are linear maps θn : O(n)⊗ A⊗n → A for
all n that are associative, unital, and equivariant in the following
sense:
1) The action maps are associative. For all k =

∑n
i=1 ki , the

diagram

O(n)⊗ O(k1)⊗ . . .⊗ O(kn)⊗ A⊗k γ⊗1 //

shuffle
��

O(k)⊗ A⊗k

θk

��

O(n)⊗ O(k1)⊗ A⊗k1 ⊗ . . .⊗ O(kn)⊗ A⊗kn

1⊗θk1⊗...⊗θkn
��

O(n)⊗ A⊗n θn // A

commutes.

2) The action is unital:

k ⊗ A

η⊗1
��

∼= // A.

O(1)⊗ A

θ1

::

3) The symmetric group action on the operad and on n-fold tensor
powers of A is compatible for all n:

O(n)⊗ A⊗n σ⊗σ−1
//

θn
%%

O(n)⊗ A⊗n

θn
yy

A

(1)

commutes for all σ ∈ Σn.
There are many equivalent ways of saying what an algebra over an
operad is. I’ll mention one more.

2) The action is unital:

k ⊗ A

η⊗1
��

∼= // A.

O(1)⊗ A

θ1

::

3) The symmetric group action on the operad and on n-fold tensor
powers of A is compatible for all n:

O(n)⊗ A⊗n σ⊗σ−1
//

θn
%%

O(n)⊗ A⊗n

θn
yy

A

(1)

commutes for all σ ∈ Σn.
There are many equivalent ways of saying what an algebra over an
operad is. I’ll mention one more.

2) The action is unital:

k ⊗ A

η⊗1
��

∼= // A.

O(1)⊗ A

θ1

::

3) The symmetric group action on the operad and on n-fold tensor
powers of A is compatible for all n:

O(n)⊗ A⊗n σ⊗σ−1
//

θn
%%

O(n)⊗ A⊗n

θn
yy

A

(1)

commutes for all σ ∈ Σn.
There are many equivalent ways of saying what an algebra over an
operad is. I’ll mention one more.

2) The action is unital:

k ⊗ A

η⊗1
��

∼= // A.

O(1)⊗ A

θ1

::

3) The symmetric group action on the operad and on n-fold tensor
powers of A is compatible for all n:

O(n)⊗ A⊗n σ⊗σ−1
//

θn
%%

O(n)⊗ A⊗n

θn
yy

A

(1)

commutes for all σ ∈ Σn.

There are many equivalent ways of saying what an algebra over an
operad is. I’ll mention one more.

2) The action is unital:

k ⊗ A

η⊗1
��

∼= // A.

O(1)⊗ A

θ1

::

3) The symmetric group action on the operad and on n-fold tensor
powers of A is compatible for all n:

O(n)⊗ A⊗n σ⊗σ−1
//

θn
%%

O(n)⊗ A⊗n

θn
yy

A

(1)

commutes for all σ ∈ Σn.
There are many equivalent ways of saying what an algebra over an
operad is. I’ll mention one more.

A vector space A is an algebra over an operad O, if there is an
action map θA : Õ(A) → A from the Schur functor for O and A to
A such that the diagrams

Õ ◦ O(A)
∼= //

γ̃(A)
��

Õ(Õ(A))
Õ(θA) // Õ(A)

θA

��
Õ(A)

θA // A

and ẽ(A)
i1 // Õ(A)

θA
��
A

commute.

A vector space A is an algebra over an operad O, if there is an
action map θA : Õ(A) → A from the Schur functor for O and A to
A such that the diagrams

Õ ◦ O(A)
∼= //

γ̃(A)
��

Õ(Õ(A))
Õ(θA) // Õ(A)

θA

��
Õ(A)

θA // A

and ẽ(A)
i1 // Õ(A)

θA
��
A

commute.

Examples of algebras over operads

1) Let V be a vector space. Then V is an algebra over its
endomorphism operad, End(V). The action map

θV : End(V)(n)⊗ V⊗n = Homk(V
⊗n,V)⊗ V⊗n → V

just evaluates a linear map f : V⊗n → V on V⊗n.

In fact, this gives an alternative way of defining an algebra
over an operad: A vector space A is an O-algebra if and only if
there is a morphism of operads α : O → End(A).
2) An algebra over the operad Com is a commutative algebra
A: As Com(n) = k for all n, we just have one operation (up
to scalar multiple) µn ∈ Com(n) and for every permutation
σ ∈ Σn we have µn ◦ σ = µn because the Σn-action was trivial.
If we abbreviate θn(µn ⊗ a1 ⊗ . . .⊗ an) by a1 · . . . · an, then the
equivariance condition on θ says that

a1 · . . . · an = aσ−1(1) · . . . · aσ−1(n) for all σ ∈ Σn

and hence the multiplication in A is commutative and
associative.

Examples of algebras over operads
1) Let V be a vector space. Then V is an algebra over its
endomorphism operad, End(V).

