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Abstract. We propose topological Hochschild homology as a tool for measuring ramification of
maps of structured ring spectra. We determine second order topological Hochschild homology
of the p-local integers. For the tamely ramified extension of the map from the connective
Adams summand to p-local complex topological K-theory we determine the relative topological
Hochschild homology and show that it detects the tame ramification of this extension. We
also determine relative topological Hochschild homology for the complexification map from
connective real to complex topological K-theory and for some quotient maps with commutative
quotients.

1. Introduction

For a G-Galois extension of number fields K ⊂ L the associated extension of rings of integers
OK → OL will not be unramified in general. Greither shows in [Gr92, Chapter 0, Theorem 4.1]
that the ramification of such an extension can be detected with the help of the map

(1) h : OL ⊗OK OL →
∏
G

OL.

Here, h is defined as h(b1 ⊗ b2) = (b1g(b2))g∈G for b1, b2 ∈ OL. The extension is unramified
if h is an isomorphism. For more general extensions of commutative rings this still gives an
adequate notion of ramification. The Hochschild homology of OL over OK is an invariant
that behaves differently depending on whether the extension is tamely or wildly ramified. For
instance HHZ(Z[i]) is a square-zero extension of Z[i] with additive two-torsion in positive odd
degrees.

In the following we consider cohomology theories with a multiplicative structure that can
be represented by a commutative monoid object in one of the symmetric monoidal categories
of spectra, for instance the one presented in [EKMM97]. The representing objects are called
commutative ring spectra. Examples of such cohomology theories are singular cohomology
with coefficients in a commutative ring, topological (real or complex) K-theory, and several
cobordism theories. There is an analogue of Hochschild homology in the context of ring spectra,
topological Hochschild homology. It was defined by Bökstedt [Bö∞1] and a published account
can for instance be found in [EKMM97, Chapter IX].

Let A be a commutative ring spectrum and let B be a commutative A-algebra with an action
of a finite group G via maps of commutative A-algebras. Then the extension A → B is called
unramified [R08, (4.1.2)], if the map

(2) h : B ∧A B →
∏
G

B

is an equivalence. Here, h is the analogue of (1) in the context of spectra.
Rognes shows [R08, 9.2.6, proof of 9.1.2] that the condition for B to be unramified over

A ensures that the map from B to relative topological Hochschild homology of B over A,
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THHA(B), is a weak equivalence. Thus the failure of the map

B → THHA(B)

to be a weak equivalence is a measure of the ramification of the extension A → B. It also
makes sense to study THHA(B) in more general situations, for instance in the absence of a
group action.

Algebraic K-theory of an ordinary commutative ring R, K(R), contains a lot of arithmetic
information about R, such as the Picard group of R, its Brauer group and its units. Trace
methods have been useful for studying K(R): There are trace maps

K(R)
trc //

tr %%

TC(R)

��
THH(R)

that allow us to approximate K(R) by invariants that are easier to compute, by topological
Hochschild homology, THH(R), and by topological cyclic homology, TC(R). Trace methods
work also well for connective commutative ring spectra, i.e., commutative ring spectra whose
homotopy groups are concentrated in non-negative degrees.

Galois extensions of commutative S-algebras in the sense of Rognes [R08, 4.1.3] are unrami-
fied. A prominent example is given by the complexification map from real to complex periodic
K-theory, c : KO → KU . Here, complex conjugation on complex vector bundles induces a
C2-action on KU by maps of commutative KO-algebra spectra. But a result of Akhil Mathew
[Ma16, Theorem 6.17] tells us that finite Galois extensions of a connective spectrum are purely
algebraic. So taking the connective cover of the complexification map

ko
c //

j
��

ku

j
��

KO
c // KU

does not yield a C2-Galois extension ko→ ku because algebraically

ko∗ = Z[η, y, w]/2η, η3, ηy, y2 − 4w → Z[u] ∼= ku∗

is certainly not étale. (Here, the degrees are |η| = 1, |y| = 4, |w| = 8 and |u| = 2.)

For a commutative A-algebra B we denote by THH[n],A(B) the higher order topological
Hochschild homology of B as a commutative A-algebra, i.e.,

THH[n],A(B) = B ⊗ Sn

where (−)⊗Sn denotes the tensor with the n-sphere in the category of commutative A-algebras.
This can be viewed as the realization of the simplicial commutative A-algebra whose q-simplices
are given by ⊔

x∈Snq

B,

where the coproduct is the smash product over A.
Higher THH of the Eilenberg Mac Lane spectra of local number rings also detects ramification

[DLR18], but after we take coefficients in the residue field we cannot see the difference anymore
between tame and wild ramification in higher THH. We offer some partial results towards
calculations of higher THH with unreduced coefficients. We calculate second order THH of the
p-local integers:

THH
[2]
∗ (Z(p)) ∼= Z(p)[x1, x2, . . .]/p

nxn, x
p
n = pxn+1.

See Theorem 2.1.
It is possible to determine THH

[2]
∗ (Z(p)) additively using that HZ(p) can be constructed as a

Thom spectrum of a double-loop map and applying the methods of [BCS10, Sch11]. Blumberg,
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Cohen and Schlichtkrull identify THH(Z(p)) with HZ(p) ∧ ΩS3〈3〉+ [BCS10, Theorem 3.8]. See

[Kl18, Corollary 1.1] for a calculation of THH
[2]
∗ (Z(p)). However, this views HZ(p) as an E2-

spectrum and not as a commutative S-algebra, so with this method the multiplicative structure

of THH
[2]
∗ (Z(p)) cannot be determined. The multiplicative structure is essential if one aims at a

calculation of THH
[n]
∗ (Z(p)) for larger n.

We study the examples of the connective covers of the Galois extensions [R08] KO → KU
and Lp → KUp. In the latter case, the connective cover behaves like an extension of the cor-
responding rings of integers. We test ramification with relative (higher) topological Hochschild
homology and for ` → ku(p) we see that it looks like tame ramification (see Theorem 4.1):

THH`∗(ku(p)) is a square zero extension of π∗ku(p) of bounded u-exponent. We also determine
relative THH of the complexification map c : ko→ ku (see Theorem 5.2).

Working with structured ring spectra means working in a derived setting, so quotient maps
can be thought of as extensions. We offer some calculations of relative THH in situations where
we kill generators of homotopy groups. We consider a version of ku/(p, v1) and quotients of the
form R/x where x is a regular element in π∗(R) where R is a commutative ring spectrum such
that R/x is still commutative.

Acknowledgement The last named author thanks the Hausdorff Research Institute for
Mathematics in Bonn for its hospitality during the Trimester Program Homotopy theory, man-
ifolds, and field theories. She also thanks the Department of Mathematics of the Indiana Uni-
versity Bloomington for an invitation in the spring of 2016.

