Exercises in Algebraic Topology (master)

Prof. Dr. Birgit Richter

Summer term 2024

Exercise sheet no 12

due: 28th of June 2024, 11:45h in H2

1 (Cup product pairing) (2 + 2 points)

- a) What are the cup product pairings on $\mathbb{S}^2 \times \mathbb{S}^2$ and $\mathbb{C}P^2$?
- b) What can you say about the symmetry of the cup pairing if the dimension of the manifold is 4n or 4n + 2?

2 (Transfer or Umkehr maps) (2 + 2 points)

Assume that M is an m-dimensional and N is an n-dimensional topological manifold and both are connected, compact, closed and oriented with fundamental classes [M] and [N]. Assume that $f: M \to N$ is continuous. Define the transfer or Umkehr maps $f^!: H^{m-p}(M) \to H^{n-p}(N)$ and $f_!: H_{n-p}(N) \to H_{m-p}(M)$ as

 $f^{!}(\alpha) = (\mathsf{PD}_{N}^{-1} \circ H_{p}(f) \circ \mathsf{PD}_{M})(\alpha) \text{ and } f_{!}(a) = (\mathsf{PD}_{M} \circ H^{p}(f) \circ \mathsf{PD}_{N}^{-1})(a):$

$H^{m-p}(M) \xrightarrow{f^!} H^{n-p}(N)$		$H_{n-p}(N) \xrightarrow{f_1} H_{m-p}(M)$	
PD_M	PD_N	PD_N	PD_M
$H_p(M) \xrightarrow{\Psi} H_p(f) \xrightarrow{H_p(f)} H_p(f)$	(N)	$H^p(N) - H^p(N)$	$\xrightarrow{f)} H^p(M).$

So these map go 'the wrong way' – and this is why they are sometimes also called *wrong-way maps*.

- a) Show that $f^!(f^*(\alpha) \cup \beta) = \alpha \cup f^!(\beta)$ and also $f_!(\alpha \cap a) = f^*(\alpha) \cap f_!(a)$.
- b) Let $f: \mathbb{S}^1 \to \mathbb{S}^1$ be a map of degree n > 1. What is the effect of f! and f! in degree 1?

3 (Easy applications of duality) (2 + 2 + 2 points)

- (1) Prove that for $n \ge 1$ every homotopy equivalence $f: \mathbb{C}P^{2n} \to \mathbb{C}P^{2n}$ must be orientation preserving.
- (2) Let $n > m \ge 1$ and show that every continuous $f \colon \mathbb{R}P^n \to \mathbb{R}P^m$ induces $\pi_1(f) = 0$.
- (3) Let $m \ge 2$ and let M be a compact, connected, oriented m-manifold without boundary and assume that $f: \mathbb{S}^m \to M$ is a continuous map with $\deg(f) \ne 0$. Show that for all $0 \le i \le m$

$$H_i(M;\mathbb{Q}) \cong H_i(\mathbb{S}^m;\mathbb{Q}).$$