The action map

θV : End(V)(n)⊗ V⊗n = Homk(V
⊗n,V)⊗ V⊗n → V

just evaluates a linear map f : V⊗n → V on V⊗n.

In fact, this gives an alternative way of defining an algebra
over an operad: A vector space A is an O-algebra if and only if
there is a morphism of operads α : O → End(A).
2) An algebra over the operad Com is a commutative algebra
A: As Com(n) = k for all n, we just have one operation (up
to scalar multiple) µn ∈ Com(n) and for every permutation
σ ∈ Σn we have µn ◦ σ = µn because the Σn-action was trivial.
If we abbreviate θn(µn ⊗ a1 ⊗ . . .⊗ an) by a1 · . . . · an, then the
equivariance condition on θ says that

a1 · . . . · an = aσ−1(1) · . . . · aσ−1(n) for all σ ∈ Σn

and hence the multiplication in A is commutative and
associative.

Examples of algebras over operads
1) Let V be a vector space. Then V is an algebra over its
endomorphism operad, End(V). The action map

θV : End(V)(n)⊗ V⊗n = Homk(V
⊗n,V)⊗ V⊗n → V

just evaluates a linear map f : V⊗n → V on V⊗n.

In fact, this gives an alternative way of defining an algebra
over an operad: A vector space A is an O-algebra if and only if
there is a morphism of operads α : O → End(A).
2) An algebra over the operad Com is a commutative algebra
A: As Com(n) = k for all n, we just have one operation (up
to scalar multiple) µn ∈ Com(n) and for every permutation
σ ∈ Σn we have µn ◦ σ = µn because the Σn-action was trivial.
If we abbreviate θn(µn ⊗ a1 ⊗ . . .⊗ an) by a1 · . . . · an, then the
equivariance condition on θ says that

a1 · . . . · an = aσ−1(1) · . . . · aσ−1(n) for all σ ∈ Σn

and hence the multiplication in A is commutative and
associative.

Examples of algebras over operads
1) Let V be a vector space. Then V is an algebra over its
endomorphism operad, End(V). The action map

θV : End(V)(n)⊗ V⊗n = Homk(V
⊗n,V)⊗ V⊗n → V

just evaluates a linear map f : V⊗n → V on V⊗n.

In fact, this gives an alternative way of defining an algebra
over an operad: A vector space A is an O-algebra if and only if
there is a morphism of operads α : O → End(A).

2) An algebra over the operad Com is a commutative algebra
A: As Com(n) = k for all n, we just have one operation (up
to scalar multiple) µn ∈ Com(n) and for every permutation
σ ∈ Σn we have µn ◦ σ = µn because the Σn-action was trivial.
If we abbreviate θn(µn ⊗ a1 ⊗ . . .⊗ an) by a1 · . . . · an, then the
equivariance condition on θ says that

a1 · . . . · an = aσ−1(1) · . . . · aσ−1(n) for all σ ∈ Σn

and hence the multiplication in A is commutative and
associative.

Examples of algebras over operads
1) Let V be a vector space. Then V is an algebra over its
endomorphism operad, End(V). The action map

θV : End(V)(n)⊗ V⊗n = Homk(V
⊗n,V)⊗ V⊗n → V

just evaluates a linear map f : V⊗n → V on V⊗n.

In fact, this gives an alternative way of defining an algebra
over an operad: A vector space A is an O-algebra if and only if
there is a morphism of operads α : O → End(A).
2) An algebra over the operad Com is a commutative algebra
A:

As Com(n) = k for all n, we just have one operation (up
to scalar multiple) µn ∈ Com(n) and for every permutation
σ ∈ Σn we have µn ◦ σ = µn because the Σn-action was trivial.
If we abbreviate θn(µn ⊗ a1 ⊗ . . .⊗ an) by a1 · . . . · an, then the
equivariance condition on θ says that

a1 · . . . · an = aσ−1(1) · . . . · aσ−1(n) for all σ ∈ Σn

and hence the multiplication in A is commutative and
associative.

Examples of algebras over operads
1) Let V be a vector space. Then V is an algebra over its
endomorphism operad, End(V). The action map

θV : End(V)(n)⊗ V⊗n = Homk(V
⊗n,V)⊗ V⊗n → V

just evaluates a linear map f : V⊗n → V on V⊗n.

In fact, this gives an alternative way of defining an algebra
over an operad: A vector space A is an O-algebra if and only if
there is a morphism of operads α : O → End(A).
2) An algebra over the operad Com is a commutative algebra
A: As Com(n) = k for all n, we just have one operation (up
to scalar multiple) µn ∈ Com(n)

and for every permutation
σ ∈ Σn we have µn ◦ σ = µn because the Σn-action was trivial.
If we abbreviate θn(µn ⊗ a1 ⊗ . . .⊗ an) by a1 · . . . · an, then the
equivariance condition on θ says that

a1 · . . . · an = aσ−1(1) · . . . · aσ−1(n) for all σ ∈ Σn

and hence the multiplication in A is commutative and
associative.