2. Second order THH of the p-local integers

This section consists of a proof of the following somewhat surprising result. In the context
of the current paper, this calculation is a starting point for comparing with future calculations
for other rings of integers. See Remark 2.4 for a discussion of the fact that the answer agrees
with topological Hochschild cohomology.

Theorem 2.1. For all primes p:

THH
[2]
∗ (Z(p)) ∼= Z(p)[x1, x2, . . .]/p

nxn, x
p
n − pxn+1

with |xn| = 2pn.

The entire section is devoted to proving this result For all primes p the exact sequence

(3) THH
[2]
∗ (Z(p))

p //THH
[2]
∗ (Z(p))

r //THH
[2]
∗ (Z(p),Fp)

δ //ΣTHH
[2]
∗ (Z(p))

is a sequence of THH
[2]
∗ (Z(p))-modules; in particular, δ is a module map. Furthermore, from

[DLR18] we have that

(4) THH
[2]
∗ (Z(p),Fp) ∼= ΓFp(y)⊗ ΛFp(z),

where |y| = 2p and |z| = 2p + 1. We denote the generator γpi(y) in the divided power algebra

ΓFp(y) in degree 2pi+1 by ypi and if t = t0 + t1p+ · · ·+ tnp
n is the p-adic expansion of t, then

we set yt = yt01 y
t1
p . . . y

tn
pn with ypt = 0.

By the Tor spectral sequence,

Tor
THH∗(Z(p))
∗,∗ (Z(p),Z(p))⇒ THH

[2]
∗ (Z(p))

we know that THH
[2]
s (Z(p)) is finite p-torsion for positive s because

THH∗(Z(p)) =


Z(p), ∗ = 0,

Z(p)/i, ∗ = 2i− 1,

0, otherwise.
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By (4) and using the notation introduced below it, this implies that there are integers a1, a2, . . .
such that

THH[2]
s (Z(p))

{
0, 2p 6 | s,
Z/pat{ỹt}, s = 2pt,

where the ỹt are generators of the given cyclic groups which are sent to the corresponding

generators yt in THH
[2]
∗ (Z(p),Fp). We will show

Lemma 2.2. The function a : N → N factors over the p-adic valuation v : N → N, at = bv(t),
with b : N→ N a strictly increasing function with positive values and b0 = 1.

Proof. To this end we use induction on the following statement P(n) for positive integers n.
The generators ỹt are chosen inductively.

P(n): For positive integers s, t such that v(s), v(t) are less than n the following properties
hold:

(1) If v(s) = v(t), then as = at,
(2) If v(s) > v(t), then as > at,
(3) If s = s0 + s1p+ · · ·+ sn−1p

n−1 is the p-adic expansion of s (so that 0 6 s0, . . . , sn < p),
then ỹs = ỹ1

s0 . . . ỹ
sn−1

pn−1 ,

(4) If n > v, then ỹpv = papv−apv−1 ỹp
pv−1 .

We will repeatedly be considering the cofiber sequence (3). In homotopy, the maps are trivial
except in degrees of the form 2pt (for varying t) in which case they are

0 //Fp{zyt−1}
δ //THH

[2]
2pt(Z(p))

p //THH
[2]
2pt(Z(p))

r //Fp{yt} //0

forcing all the at to be positive. For any generator w, Fp{w} denotes the graded vector space

generated by w. Here r is multiplicative and δ is a THH
[2]
∗ (Z(p))-module map. By the surjectivity

of r we have that the yt’s can be lifted to integral classes.

Establishing P(1). Let t = 1. The sequence

0 // Fp{z}
δ // THH

[2]
2p(Z(p))

p // THH
[2]
2p(Z(p))

r // Fp{y1} // 0.

shows that a1 > 0 and by adjusting z up to a unit we may choose ỹ1 so that δ(z) = pa1−1ỹ1

and r(ỹ1) = y1. In the Tor-spectral sequence we only get a Z/pZ in bidegree (1, 2p− 1) which
survives and shows that a1 = 1, and so δ(z) = ỹ1.

If 1 < t < p the sequence

0 // Fp{zyt−1
1 } δ // THH

[2]
2pt(Z(p))

p // THH
[2]
2pt(Z(p))

r // Fp{yt1} // 0

gives that δ(zyt−1
1 ) = δ(z)·ỹt−1

1 = ỹt1 6= 0, pỹt1 = 0 and r(ỹt1) = yt1 6= 0. The last point shows that
ỹt1 is not divisible by p and hence we can choose it as our generator: ỹt = ỹt1, and furthermore,
this generator is killed by p, so at = 1.

If t = t0 + t1p with 0 < t0 < p, then the sequence

0 // Fp{zyt0−1
1 yt1p}

δ // THH
[2]
2pt(Z(p))

p // THH
[2]
2pt(Z(p))

r // Fp{yt01 yt1p} // 0

gives that δ(zyt0−1
1 yt1p) = δ(z)·ỹt0−1

1 ỹt1p = ỹt01 ỹt1p 6= 0, pỹt01 ỹt1p = 0 and r(ỹt01 ỹt1p) = y1
t0yt1p 6= 0

for any choice of a lift ỹt1p. The last point shows that ỹt01 ỹt1p is not divisible by p and hence we

can choose it as our generator: ỹt = ỹt01 ỹt1p, and furthermore, this generator is killed by p, so
at = 1.

Note that we may reconsider our choice of ỹt1p later, and so the exact choice of ỹt may still
change within these bounds, but the choices of ỹ1, . . . , ỹp−1 remain fixed from now on. Hence
P(1)(1)−P(1)(3) are established and as P(1)(4) is vacuous we have shown P(1).
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Establishing P(n + 1). Now, assume P(n). First, consider the case t = pn. For P(n + 1)(4)
we only have to show that

ỹpn = papn−apn−1 ỹp
pn−1 ,

and that apn > apn−1 . Consider the sequence

0 // Fp{zyp−1
1 . . . yp−1

pn−1}
δ // THH

[2]
2pn(Z(p))

p // THH
[2]
2pn(Z(p))

r // Fp{ypn} // 0.

Firstly, by induction we have that

δ(zyp−1
1 . . . yp−1

pn−1) = ỹ1ỹ
p−1
1 . . . ỹp−1

pn−1

= pap−a1 ỹpỹ
p−1
p . . . ỹp−1

pn−1

= pap−a1pap2−ap ỹp2 ỹ
p−1
p2

. . . ỹp−1
pn−1 = . . .

= papn−1−1ỹp
pn−1 6= 0.

Secondly,

pδ(zyp−1
1 · · · yp−1

pn−1) = ppapn−1−1ỹp
pn−1 = papn−1 ỹp

pn−1 = 0.

Together this shows that (up to a unit) δ(zyp−1
1 · · · yp−1

pn−1) = papn−1ỹpn , and that ỹp
pn−1 =

papn−apn−1 ỹpn , and since yp
pn−1 = 0 that apn > apn−1 .

