Exercises in Algebraic Topology (master)

Prof. Dr. Birgit Richter

Summer term 2024

Exercise sheet no 1

You don't hand this one in; we'll do the exercises in the tutorials.

1 (Basics about abelian groups) Let A and B be two abelian groups. We denote by Hom(A, B) the set of group homomorphisms from A to B.

a) Show that Hom(A, B) is an abelian group.

b) Construct an explicit isomorphism $\varphi \colon \mathsf{Hom}(\mathbb{Z}, A) \cong A$ for all abelian groups A.

c) Let n > 1 be a natural number. Describe $\mathsf{Hom}(\mathbb{Z}/n\mathbb{Z}, A)$ as a subgroup of A. What is $\mathsf{Hom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z})$ or $\mathsf{Hom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Q})$?

2 (Disks and spheres)

Let n be an arbitrary integer and let \mathbb{D}^n be the chain complex whose only non-trivial entries are in degrees n and n-1 with $\mathbb{D}_n^n = \mathbb{D}_{n-1}^n = \mathbb{Z}$. Its only non-trivial boundary operator is the identity.

Similarly, let \mathbb{S}^n be the chain complex whose only non-trivial entry is in degree n with $\mathbb{S}_n^n = \mathbb{Z}$.

a) Assume that (C_*d) is an arbitrary chain complex. Describe the abelian group of chain maps from \mathbb{D}^n to C_* and from \mathbb{S}^n to C_* in terms of subobjects of C_n .

b) What are the homology groups of \mathbb{D}^n and \mathbb{S}^n ?

c) Let $f_*: C_* \to C'_*$ be a chain map and assume that f_n is a monomorphism for all n. Do we then know that $H_n(f_*)$ is also a monomorphism? What about epis and isos?

3 (Too much to ask for?)

a) What are the homology groups of the chain complex

 $C_* = \dots \longrightarrow \mathbb{Z}/4\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z}/4\mathbb{Z} \cdot 2 \longrightarrow \mathbb{Z}/4\mathbb{Z} \longrightarrow \dots?$

b) Is there a chain homotopy from the identity of C_* to the zero map, *i.e.*, can there be maps $s_n : C_n \to C_{n+1}$ with $d \circ s + s \circ d = \mathrm{id}_{C_n}$ for all $n \in \mathbb{Z}$?

4 (Lego)

Let $(A_n)_{n\in\mathbb{Z}}$ be an arbitrary family of finitely generated abelian groups. Is there a chain complex F_* with F_n free abelian for all $n \in \mathbb{Z}$ and with $H_n(F_*) \cong A_n$? (Recall the structure theorem for finitely generated abelian groups for this.)