Examples of algebras over operads
1) Let V be a vector space. Then V is an algebra over its
endomorphism operad, End(V). The action map

θV : End(V)(n)⊗ V⊗n = Homk(V
⊗n,V)⊗ V⊗n → V

just evaluates a linear map f : V⊗n → V on V⊗n.

In fact, this gives an alternative way of defining an algebra
over an operad: A vector space A is an O-algebra if and only if
there is a morphism of operads α : O → End(A).
2) An algebra over the operad Com is a commutative algebra
A: As Com(n) = k for all n, we just have one operation (up
to scalar multiple) µn ∈ Com(n) and for every permutation
σ ∈ Σn we have µn ◦ σ = µn because the Σn-action was trivial.

If we abbreviate θn(µn ⊗ a1 ⊗ . . .⊗ an) by a1 · . . . · an, then the
equivariance condition on θ says that

a1 · . . . · an = aσ−1(1) · . . . · aσ−1(n) for all σ ∈ Σn

and hence the multiplication in A is commutative and
associative.

Examples of algebras over operads
1) Let V be a vector space. Then V is an algebra over its
endomorphism operad, End(V). The action map

θV : End(V)(n)⊗ V⊗n = Homk(V
⊗n,V)⊗ V⊗n → V

just evaluates a linear map f : V⊗n → V on V⊗n.

In fact, this gives an alternative way of defining an algebra
over an operad: A vector space A is an O-algebra if and only if
there is a morphism of operads α : O → End(A).
2) An algebra over the operad Com is a commutative algebra
A: As Com(n) = k for all n, we just have one operation (up
to scalar multiple) µn ∈ Com(n) and for every permutation
σ ∈ Σn we have µn ◦ σ = µn because the Σn-action was trivial.
If we abbreviate θn(µn ⊗ a1 ⊗ . . .⊗ an) by a1 · . . . · an, then the
equivariance condition on θ says that

a1 · . . . · an = aσ−1(1) · . . . · aσ−1(n) for all σ ∈ Σn

and hence the multiplication in A is commutative and
associative.

Examples of algebras over operads
1) Let V be a vector space. Then V is an algebra over its
endomorphism operad, End(V). The action map

θV : End(V)(n)⊗ V⊗n = Homk(V
⊗n,V)⊗ V⊗n → V

just evaluates a linear map f : V⊗n → V on V⊗n.

In fact, this gives an alternative way of defining an algebra
over an operad: A vector space A is an O-algebra if and only if
there is a morphism of operads α : O → End(A).
2) An algebra over the operad Com is a commutative algebra
A: As Com(n) = k for all n, we just have one operation (up
to scalar multiple) µn ∈ Com(n) and for every permutation
σ ∈ Σn we have µn ◦ σ = µn because the Σn-action was trivial.
If we abbreviate θn(µn ⊗ a1 ⊗ . . .⊗ an) by a1 · . . . · an, then the
equivariance condition on θ says that

a1 · . . . · an = aσ−1(1) · . . . · aσ−1(n) for all σ ∈ Σn

and hence the multiplication in A is commutative and
associative.

3) An algebra A over the operad As is an associative algebra:

The
multiplication in A corresponds to

a · b = θ2(id2 ⊗ a⊗ b) for a, b ∈ A

but we also have

b · a = θ2((1, 2)⊗ a⊗ b).

For larger n

θn(σ ⊗ a1 ⊗ . . .⊗ an) = aσ−1(1) · . . . · aσ−1(n)

so the multiplication is associative but not necessarily
commutative.
4) An algebra g over the operad Lie is a Lie-algebra with

[x , y] := θ2([x1, x2]⊗ x ⊗ y) for x , y ∈ g.

Anti-symmetry and the Jacobi relation hold because they hold in
the free Lie-algebra.

3) An algebra A over the operad As is an associative algebra: The
multiplication in A corresponds to

a · b = θ2(id2 ⊗ a⊗ b) for a, b ∈ A

but we also have

b · a = θ2((1, 2)⊗ a⊗ b).

For larger n

θn(σ ⊗ a1 ⊗ . . .⊗ an) = aσ−1(1) · . . . · aσ−1(n)

so the multiplication is associative but not necessarily
commutative.
4) An algebra g over the operad Lie is a Lie-algebra with

[x , y] := θ2([x1, x2]⊗ x ⊗ y) for x , y ∈ g.

Anti-symmetry and the Jacobi relation hold because they hold in
the free Lie-algebra.

3) An algebra A over the operad As is an associative algebra: The
multiplication in A corresponds to

a · b = θ2(id2 ⊗ a⊗ b) for a, b ∈ A

but we also have

b · a = θ2((1, 2)⊗ a⊗ b).

For larger n

θn(σ ⊗ a1 ⊗ . . .⊗ an) = aσ−1(1) · . . . · aσ−1(n)

so the multiplication is associative but not necessarily
commutative.
4) An algebra g over the operad Lie is a Lie-algebra with

[x , y] := θ2([x1, x2]⊗ x ⊗ y) for x , y ∈ g.