Now, for P(n + 1)(1) and P(n + 1)(2), consider a general t with v(t) = n and write t =
tnp

n + spn+1 with 0 < tn < p. The exact sequence

Fp{zyp−1
1 . . . yp−1

pn−1y
tn−1
pn yspn+1} δ // THH

[2]
2pt(Z(p))

p // THH
[2]
2pt(Z(p))

r // Fp{ytnpnyspn+1}

gives that

δ(zyp−1
1 . . . yp−1

pn−1y
tn−1
pn yspn+1) = ỹ1ỹ

p−1
1 . . . ỹp−1

pn−1 ỹ
tn−1
pn ỹspn+1

= papn−1ỹtnpn ỹspn+1 6= 0,

but pδ(zyp−1
1 . . . yp−1

pn−1y
tn−1
pn yspn+1) = papn ỹtnpn ỹspn+1 = 0 and r(ỹtnpn ỹspn+1) = ytnpnyspn+1 6= 0.

Again, the last point shows that ỹtnpn ỹspn+1 is not divisible by p, and so we may choose ỹt =

ỹtnpn ỹspn+1 , and furthermore that this generator is annihilated by papn , but not by papn−1, so that
at = apn .

Lastly, by P(n)(3), we have that if s = s0 + s1p+ · · ·+ sn−1p
n−1 is the p-adic expansion of

s, then ỹs = ỹs01 . . . ỹ
sn−1

pn−1 . If t = s + snp
n, then r(ỹsỹ

sn
pn) = yt, so we can choose ỹt = ỹsỹ

sn
pn as

desired in P(n + 1)(3). �

Background on Bocksteins. Let (C∗, ∂) be a complex of free abelian groups and assume α ∈ Cn
has the property that α ⊗ 1 is a cycle in C∗ ⊗ Fp. That the Bockstein βi−1[α ⊗ 1] is defined
and equal to zero for some i > 2, means that there exist γ ∈ Cn and cycle δ ∈ Cn−1 so that
∂(α+ pγ) = piδ, and in that case, βi[α⊗ 1] = [δ ⊗ 1].

Assume we have a short exact sequence of complexes of free abelian groups 0 → B∗ →
C∗ → A∗ → 0. Choosing a section in each degree, we may assume Cn = An ⊕ Bn for all
n. Suppose we have a ∈ An and b ∈ Bn so that [a + b] represents a cycle in C∗ ⊗ Fp with
βi−1([(a + b) ⊗ 1]) = [0] ∈ Hn−1(C∗ ⊗ Fp). As above, there exist c ∈ An, d ∈ Bn, e ∈ An−1,
f ∈ Bn−1 with e + f ∈ Cn−1 a cycle with ∂(a + b + p(c + d)) = pi(e + f), and in that
case βi([(a + b) ⊗ 1]) = [(e + f) ⊗ 1]. Then if [e ⊗ 1] 6= [0] ∈ Hn−1(A∗ ⊗ Fp), we get that
βi([(a+ b)⊗ 1]) 6= [0], since [(e+ f)⊗ 1] 7→ [e⊗ 1] 6= [0] by the homomorphism induced by the
projection C∗ → A∗.

More generally, consider a filtered complex C∗ of free abelian groups. Assume we have a chain
a ∈ E(C∗)

0
s,t in the associated spectral sequence such that [a⊗1] survives to E(C∗⊗Fp)∞s,t in the

mod p spectral sequence. If we know that the class [(a+b)⊗1] ∈ Hs+t(C∗⊗Fp) with b ∈ Fs−1(C∗)
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which [a ⊗ 1] represents in E(C∗ ⊗ Fp)∞s,t satisfies βi−1([(a + b) ⊗ 1]) = [0] ∈ Hs+t−1(C∗ ⊗ Fp),
but that d0(a⊗ 1) = pi(e⊗ 1) and [e⊗ 1] 6= [0] ∈ E(C∗ ⊗ Fp)1

s,t−1, then βi([(a+ b)⊗ 1]) 6= [0].

The p-order of the multiplicative generators. We will calculate THH
[2]
∗ (Z(p)) by studying its

Hurewicz image in H∗(THH
[2](Z(p));Fp), using the model

THH[2](Z(p)) ' B(HZ(p),THH(Z(p)), HZ(p)).

We use the filtration by simplicial skeleta. We denote H∗(HZ(p);Fp) by Ā, and by Bökstedt,

H∗(THH(Z(p));Fp) ∼= Ā ⊗ Fp[x2p]⊗ Λ[x2p−1],

where the augmentation THH(Z(p))→ HZ(p) induces the projection Ā⊗Fp[x2p]⊗Λ[x2p−1]→ Ā
sending x2p and x2p−1 to zero. We get that

E1
∗,∗
∼= B(Ā, Ā ⊗ Fp[x2p]⊗ Λ[x2p−1], Ā)

is isomorphic to
B(Ā, Ā, Ā)⊗B(Fp,Fp[x2p],Fp)⊗B(Fp,Λ[x2p−1],Fp),

and so its homology is
E2
∗,∗
∼= Ā ⊗ Λ[y2p+1]⊗ Γ[y2p]

with y2p+1 = 1⊗ x2p ⊗ 1 and y2p = 1⊗ x2p−1 and y
(a)
2p = 1⊗ x⊗a2p−1 ⊗ 1.

The dimensions in each total degree in the E2-term account for p-torsion of rank 1 in each

positive dimension divisible by 2p, and from knowing THH
[2]
∗ (Z(p);Fp) [DLR18, Theorem 3.1]

we get that this agrees with the abutment of the spectral sequence, so it has to collapse at E2.
We use this to prove Theorem 2.1. By Lemma 2.2, the only remaining problem is to determine

the order of the p-torison in each dimension divisible by 2p.

Lemma 2.3. The p-torsion in THH
[2]
2pt(Z(p)) is precisely Z(p)/pt ∼= Z(p)/p

vp(t)+1.

Proof. We know from Lemma 2.2 that for t = pam, (p,m) = 1, in dimension 2pt the order of
the torsion is divisible by pa+1. We will use the general observation about Bocksteins above for

C∗ = C∗(Ω
∞(THH[2](Z(p)));Z) = C∗(Ω

∞B(HZ(p),THH(Z(p)), HZ(p));Z),

filtered by simplicial skeleta of the bar construction, to get that the torsion is exactly pa+1.

Fixing a t, we have two quasi-isomorphisms (letting s vary)

Cs(Ω
∞Bt(HZ(p),THH(Z(p)), HZ(p));Z)

→Cs+t(∆t × Ω∞Bt(HZ(p),THH(Z(p)), HZ(p)), ∂∆t × Ω∞Bt(HZ(p),THH(Z(p)), HZ(p));Z)

→E0
t,s

and we call their composition ϕ.
We know by Bökstedt that additively THH(Z(p)) ' HZ(p) ∨Σ2p−1HFp ∨ · · · , so we can map

S0 ∧K(Fp, 2p− 1)∧t ∧ S0 = S0 ∧ (Ω∞(Σ2p−1HFp))∧t ∧ S0

→Ω∞HZ(p) ∧ (Ω∞(THH(Z(p)))
∧t ∧ Ω∞HZ(p) → Ω∞(HZ(p) ∧ (THH(Z(p))

∧t ∧HZ(p)).

We call this composition ψ. It induces

ψ∗ : C∗(K(Fp, 2p− 1)∧t;Z)→ C∗(Ω
∞(HZ(p) ∧ THH(Z(p))

∧t ∧HZ(p));Z),

so composing we get a map of complexes

ϕ ◦ ψ∗ : C∗(K(Fp, 2p− 1)∧t;Z)→ E0
t,∗.

On the Eilenberg Mac Lane space K(Fp, 2p − 1), we have a 2p-chain with integer coefficients
x̃2p so that [x̃2p] (mod p) generates H2p(K(Fp, 2p− 1);Fp) ∼= Fp and ∂x̃2p = px̃2p−1 for a chain
x̃2p−1 so that [x̃2p−1] (mod p) generates H2p−1(K(Fp, 2p − 1);Fp) ∼= Fp. For these elements,
β1([x̃2p]) = [x̃2p−1]. Note that these elements map to generators of the stable homology in
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the correct dimensions. Thus, ϕ ◦ ψ∗(x̃2p) ⊗ 1 can be taken as a representative of x2p, and
ϕ ◦ψ∗(x̃2p−1)⊗ 1 can be taken as a representative of x2p−1, and we still have d0(ϕ ◦ψ∗(x̃2p)) =
pϕ ◦ ψ∗(x̃2p−1) in E0

1,∗. And more generally, for any a, b > 0, in E0
a+b+1,∗ we also have

d0(ϕ ◦ ψ∗(x̃ ∧a2p−1 ∧ x̃2p ∧ x̃ ∧b2p−1)) = pϕ ◦ ψ∗(x̃ ∧(a+b+1)
2p−1 ).

We know that the class (ϕ ◦ ψ∗(x̃∧a2p−1 ∧ x̃2p ∧ x̃∧b2p−1)) ⊗ 1 represents the class 1 ⊗ x⊗a2p−1 ⊗
x2p ⊗ x⊗b2p−1 ⊗ 1 which survives to E2

a+b+1,∗ and therefore to E∞a+b+1,∗, and similarly for (ϕ ◦
ψ∗(x̃

∧(a+b+1)
2p−1 ))⊗ 1 and 1⊗ x⊗a+b+1

2p−1 ⊗ 1.

And so, if t = pam with (p,m) = 1,

d0(
t−1∑
i=0

(−1)i(ϕ◦ψ∗(x̃∧i2p−1∧x̃2p∧x̃∧t−1−i
2p−1 ))⊗1 = pt·(ϕ◦ψ∗(x̃∧(t)

2p−1))⊗1 = pa+1m·(ϕ◦ψ∗(x̃∧(t)
2p−1))⊗1.

The mod p homology class which is the image under the Hurewicz map of zγt−1(y) can be
expressed as

(1⊗ x2p ⊗ 1)(1⊗ x⊗n−1
2p−1 ⊗ 1)

via the bar construction and it is represented by (
∑t−1

i=0(−1)i(ϕ ◦ψ∗(x̃∧i2p−1 ∧ x̃2p ∧ x̃∧t−1−i
2p−1 )⊗ 1.

From Lemma 2.2 we have a lower bound on the order of the torsion and hence βa(zγt−1(y)) = [0]
and by the d0 calculation above βa+1(zγt−1(y)) = γt(y) up to a unit.

This result is a result on stable mod p homology rather than on stable mod p homotopy,
but since we are applying it to the images under the Hurewicz map of the two stable mod p
homotopy classes of an Eilenberg Mac Lane space of rank 1 p-torsion, the Bockstein operators
have to do the same on the mod p homotopy. �

Proof of Theorem 2.1. Set xn = ỹpn . Then we get the p-order of these elements from Lemma
2.3 and we worked out the multiplicative relations in Lemma 2.2. �

Remark 2.4. Mike Hill noticed that THH
[2]
∗ (Z(p)) is abstractly isomorphic to THH∗(Z(p)): the

calculation of THH∗(Z(p)) is due to Franjou and Pirashvili [FP98]. We are not sure whether
this is a coincidence or whether (for some commutative S-algebras) there is a duality between

THH
[2]
∗ and topological Hochschild cohomology. Note, however, that THH

[2]
∗ (Fp) is an exterior

algebra over Fp on a class in degree three whereas THH∗(Fp) is much larger:

THH∗(Fp) ∼= Fp[e0, e1, . . .]/(e
p
0, e

p
1, . . .), |ei| = 2pi

[FLS94, 7.3], [Bö∞2], so there is no isomorphism of these groups in general.

3. Greenlees’ approach to THH

There is a relative version of the cofiber sequence from [G16, Lemma 7.1] already mentioned in
[DLR18]. We make it explicit for later use. Here and elsewhere S denotes the sphere spectrum.

Lemma 3.1. Let R be a commutative S-algebra and let C → B → k be a sequence of maps of
commutative R-algebras. Then there is a cofiber sequence of commutative k-algebras

B ∧LC k → THHR(C, k)→ THHR(B, k).

The proof is obtained from the one of [G16, Lemma 7.1] by replacing the sphere spectrum
by R.

Remark 3.2. Note that there are two cofiber sequences for any such sequence C → B → k,
because we can forget the commutative R-algebra structures on C and B and consider them as
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commutative S-algebras. This gives a commutative diagram of cofiber sequences

B ∧C k // THH(C, k)

��

// THH(B, k)

��
B ∧C k // THHR(C, k) // THHR(B, k),

so B ∧C k measures the difference of the absolute and also of the relative THH-terms of C and
B.

Let us abbreviate B ∧LC k by A. Lemma 3.1 provides an equivalence

THHR(B, k) ' THHR(C, k) ∧LA k

and thus we get a spectral sequence whose E2-term is

TorA∗∗,∗(THH
R
∗ (C, k), k∗)

which converges to THHR∗ (B, k).
We will consider the following examples.

• Let ` denote the Adams summand of p-local connective topological complex K-theory,
ku(p), for some odd prime p. For

R = `→ C = `→ B = ku(p) → k

with k = HZ(p) or k = HFp we obtain calculations for THH`∗(ku(p), k). We determine

THH`∗(ku(p)) by different means.
• The complexification map from real to complex topological K-theory c : ko → ku is a

map of commutative S-algebras. Wood’s theorem displays the ko-module ku as the
cofiber of the Hopf map η : Σko → ko. Consequently, the ku-module ku ∧ko ku is the
cofiber of η : Σku→ ku, and the resulting short exact sequences

0→ π2mku→ π2m(ku ∧ko ku)→ π2m−1(Σku)→ 0

are split via the multiplication map on ku, because the map ku → ku ∧ko ku above is
induced by the unit map of ku as a commutative ko-algebra so we get

π2m(ku ∧ko ku) ∼= π2mku⊕ π2m−2(ku).