Anti-symmetry and the Jacobi relation hold because they hold in
the free Lie-algebra.

3) An algebra A over the operad As is an associative algebra: The
multiplication in A corresponds to

a · b = θ2(id2 ⊗ a⊗ b) for a, b ∈ A

but we also have

b · a = θ2((1, 2)⊗ a⊗ b).

For larger n

θn(σ ⊗ a1 ⊗ . . .⊗ an) = aσ−1(1) · . . . · aσ−1(n)

so the multiplication is associative but not necessarily
commutative.

4) An algebra g over the operad Lie is a Lie-algebra with

[x , y] := θ2([x1, x2]⊗ x ⊗ y) for x , y ∈ g.

Anti-symmetry and the Jacobi relation hold because they hold in
the free Lie-algebra.

3) An algebra A over the operad As is an associative algebra: The
multiplication in A corresponds to

a · b = θ2(id2 ⊗ a⊗ b) for a, b ∈ A

but we also have

b · a = θ2((1, 2)⊗ a⊗ b).

For larger n

θn(σ ⊗ a1 ⊗ . . .⊗ an) = aσ−1(1) · . . . · aσ−1(n)

so the multiplication is associative but not necessarily
commutative.
4) An algebra g over the operad Lie is a Lie-algebra with

[x , y] := θ2([x1, x2]⊗ x ⊗ y) for x , y ∈ g.

Anti-symmetry and the Jacobi relation hold because they hold in
the free Lie-algebra.

3) An algebra A over the operad As is an associative algebra: The
multiplication in A corresponds to

a · b = θ2(id2 ⊗ a⊗ b) for a, b ∈ A

but we also have

b · a = θ2((1, 2)⊗ a⊗ b).

For larger n

θn(σ ⊗ a1 ⊗ . . .⊗ an) = aσ−1(1) · . . . · aσ−1(n)

so the multiplication is associative but not necessarily
commutative.
4) An algebra g over the operad Lie is a Lie-algebra with

[x , y] := θ2([x1, x2]⊗ x ⊗ y) for x , y ∈ g.

Anti-symmetry and the Jacobi relation hold because they hold in
the free Lie-algebra.

Remarks A morphism of operads β : O → P induces a functor from
the category of P-algebras to the category of O-algebras:

if A is a
P-algebra, then we can precompose its structure map P → End(A)
with β to obtain O → End(A).

Every commutative and associative algebra is an associative
algebra. This can be encoded by the map of operads

As → Com, with As(n) = k[Σn] → k = Com(n), σ 7→ 1 for all σ ∈ Σn.

Every associative algebra A is a Lie algebra with the commutator
bracket

[a, b] := ab − ba.

The Schur functor of an operad plays another important role:
Proposition
Let O be a linear operad. The functor Õ : Vect → O-algs,
V 7→ Õ(V), is left adjoint to the forgetful functor
U : O-algs → Vect.
So Õ(V) =

⊕
n⩾0O(n)⊗k[Σn] V

⊗n is the free O-algebra generated
by V .

Remarks A morphism of operads β : O → P induces a functor from
the category of P-algebras to the category of O-algebras: if A is a
P-algebra, then we can precompose its structure map P → End(A)
with β to obtain O → End(A).

Every commutative and associative algebra is an associative
algebra. This can be encoded by the map of operads

As → Com, with As(n) = k[Σn] → k = Com(n), σ 7→ 1 for all σ ∈ Σn.

Every associative algebra A is a Lie algebra with the commutator
bracket

[a, b] := ab − ba.

The Schur functor of an operad plays another important role:
Proposition
Let O be a linear operad. The functor Õ : Vect → O-algs,
V 7→ Õ(V), is left adjoint to the forgetful functor
U : O-algs → Vect.
So Õ(V) =

⊕
n⩾0O(n)⊗k[Σn] V

⊗n is the free O-algebra generated
by V .

Remarks A morphism of operads β : O → P induces a functor from
the category of P-algebras to the category of O-algebras: if A is a
P-algebra, then we can precompose its structure map P → End(A)
with β to obtain O → End(A).

Every commutative and associative algebra is an associative
algebra.

This can be encoded by the map of operads

As → Com, with As(n) = k[Σn] → k = Com(n), σ 7→ 1 for all σ ∈ Σn.

Every associative algebra A is a Lie algebra with the commutator
bracket

[a, b] := ab − ba.

The Schur functor of an operad plays another important role:
Proposition
Let O be a linear operad. The functor Õ : Vect → O-algs,
V 7→ Õ(V), is left adjoint to the forgetful functor
U : O-algs → Vect.
So Õ(V) =

⊕
n⩾0O(n)⊗k[Σn] V

⊗n is the free O-algebra generated
by V .

Remarks A morphism of operads β : O → P induces a functor from
the category of P-algebras to the category of O-algebras: if A is a
P-algebra, then we can precompose its structure map P → End(A)
with β to obtain O → End(A).