We will determine the ku∗-algebra structure of π∗(ku ∧ko ku) in Lemma 5.1. This

is the input for the Tor-spectral sequence computing THHko∗ (ku) and we will identify

THHko∗ (ku) in Theorem 5.2.
We will also use the cofiber sequences of commutative k-algebras

ku ∧ko k → ku→ THHko(ku, k)

for k = HZ(2) and k = HF2 and we will calculate THH of ku over ko with coefficients
in HZ(2) and HF2 (see Proposition 5.3).
• We propose ku(p) ∧` HFp as a model for ku/(p, v1) and use the sequence

S → HFp → ku(p) ∧` HFp → HFp

for calculating its THH with coefficients in HFp (Proposition 6.2).
• In Section 7 we determine relative topological Hochschild homology of quotient maps
R→ R/x.
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4. Relative THH of ku(p) as a commutative `-algebra

Let p be an odd prime. On the level of coefficients, the map from the connective Adams sum-
mand to p-local connective topological complex K-theory is `∗ = Z(p)[v1] → Z(p)[u] = (ku(p))∗,

v1 7→ up−1. The corresponding p-complete periodic extension is a Cp−1-Galois extension [R08].
However, the connective extension is not unramified, but it is a topological analogue of a tamely
ramified extension. Rognes defined a notion of THH-étale extensions in [R08, 9.2.1]: A map of
commutative S-algebras A→ B is formally THH-étale, if the canonical map from B to THHA(B)
is an equivalence. For instance, Galois extensions are formally THH-étale [R08, 9.2.6]. We will

show that the map ` → ku(p) is not formally THH-étale by determining THH`(ku(p)). Rognes

mentions in [R08, p. 59] that ku(p) → THH`(ku(p)) is a K(1)-local equivalence and Sagave
showed in [S14] that the map ` → ku(p) is log-étale. Ausoni proved that the p-completed
extension even satisfies Galois descent for THH and algebraic K-theory [Au05, Theorem 1.5]:

THH(kup)
hCp−1 ' THH(`p), K(kup)

hCp−1 ' K(`p).

The tame ramification is visible in THH:

Theorem 4.1.

THH`∗(ku(p)) ∼= (ku(p))∗ o ((ku(p))∗/u
p−2)〈y0, y1, . . .〉,

where (ku(p))∗ oM denotes a square-zero extension of (ku(p))∗ by a (ku(p))∗-module M . The
degree of yi is 2pi+ 3.

Proof. We can apply the Bökstedt spectral sequence with π∗ as the homology theory because
(ku(p))∗ is projective over `∗. The E2-page consists of

E2
s,t = HH`∗s,t((ku(p))∗, (ku(p))∗).

As an `∗-algebra (ku(p))∗ is isomorphic to `∗[u]/(up−1 − v1). From [LL92] we know that we can
use the following complex in order to calculate Hochschild homology:

. . .
∆(u)// Σ2p(ku(p))∗

0 // Σ2p−2(ku(p))∗
∆(u) // Σ2(ku(p))∗

0 // (ku(p))∗,

where ∆(u) = (p− 1)up−2. As (p− 1) and v1 are units in `∗, this yields:

HH`∗i ((ku(p))∗, (ku(p))∗) =


(ku(p))∗, if i = 0,

Σ2mp−2m+2(ku(p))∗/u
p−2, if i = 2m+ 1,m > 0,

0, otherwise.

As THH`(ku(p)) is an augmented commutative ku(p)-algebra, we know that ku(p) splits off

THH`(ku(p)). Therefore the copy of the homotopy groups of ku(p) in the zero column of the
spectral sequence has to survive and cannot be hit by any differentials. For degree reasons,
there are no other possible non-trivial differentials and the spectral sequence collapses at the
E2-page.

In every fixed total degree there is only one term in the E2-page contributing to this degree: If
we consider an element uk1 in homological degree 2m1+1 and another element uk2 in homological
degree 2m2 + 1 for m1 6= m2, then their total degrees are 2m1p+ 2k1 + 3 and 2m2p+ 2k2 + 3.
These degrees can only be equal if 2p(m1−m2) = 2(k2− k1). Thus p has to divide k2− k1 6= 0.
But 0 6 k1, k2 6 p− 3, so this cannot happen.

Thus there are no additive extensions and therefore additively we get the desired result.
As THH`∗(ku(p)) is an augmented graded commutative (ku(p))∗-algebra and as everything in

the augmentation ideal is concentrated in odd degrees there cannot be any non-trivial multipli-
cation of any two elements in the augmentation ideal.

The spectral sequence is a spectral sequence of (ku(p))∗-modules and elements of the form

uk · Σ2mp−2m+2um are cycles, thus the copy of (ku(p))∗ in homological degree zero acts on

ku(p))∗/u
p−2ym in the standard way. �
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Remark 4.2. For Galois extensions of non-connective commutative ring spectra we would like
to have a good notion of rings of integers. In the above case ku(p) behaves like the ring of
integers of KU(p), and similarly for the connective Adams summand. The result for relative
THH corresponds to the one of ordinary rings of integers [LM00]. In other cases, taking the
connective cover does not seem to give good results.

For coefficients in HZ(p) and HFp we obtain a rather different result.

Proposition 4.3.

THH`∗(ku(p), HZ(p)) ∼= ΛZ(p)
(εu)⊗ ΓZ(p)

(ϕ0u)

and also
THH`∗(ku(p), HFp) ∼= ΛFp(εu)⊗ ΓFp(ϕ

0u).

Proof. We consider the sequence of comutative `-algebras

R = `→ C = `→ B = ku(p) → k

with k = HZ(p) and k = HFp. In both cases we can identify THH`(ku(p), k) with ku(p) ∧` k and
get a Tor-spectral sequence

Tor
π∗(ku(p)∧`k)
∗,∗ (π∗k, π∗k)⇒ THH`∗(ku(p), k).

For k = HZ(p) homological algebra tells us that

Tor
Z(p)[u]/up−1

∗,∗ (Z(p),Z(p)) ∼= ΛZ(p)
(εu)⊗ ΓZ(p)

(ϕ0u).

Here, |εu| = 3 and |ϕ0u| = 2p. There are no differentials in this spectral sequence for degree
reasons and there are no multiplicative extensions, hence we get the claim.

For k = HFp the same method gives

THH`∗(ku(p), HFp) ∼= ΛFp(εu)⊗ ΓFp(ϕ
0u).

�

Remark 4.4. At the prime 3 we get

THH
[0],`
∗ (ku(3), HF3) ∼= F3[u]/u2

hence with the methods of [DLR18] we can deduce that

THH[0],`(ku(3), HF3) ' HF3 ∨ Σ2HF3

as an augmented commutative HF3-algebra and that we can calculate higher THH as iterated
Tor-algebras. Hence we get

THH
[n+1],`
∗ (ku(3), HF3) ∼= Tor

THH
[n],`
∗ (ku(3),HF3)

∗,∗ (F3,F3)

for all n > 0.
Using Greenlees’ spectral sequence [G16, Lemma 3.1] one can actually deduce that this is

true at all odd primes. See [AuD∞] for related arguments.

5. Relative THH of the complexification map

The graded commutative ring ko∗ is Z[η, y, w]/〈2η, ηy, η3, y2 − 4w〉 with |η| = 1, |y| = 4
and w is the Bott class in degree 8. The complexification map c : ko → ku induces a map
c∗ : ko∗ → ku∗ = Z[u] and it sends η to zero, y to 2u2 and the Bott class w to u4.

Note that the homotopy fixed points of ku with respect to complex conjugation are not
equivalent to ko. The homotopy fixed points spectral sequence yields generators in negative
degrees in the homotopy groups of kuhC2 [R08, 5.3].

The published version of this paper unfortunately contained a mistake in a calculation that
resulted in erroneous statements in Lemma 5.1 and Theorem 5.2. We are grateful to Eva Höning
who discovered the mistake.
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Lemma 5.1. There is an isomorphism of graded commutative augmented ku∗-algebras

(ku ∧ko ku)∗ ∼= ku∗[s]/(s
2 − su)

with |s| = 2, where the ku∗-algebra structure on (ku∧koku)∗ is from the left and the augmentation
is given by the multiplication m : ku ∧ko ku→ ku and by s 7→ 0.

Proof. Smashing Wood’s cofiber sequence ko
ι // ku

 // Σ2ko with ku (from the left) over
ko gives a split exact sequence (with unit isomorphism ku ∼= ku ∧ko ko suppressed)

0 //π∗ku
(1∧ι)∗ //π∗(ku ∧ko ku)

m∗

yy (1∧)∗ //π∗Σ
2ku //0.

Let u ∈ π2ku be the generator with ∗(u) = Σ22 ∈ π2Σ2ko ∼= Z. Let ul and ur be the images
of u in π2(ku∧ko ku) induced by the left and right inclusion of ku in ku∧ko ku. If s is the unique
element in π2(ku∧koku) with (1∧)∗s = −Σ21 and m∗s = 0, then (1∧)∗(ur+2s) = 1·∗u−2 = 0
and m∗(ur + 2s) = u. Since also (1 ∧ )∗ul = 0 and m∗ul = u we must have ur + 2s = ul.

In ku∗⊗ko∗ ku∗, and hence also in π4(ku∧koku), we have that 2u2
r−2u2

l = 0. As π∗(ku∧koku)
is torsion free, we get u2

r − u2
l = 0 and therefore

u2
r − u2

l = (ul − 2s)2 − u2
l = 4s2 − 4sul = 0.

Again, since there is no torsion, this yields s2 − sul = 0. �

Theorem 5.2. The Tor spectral sequence

E2
∗,∗ = Tor

(ku∧koku)∗
∗,∗ (ku∗, ku∗)⇒ THHko∗ (ku)

collapses at the E2-page and THHko∗ (ku) is a square zero extension of ku∗:

THHko∗ (ku) ∼= ku∗ o (ku∗/u){y0, y1, . . .}

with |yj | = (1 + |u|)(2j + 1) = 3(2j + 1).

Proof. Lemma 5.1 implies that the E2-term of the Tor spectral sequence is

E2
∗,∗ = Tor

(ku∧koku)∗
∗,∗ (ku∗, ku∗) = Tor

ku∗[s]/(s2−su)
∗,∗ (ku∗, ku∗).

We have a periodic free resolution of ku∗ as a module over ku∗[s]/(s
2 − su)

. . .
s //Σ4ku∗[s]/(s

2 − su)
s−u //Σ2ku∗[s]/(s

2 − su)
s //ku∗[s]/(s

2 − su).

Tensoring this down to ku∗ yields

. . .
0 //Σ4ku∗

−u //Σ2ku∗
0 //ku∗.

As ku∗ splits off THHko∗ (ku), the zero column has to survive and cannot be hit by differentials
and hence all differentials are trivial.

For the E∞-term we therefore get E∞0,∗
∼= ku∗, E

∞
2j,∗ = 0 for j > 0, and E∞2j+1,∗

∼= (ku∗/u){yj}
for yj in bidegree (2j + 1, 4j + 2) if j > 0. So even total degrees occur only in E∞0,∗ and odd
total degrees occur only in at most one bidegree and we do not need to worry about additive
extensions. As yj corresponds to Σ4j+21 ∈ Σ4j+2ku∗, the action of ui ∈ ku∗ on yj is uiyj and
this is trivial for i > 1 in (ku∗/u){yj} so uiyj is zero in E∞2j+1,4j+2. But E∞2j+1,4j+2 has all the

elements of total degree 6j + 3 in the entire E∞-term, so in fact the element in THHko∗ (ku)
that yj represents is killed by multiplication by ui for any i > 1. Thus we have no nontrivial
products of the ui, i > 1, and the odd dimensional elements.

Since the elements of THHko∗ (ku) represented by the yi are all in odd degrees, if there were
nonzero products among them they would have to be elements in E∞0,∗

∼= ku∗. But elements
in ku∗ are not killed by multiplying by u, whereas the elements represented by the yj are. So
there can be no such nontrivial products. �
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We consider the sequence of commutative ko-algebras R = ko → C = ko → B = ku with
k = HF2 or k = HZ(2) and, (since THHko(ko, k) ' k), we get cofiber sequences of commutative
k-algebras

ku ∧ko k → k → THHko(ku, k).

This yields a Tor-spectral sequence

(5) E2
s,t = Tor

π∗(ku∧kok)
s,t (k∗, k∗)⇒ THHkos+t(ku, k).

Wood’s cofiber sequence identifies ku as the cone on η: Σko → ko. Thus we get a cofiber
sequence

Σk → k → ku ∧ko k
and π∗(ku ∧ko k) ∼= π∗(k ∨ Σ2k) ∼= Λπ∗k(x2) where x2 is a generator of degree two.

For k = HF2 and HZ(2) we can deduce with [DLR18, 2.1] that as a commutative augmented

k-algebra ku ∧ko k is weakly equivalent to the square-zero extension k ∨ Σ2k. Thus

THHko(ku, k) ' k ∧k∨Σ2k k

and the spectral sequence (5) reduces to

E2
s,t = Tor

π∗k[x2]/x22
s,t (π∗k, π∗k)⇒ THHkos+t(ku, k).