Every commutative and associative algebra is an associative
algebra. This can be encoded by the map of operads

As → Com, with As(n) = k[Σn] → k = Com(n), σ 7→ 1 for all σ ∈ Σn.

Every associative algebra A is a Lie algebra with the commutator
bracket

[a, b] := ab − ba.

The Schur functor of an operad plays another important role:
Proposition
Let O be a linear operad. The functor Õ : Vect → O-algs,
V 7→ Õ(V), is left adjoint to the forgetful functor
U : O-algs → Vect.
So Õ(V) =

⊕
n⩾0O(n)⊗k[Σn] V

⊗n is the free O-algebra generated
by V .

Remarks A morphism of operads β : O → P induces a functor from
the category of P-algebras to the category of O-algebras: if A is a
P-algebra, then we can precompose its structure map P → End(A)
with β to obtain O → End(A).

Every commutative and associative algebra is an associative
algebra. This can be encoded by the map of operads

As → Com, with As(n) = k[Σn] → k = Com(n), σ 7→ 1 for all σ ∈ Σn.

Every associative algebra A is a Lie algebra with the commutator
bracket

[a, b] := ab − ba.

The Schur functor of an operad plays another important role:
Proposition
Let O be a linear operad. The functor Õ : Vect → O-algs,
V 7→ Õ(V), is left adjoint to the forgetful functor
U : O-algs → Vect.
So Õ(V) =

⊕
n⩾0O(n)⊗k[Σn] V

⊗n is the free O-algebra generated
by V .

Remarks A morphism of operads β : O → P induces a functor from
the category of P-algebras to the category of O-algebras: if A is a
P-algebra, then we can precompose its structure map P → End(A)
with β to obtain O → End(A).

Every commutative and associative algebra is an associative
algebra. This can be encoded by the map of operads

As → Com, with As(n) = k[Σn] → k = Com(n), σ 7→ 1 for all σ ∈ Σn.

Every associative algebra A is a Lie algebra with the commutator
bracket

[a, b] := ab − ba.

The Schur functor of an operad plays another important role:

Proposition
Let O be a linear operad. The functor Õ : Vect → O-algs,
V 7→ Õ(V), is left adjoint to the forgetful functor
U : O-algs → Vect.
So Õ(V) =

⊕
n⩾0O(n)⊗k[Σn] V

⊗n is the free O-algebra generated
by V .

Remarks A morphism of operads β : O → P induces a functor from
the category of P-algebras to the category of O-algebras: if A is a
P-algebra, then we can precompose its structure map P → End(A)
with β to obtain O → End(A).

Every commutative and associative algebra is an associative
algebra. This can be encoded by the map of operads

As → Com, with As(n) = k[Σn] → k = Com(n), σ 7→ 1 for all σ ∈ Σn.

Every associative algebra A is a Lie algebra with the commutator
bracket

[a, b] := ab − ba.

The Schur functor of an operad plays another important role:
Proposition
Let O be a linear operad. The functor Õ : Vect → O-algs,
V 7→ Õ(V), is left adjoint to the forgetful functor
U : O-algs → Vect.

So Õ(V) =
⊕

n⩾0O(n)⊗k[Σn] V
⊗n is the free O-algebra generated

by V .

Remarks A morphism of operads β : O → P induces a functor from
the category of P-algebras to the category of O-algebras: if A is a
P-algebra, then we can precompose its structure map P → End(A)
with β to obtain O → End(A).

Every commutative and associative algebra is an associative
algebra. This can be encoded by the map of operads

As → Com, with As(n) = k[Σn] → k = Com(n), σ 7→ 1 for all σ ∈ Σn.

Every associative algebra A is a Lie algebra with the commutator
bracket

[a, b] := ab − ba.

The Schur functor of an operad plays another important role:
Proposition
Let O be a linear operad. The functor Õ : Vect → O-algs,
V 7→ Õ(V), is left adjoint to the forgetful functor
U : O-algs → Vect.
So Õ(V) =

⊕
n⩾0O(n)⊗k[Σn] V

⊗n is the free O-algebra generated
by V .

Cooperads and coalgebras over them

Beware, that there are different conventions about cooperads
and their coalgebras. The one below follows Loday-Vallette.
There is a slightly different monoidal structure on Vect-Σ than
◦ and cooperads are comonoids in that structure.
Definition

1. For two symmetric sequences M ,N we set

(M ◦̃N)(n) =
⊕
ℓ⩾0

(M(ℓ)⊗ N⊙ℓ)Σℓ(n).

The unit for this structure is still e = (0, k , 0, . . .).

2. A (linear) cooperad P is a symmetric sequence in the
category of k-vector spaces that is a comonoid with
respect to ◦̃.

3. If C is a cooperad and if C is a k-vector space, then we set

Ĉ(C) :=
∏
n⩾0

(C(n)⊗ C⊗n)Σn .

Cooperads and coalgebras over them
Beware, that there are different conventions about cooperads
and their coalgebras. The one below follows Loday-Vallette.