But Tor
π∗k[x2]/x22
s,t (π∗k, π∗k) ∼= Λπ∗k(εx2) ⊗ Γπ∗k(ϕ

0x2) with |εx2| = 3, |ϕ0x2| = 6, and we know
from [BLPRZ15] combined with the methods from [DLR18, Section 3] that there cannot be any
differentials in this spectral sequence. Hence we obtain

Proposition 5.3.

THHko∗ (ku,HZ(2)) ∼= ΛZ(2)
(εx2)⊗ ΓZ(2)

(ϕ0x2)

and

THHko∗ (ku,HF2) ∼= ΛF2(εx2)⊗ ΓF2(ϕ0x2).

Over F2 we can also iterate the calculation and obtain

THH
[n+1],ko
∗ (ku,HF2) ∼= Tor

THH
[n],ko
∗ (ku,HF2)

∗,∗ (F2,F2).

Remark 5.4. To the eyes of THH with coefficients in HFp coefficients (for p = 2 resp. p = 3)
the extensions ko → ku and ` → ku(3) show a similar behaviour. This is analogous to the
algebraic case: Hochschild homology homology of the 2-local Gaussian integers with coefficients

in F2 is isomorphic to ΛF2(x1) ⊗ ΓF2(x2) and HH
Z(3)
∗ (Z(3)[

√
3],F3) ∼= ΛF3(x1) ⊗ ΓF3(x2). Thus

Hochschild homology (and also higher Hochschild homology) with reduced coefficients doesn’t
distinguish tame from wild ramification either.

6. ku(p) ∧` HFp as a model for ku/(p, v1)

John Greenlees asks in [G16, Example 8.4] for a commutative S-algebra model of ku/(p, v1).
We suggest ku/(p, v1) = ku(p) ∧` HFp which is a commutative S-algebra (even an augmented
commutative HFp-algebra, which might not be what Greenlees had in mind) and satisfies
π∗(ku(p) ∧` HFp) ∼= Fp[u]/up−1.

Remark 6.1. Alternatively one could consider ku/(p, v1) defined by an iterated cofiber se-
quence. This is an A∞-ring spectrum [A08, 3.7], hence an associative S-algebra, but we cannot
expect any decent level of commutativity without the price of getting something of the ho-
motopy type of a generalized Eilenberg-Mac Lane spectrum: if ku/(p, v1) were a pseudo-H2

spectrum, then it automatically splits as a wedge of suspensions of HFp’s [BMMS86, III.4.1].
In particular, an E∞-structure (i.e., a commutative S-algebra structure) would lead to such a
splitting.

We determine THH(ku(p) ∧` HFp, HFp).
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Proposition 6.2. Topological Hochschild homology of ku(p) ∧`HFp with coefficients in HFp is

THH∗(ku(p) ∧` HFp, HFp) ∼= Fp[µ]⊗ ΛFp(εu)⊗ ΓFp(ϕ
0u)

where Fp[µ] = THH∗(HFp).

Proof. Greenlees’ cofiber sequence [G16, 7.1] yields an equivalence

THH(ku(p) ∧` HFp, HFp) ' HFp ∧Lku(p)∧`HFp THH(HFp).

Therefore, the Tor-spectral sequence has E2-term

Tor
Fp[u]/up−1

∗,∗ (Fp,THH∗(HFp)).
We use the standard periodic resolution of Fp over Fp[u]/up−1. As THH(HFp) has the same
chromatic type as HFp, u acts by zero on THH∗(HFp) = Fp[µ] and hence the E2-term is
isomorphic to

Fp[µ]⊗ ΛFp(εu)⊗ ΓFp(ϕ
0u).

As THH(ku(p)∧`HFp) is an augmented commutative THH(HFp)-algebra, the Fp[µ]-factor splits
off and hence there cannot be any differentials and multiplicative extensions. �

7. Killing regular generators in π∗R

Killing regular elements in the homotopy groups of a commutative S-algebra rarely gives rise
to commutative quotients. However, there are some important examples for which we do get
commutative quotients whose relative THH can be calculated.

Proposition 7.1. Let R be a connective commutative S-algebra whose coefficients π∗R are
concentrated in even degrees, with a nonzero divisor x of positive degree. If the canonical map
R→ R/x is a morphism of commutative S-algebras, then the Tor spectral sequence

Tor
π∗(R/x∧RR/x)
∗,∗ (R∗, R∗)⇒ THHR∗ (R/x)

collapses at the E2-term. Its E∞-term is isomorphic to Γπ∗R/x(ρ0εx) with |ρ0εx| = |x|+ 2 and
there are no additive extensions.

Proof. The defining cofiber sequence

Σ|x|R
x //R //R/x

gives, via a Tor-spectral sequence, that

π∗(R/x ∧R R/x) ∼= Λπ∗(R)/x(εx)

with |εx| = |x|+ 1. In the spectral sequence for THH we have as an E2-term

Tor
Λπ∗(R)/x(εx)
∗,∗ (π∗R/x, π∗R/x).

We consider the periodic resolution of π∗R/x

. . .
εx //Σ2|x|+2Λπ∗R/x(εx)

εx //Σ|x|+1Λπ∗R/x(εx)
εx //Λπ∗R/x(εx)

and tensor it down to π∗R/x. As π∗R/x is concentrated in even degrees, the multiplication by
εx induces the trivial map and hence our Tor-terms are the homology of the complex

. . .
εx=0 //Σ2|x|+2π∗R/x

εx=0 //Σ|x|+1π∗R/x
εx=0 //π∗R/x

and this gives a divided power algebra Γπ∗R/x(ρ0εx) with a generator ρ0εx in degree |x|+2. We
have to show that there are no non-trivial differentials and no extension problems. The spectral
sequence is a spectral sequence of π∗R/x-algebras because R/x is assumed to be a commutative
R-algebra, hence THHR(R/x) is a commutative R/x-algebra.

As we assumed that x has positive degree, we can split Γπ∗R/x(ρ0εx) as π∗R/x⊗π0RΓπ0R(ρ0εx).

The π∗R/x-module generators are the π0R-module generators in Γπ0R(ρ0εx). These genera-
tors sit in bidegrees of the form (n, n(|x| + 1)). A differential dr on a generator in bidegree
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(n, n(|x|+1)) is in bidegree (n−r, n(|x|+1)+r−1). A general element in the spectral sequence
come from a product of powers of generators times an element from R∗/x, hence we get that a
potential target has a bidegree of the form

(
∑
i

uini, (
∑
i

uini)(|x|+ 1) + 2m).

Comparing components of the bidegree gives the two equations

n− r =
∑
i

uini and n(|x|+ 1) + r − 1 = (|x|+ 1)(
∑
i

uini) + 2m.

We rewrite the second equation as

2m+ 1 = (n−
∑
i

uini)(|x|+ 1) + r.