There is a slightly different monoidal structure on Vect-Σ than
◦ and cooperads are comonoids in that structure.
Definition

1. For two symmetric sequences M ,N we set

(M ◦̃N)(n) =
⊕
ℓ⩾0

(M(ℓ)⊗ N⊙ℓ)Σℓ(n).

The unit for this structure is still e = (0, k , 0, . . .).

2. A (linear) cooperad P is a symmetric sequence in the
category of k-vector spaces that is a comonoid with
respect to ◦̃.

3. If C is a cooperad and if C is a k-vector space, then we set

Ĉ(C) :=
∏
n⩾0

(C(n)⊗ C⊗n)Σn .

Cooperads and coalgebras over them
Beware, that there are different conventions about cooperads
and their coalgebras. The one below follows Loday-Vallette.
There is a slightly different monoidal structure on Vect-Σ than
◦ and cooperads are comonoids in that structure.

Definition

1. For two symmetric sequences M ,N we set

(M ◦̃N)(n) =
⊕
ℓ⩾0

(M(ℓ)⊗ N⊙ℓ)Σℓ(n).

The unit for this structure is still e = (0, k , 0, . . .).

2. A (linear) cooperad P is a symmetric sequence in the
category of k-vector spaces that is a comonoid with
respect to ◦̃.

3. If C is a cooperad and if C is a k-vector space, then we set

Ĉ(C) :=
∏
n⩾0

(C(n)⊗ C⊗n)Σn .

Cooperads and coalgebras over them
Beware, that there are different conventions about cooperads
and their coalgebras. The one below follows Loday-Vallette.
There is a slightly different monoidal structure on Vect-Σ than
◦ and cooperads are comonoids in that structure.
Definition

1. For two symmetric sequences M ,N we set

(M ◦̃N)(n) =
⊕
ℓ⩾0

(M(ℓ)⊗ N⊙ℓ)Σℓ(n).

The unit for this structure is still e = (0, k , 0, . . .).

2. A (linear) cooperad P is a symmetric sequence in the
category of k-vector spaces that is a comonoid with
respect to ◦̃.

3. If C is a cooperad and if C is a k-vector space, then we set

Ĉ(C) :=
∏
n⩾0

(C(n)⊗ C⊗n)Σn .

Cooperads and coalgebras over them
Beware, that there are different conventions about cooperads
and their coalgebras. The one below follows Loday-Vallette.
There is a slightly different monoidal structure on Vect-Σ than
◦ and cooperads are comonoids in that structure.
Definition

1. For two symmetric sequences M ,N we set

(M ◦̃N)(n) =
⊕
ℓ⩾0

(M(ℓ)⊗ N⊙ℓ)Σℓ(n).

The unit for this structure is still e = (0, k , 0, . . .).

2. A (linear) cooperad P is a symmetric sequence in the
category of k-vector spaces that is a comonoid with
respect to ◦̃.

3. If C is a cooperad and if C is a k-vector space, then we set

Ĉ(C) :=
∏
n⩾0

(C(n)⊗ C⊗n)Σn .

Cooperads and coalgebras over them
Beware, that there are different conventions about cooperads
and their coalgebras. The one below follows Loday-Vallette.
There is a slightly different monoidal structure on Vect-Σ than
◦ and cooperads are comonoids in that structure.
Definition

1. For two symmetric sequences M ,N we set

(M ◦̃N)(n) =
⊕
ℓ⩾0

(M(ℓ)⊗ N⊙ℓ)Σℓ(n).

The unit for this structure is still e = (0, k , 0, . . .).

2. A (linear) cooperad P is a symmetric sequence in the
category of k-vector spaces that is a comonoid with
respect to ◦̃.

3. If C is a cooperad and if C is a k-vector space, then we set

Ĉ(C) :=
∏
n⩾0

(C(n)⊗ C⊗n)Σn .

Cooperads and coalgebras over them
Beware, that there are different conventions about cooperads
and their coalgebras. The one below follows Loday-Vallette.
There is a slightly different monoidal structure on Vect-Σ than
◦ and cooperads are comonoids in that structure.
Definition

1. For two symmetric sequences M ,N we set

(M ◦̃N)(n) =
⊕
ℓ⩾0

(M(ℓ)⊗ N⊙ℓ)Σℓ(n).

The unit for this structure is still e = (0, k , 0, . . .).

2. A (linear) cooperad P is a symmetric sequence in the
category of k-vector spaces that is a comonoid with
respect to ◦̃.

3. If C is a cooperad and if C is a k-vector space, then we set

Ĉ(C) :=
∏
n⩾0

(C(n)⊗ C⊗n)Σn .

A coalgebra C over a cooperad C is a vector space with a
cooperation ∆C : C → Ĉ(C)

such that this cooperation is
coassociative and counital in the sense that the diagrams

C
∆C //

∆C
��

Ĉ(C)

∆Ĉ(C)
��

Ĉ(C)
Ĉ(∆C) // Ĉ(Ĉ(C))

and C

∆C
��

Ĉ(C)
ϱ1 // C

commute.
Explicitly, a cooperad has decompositions

χ : C(
∑
i=1

ki) → C(n)⊗ C(k1)⊗ . . .⊗ C(kn)

and these are co-unital, coassociative and satisfy an equivariance
condition, dual to the ones of an operad.
Similarly, for a coalgebra C over a cooperad C we have linear
coaction maps

C → (C(n)⊗ C⊗n)Σn

satisfying the dual axioms to those of an algebra over an operad.

A coalgebra C over a cooperad C is a vector space with a
cooperation ∆C : C → Ĉ(C) such that this cooperation is
coassociative and counital in the sense that the diagrams

C
∆C //

∆C
��

Ĉ(C)

∆Ĉ(C)
��

Ĉ(C)
Ĉ(∆C) // Ĉ(Ĉ(C))

and C

∆C
��

Ĉ(C)
ϱ1 // C

commute.
Explicitly, a cooperad has decompositions

χ : C(
∑
i=1

ki) → C(n)⊗ C(k1)⊗ . . .⊗ C(kn)

and these are co-unital, coassociative and satisfy an equivariance
condition, dual to the ones of an operad.
Similarly, for a coalgebra C over a cooperad C we have linear
coaction maps

C → (C(n)⊗ C⊗n)Σn

satisfying the dual axioms to those of an algebra over an operad.

A coalgebra C over a cooperad C is a vector space with a
cooperation ∆C : C → Ĉ(C) such that this cooperation is
coassociative and counital in the sense that the diagrams

C
∆C //

∆C
��

Ĉ(C)

∆Ĉ(C)
��

Ĉ(C)
Ĉ(∆C) // Ĉ(Ĉ(C))

and C

∆C
��

Ĉ(C)
ϱ1 // C

commute.

Explicitly, a cooperad has decompositions

χ : C(
∑
i=1

ki) → C(n)⊗ C(k1)⊗ . . .⊗ C(kn)

and these are co-unital, coassociative and satisfy an equivariance
condition, dual to the ones of an operad.
Similarly, for a coalgebra C over a cooperad C we have linear
coaction maps

C → (C(n)⊗ C⊗n)Σn

satisfying the dual axioms to those of an algebra over an operad.

A coalgebra C over a cooperad C is a vector space with a
cooperation ∆C : C → Ĉ(C) such that this cooperation is
coassociative and counital in the sense that the diagrams

C
∆C //

∆C
��

Ĉ(C)

∆Ĉ(C)
��

Ĉ(C)
Ĉ(∆C) // Ĉ(Ĉ(C))

and C

∆C
��

Ĉ(C)
ϱ1 // C

commute.
Explicitly, a cooperad has decompositions

χ : C(
∑
i=1

ki) → C(n)⊗ C(k1)⊗ . . .⊗ C(kn)

and these are co-unital, coassociative and satisfy an equivariance
condition, dual to the ones of an operad.
Similarly, for a coalgebra C over a cooperad C we have linear
coaction maps

C → (C(n)⊗ C⊗n)Σn

satisfying the dual axioms to those of an algebra over an operad.

A coalgebra C over a cooperad C is a vector space with a
cooperation ∆C : C → Ĉ(C) such that this cooperation is
coassociative and counital in the sense that the diagrams

C
∆C //

∆C
��

Ĉ(C)

∆Ĉ(C)
��

Ĉ(C)
Ĉ(∆C) // Ĉ(Ĉ(C))

and C

∆C
��

Ĉ(C)
ϱ1 // C

commute.
Explicitly, a cooperad has decompositions

χ : C(
∑
i=1

ki) → C(n)⊗ C(k1)⊗ . . .⊗ C(kn)

and these are co-unital, coassociative and satisfy an equivariance
condition, dual to the ones of an operad.

Similarly, for a coalgebra C over a cooperad C we have linear
coaction maps

C → (C(n)⊗ C⊗n)Σn

satisfying the dual axioms to those of an algebra over an operad.

A coalgebra C over a cooperad C is a vector space with a
cooperation ∆C : C → Ĉ(C) such that this cooperation is
coassociative and counital in the sense that the diagrams

C
∆C //

∆C
��

Ĉ(C)

∆Ĉ(C)
��

Ĉ(C)
Ĉ(∆C) // Ĉ(Ĉ(C))

and C

∆C
��

Ĉ(C)
ϱ1 // C

commute.
Explicitly, a cooperad has decompositions

χ : C(
∑
i=1

ki) → C(n)⊗ C(k1)⊗ . . .⊗ C(kn)

and these are co-unital, coassociative and satisfy an equivariance
condition, dual to the ones of an operad.
Similarly, for a coalgebra C over a cooperad C we have linear
coaction maps

C → (C(n)⊗ C⊗n)Σn

satisfying the dual axioms to those of an algebra over an operad.

Note that the linear dual O(n) := Homk(C(n), k) of a cooperad C
is an operad.