Using that n−
∑

i uini is r yields 2m+ 1 = r(|x|+ 2), but the degree of x is even, so there can
be no non-trivial differentials in this spectral sequence.

We do not have additive extensions because the E∞-term is free over π∗R/x. Thus as an
π∗R/x-module we get that THHR∗ (R/x) is isomorphic to π∗R/x⊗π0R Γπ0R(ρ0εx). �

Corollary 7.2. If in addition to the assumptions in Proposition 7.1 we have that R/x is an
Eilenberg-MacLane spectrum of a commutative ring k, then

THHR(Hk,Hk) ' Hk ∧Hk∨Σ|x|+1Hk Hk

as augmented commutative Hk-algebras. In particular,

THHR∗ (Hk) ∼= Γk(ρ
0εx)

with |ρ0εx| = |x|+ 2

Proof. Greenlees’ cofiber sequence identifies THHR(Hk) as

Hk ∧LHk∧RHk Hk

using the sequence of commutative ring spectra R = R → Hk = Hk. The homotopy groups
of Hk ∧R Hk are isomorphic to Λk(εx) with |εx| = |x| + 1. Hence we know from [DLR18,
Proposition 2.1] that

Hk ∧R Hk ∼ Hk ∨ Σ|x|+1Hk

with the square zero multiplication as augmented commutative Hk-algebras. Therefore we
get the first claim. This also shows that THHR(Hk) can be modeled as the two-sided bar
construction

BHk(Hk,Hk ∨ Σ|x|+1Hk,Hk)

and by [DLR18] we know that its homotopy groups are the homology groups of the algebraic bar
construction Bk(k,Λ(εx), k). We know from [BLPRZ15, Proposition 2.3] that there is a quasi-
isomorphism between Γk(ρ

0εx) (with zero differential) and the differential graded commutative
algebra associated to Bk(k,Λ(εx), k). �

Corollary 7.3. If in addition to the assumptions of Corollary 7.2 the ring k is the field Fp we
get

THH
[n+1],R
∗ (HFp, HFp) ∼= Tor

THH
[n],R
∗ (HFp,HFp)

∗,∗ (Fp,Fp)

for all n > 0.

Remark 7.4. In the above statement one can consider a slightly more general case of any field
of characteristic p.
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Proposition 7.5. Assume in addition to the requirements of Proposition 7.1 that there is a
regular sequence (x, y1, . . . , yn) in π∗R such that R/(x, y1, . . . , yn) is Hk for some field k. Then

THHR∗ (R/x,Hk) ∼= Γk(ρ
0εx)

with |ρ0εx| = |x|+ 2. If k = Fp, then

THH
[n+1],R
∗ (R/x,HFp) ∼= Tor

THH
[n],R
∗ (R/x,HFp)

∗,∗ (Fp,Fp)

for all n > 0.

Proof. We consider the sequence of commutative S-algebras

R→ R→ R/x→ Hk.

Then π∗(Hk∧RR/x) ∼= Λk(εx) and as before we can conclude with [DLR18, 2.1] that Hk∧RR/x
is equivalent to the square zero extensionHk∨Σ|εx|Hk in the homotopy category of commutative
augmented Hk-algebras.

Greenlees’ cofiber sequence identifies THHR(R/x,Hk) as

Hk ∧L
Hk∨Σ|εx|Hk Hk

and we know from [DLR18, BLPRZ15] that this gives THHR∗ (R/x,Hk) ∼= Γk(ρ
0εx).

Higher THH can be calculated using the Tor spectral sequence associated to the 2-sided bar
construction: A simplicial model for THH[n+1],R(R/x,HFp) is

B(HFp,THH[n],R(R/x,HFp), HFp)

and we know from the methods established in [DLR18] and [BLPRZ15] that these Tor-spectral
sequences all collapse at the E2-term with no non-trivial extensions. �

Examples 7.6. We end the section with some examples.

(1) Let R be an Eilenberg-MacLane spectrum HA with A a commutative ring and let x be
regular in A. Then THHHA∗ (HA/x) is isomorphic to Shukla-homology of A/x over A,
SHA
∗ (A/x). In this case we obtain

THHHA∗ (HA/x) ∼= SHA
∗ (A/x) ∼= ΓA/x(ρ0εx)

with |ρ0εx| = 2. An explicit generator of SHA
2m(A/x) is given by

m∑
i=0

(−1)iτ⊗i ⊗ 1⊗ τ⊗m−i.

Here, we consider the resolution of A/x that is of the form (A[τ ]/τ2, d(τ) = x).
Higher order Shukla homology is crucial for determining higher order THH of Z/pmZ
with coefficients in Z/pZ, see [BHLPRZ19].

(2) Recall that the connective covers of the Morava E-theories, en, have coefficients

π∗(en) ∼= WFpn [[u1, . . . , un−1]][u]

with |u| = 2, where WFpn denotes the Witt vectors over Fpn and where the ui are
generators in degree zero. Hence π0(en) = WFpn [[u1, . . . , un−1]]. The quotient en/u =
HWFpn [[u1, . . . , un−1]] is a commutative S-algebra and the map en → en/u can be
realized as a map of commutative S-algebras.

The residue field HFpn is the quotient en/(u, u1, . . . , un−1, p) and thus the results of

Section 7 allow us to calculate THHen∗ (en/u, en/u) and THH
en,[m]
∗ (en/u,HFpn) for all

m > 1.
(3) Lawson and Naumann show in [LN12] that BP 〈2〉 at the prime two is a commutative S-

algebra by identifying it with the 2-localized connective spectrum of topological modular
forms together with a level three structure, tmf1(3)(2). They prove in [LN14, section
5] that there is a map of commutative S-algebras % : tmf1(3)(2) → ku(2) and there is
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a complex orientation of tmf1(3)(2) such that the effect of % on homotopy groups is as
follows [LN14, section 5]:

π∗(tmf1(3)(2)) = Z(2)[a1, a3]→ Z(2)[u], a1 7→ u, a3 7→ 0.

Here the degree of ai is 2i.

With Propositions 7.1 and 7.5 we can determine THH
tmf1(3)(2)
∗ (ku(2)) additively and

we get explicit formulae for higher relative THH of ku(2)
∼= tmf1(3)(2)/a3 with respect

to tmf1(3)(2) and with coefficients in HF2 = tmf1(3)(2)/(a3, a1, 2).
(4) The discretization map from ku to HZ = ku/u gives rise to another example of a

regular quotient with a commutative S-algebra structure with residue field HFp =
ku/(u, p) for any prime p, and so does the map from the connective Adams sum-
mand ` to HZ(p) = `/v1 with residue field HFp = `/(v1, p). Thus in these cases we

can determine THH[n],ku(HZ, HZ/pZ), THH[n],ku(HZ/pZ, HZ/pZ) for all primes and

THH[n],`(HZ(p), HZ/pZ), THH[n],`(HZ/pZ, HZ/pZ) for all odd primes and all n.
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