The dual O(n) then naturally carries a left Σn-action
but you can turn this into a right action using the usual trick:
w .σ := σ−1.w for w ∈ O(n), σ ∈ Σn.
The converse is tricky: Even if we consider an operad O such that
every O(n) is finite dimensional, the dual C will have some
completed coproduct, landing in C◦̂C with

(C◦̂C)(n) =
∏
ℓ⩾0

C(ℓ)⊗

 ∏
i1+...+iℓ=n

(C(i1)⊗ . . .⊗ C(iℓ))

Σℓ

.

Spoiler: We will later see that for a so called quadratic operad
there is a Koszul dual cooperad.

Note that the linear dual O(n) := Homk(C(n), k) of a cooperad C
is an operad. The dual O(n) then naturally carries a left Σn-action
but you can turn this into a right action using the usual trick:

w .σ := σ−1.w for w ∈ O(n), σ ∈ Σn.
The converse is tricky: Even if we consider an operad O such that
every O(n) is finite dimensional, the dual C will have some
completed coproduct, landing in C◦̂C with

(C◦̂C)(n) =
∏
ℓ⩾0

C(ℓ)⊗

 ∏
i1+...+iℓ=n

(C(i1)⊗ . . .⊗ C(iℓ))

Σℓ

.

Spoiler: We will later see that for a so called quadratic operad
there is a Koszul dual cooperad.

Note that the linear dual O(n) := Homk(C(n), k) of a cooperad C
is an operad. The dual O(n) then naturally carries a left Σn-action
but you can turn this into a right action using the usual trick:
w .σ := σ−1.w for w ∈ O(n), σ ∈ Σn.

The converse is tricky: Even if we consider an operad O such that
every O(n) is finite dimensional, the dual C will have some
completed coproduct, landing in C◦̂C with

(C◦̂C)(n) =
∏
ℓ⩾0

C(ℓ)⊗

 ∏
i1+...+iℓ=n

(C(i1)⊗ . . .⊗ C(iℓ))

Σℓ

.

Spoiler: We will later see that for a so called quadratic operad
there is a Koszul dual cooperad.

Note that the linear dual O(n) := Homk(C(n), k) of a cooperad C
is an operad. The dual O(n) then naturally carries a left Σn-action
but you can turn this into a right action using the usual trick:
w .σ := σ−1.w for w ∈ O(n), σ ∈ Σn.
The converse is tricky: Even if we consider an operad O such that
every O(n) is finite dimensional, the dual C will have some
completed coproduct, landing in C◦̂C

with

(C◦̂C)(n) =
∏
ℓ⩾0

C(ℓ)⊗

 ∏
i1+...+iℓ=n

(C(i1)⊗ . . .⊗ C(iℓ))

Σℓ

.

Spoiler: We will later see that for a so called quadratic operad
there is a Koszul dual cooperad.

Note that the linear dual O(n) := Homk(C(n), k) of a cooperad C
is an operad. The dual O(n) then naturally carries a left Σn-action
but you can turn this into a right action using the usual trick:
w .σ := σ−1.w for w ∈ O(n), σ ∈ Σn.
The converse is tricky: Even if we consider an operad O such that
every O(n) is finite dimensional, the dual C will have some
completed coproduct, landing in C◦̂C with

(C◦̂C)(n) =
∏
ℓ⩾0

C(ℓ)⊗

 ∏
i1+...+iℓ=n

(C(i1)⊗ . . .⊗ C(iℓ))

Σℓ

.

Spoiler: We will later see that for a so called quadratic operad
there is a Koszul dual cooperad.

Note that the linear dual O(n) := Homk(C(n), k) of a cooperad C
is an operad. The dual O(n) then naturally carries a left Σn-action
but you can turn this into a right action using the usual trick:
w .σ := σ−1.w for w ∈ O(n), σ ∈ Σn.
The converse is tricky: Even if we consider an operad O such that
every O(n) is finite dimensional, the dual C will have some
completed coproduct, landing in C◦̂C with

(C◦̂C)(n) =
∏
ℓ⩾0

C(ℓ)⊗

 ∏
i1+...+iℓ=n

(C(i1)⊗ . . .⊗ C(iℓ))

Σℓ

.

Spoiler: We will later see that for a so called quadratic operad
there is a Koszul dual cooperad.

References:

▶ Jean-Louis Loday, La renaissance des opérades, Séminaire
Bourbaki, Vol. 1994/95, Astérisque 237, 1996, Exp. No. 792,
3, 47–74.

▶ Jean-Louis Loday, Bruno Vallette, Algebraic operads.
Grundlehren der mathematischen Wissenschaften 346.
Springer, Heidelberg, 2012. xxiv+634 pp.

▶ Christophe Reutenauer, Free Lie algebras. London
Mathematical Society Monographs. New Series, 7. Oxford
Science Publications. The Clarendon Press, Oxford University
Press, New York, 1993. xviii+269 pp.

▶ Birgit Richter, From Categories to Homotopy Theory,
Cambridge Studies in Advanced Mathematics No 188,
Cambridge University Press, Cambridge, 2020. x+390 pp.

