Exercises in Algebraic Topology (master)

Prof. Dr. Birgit Richter Summer term 2025

Exercise sheet no 1

You don't hand this one in; we'll talk about this sheet in the tutorials.

- 1 (Basics about abelian groups) Let A and B be two abelian groups. We denote by $\mathsf{Hom}(A,B)$ the set of group homomorphisms from A to B.
 - a) Show that Hom(A, B) is an abelian group.
 - b) Construct an explicit isomorphism $\varphi \colon \mathsf{Hom}(\mathbb{Z},A) \cong A$ for all abelian groups A.
- c) Let n > 1 be a natural number. Describe $\mathsf{Hom}(\mathbb{Z}/n\mathbb{Z},A)$ as a subgroup of A. What is $\mathsf{Hom}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z})$ or $\mathsf{Hom}(\mathbb{Z}/n\mathbb{Z},\mathbb{Q})$?

2 (Disks and spheres)

Let n be an arbitrary integer and let \mathbb{D}^n be the chain complex whose only non-trivial entries are in degrees n and n-1 with $\mathbb{D}_n^n = \mathbb{D}_{n-1}^n = \mathbb{Z}$. Its only non-trivial boundary operator is the identity.

Similarly, let \mathbb{S}^n be the chain complex whose only non-trivial entry is in degree n with $\mathbb{S}_n^n = \mathbb{Z}$.

- a) Assume that (C_*d) is an arbitrary chain complex. Describe the abelian group of chain maps from \mathbb{D}^n to C_* , $\mathsf{Ch}(\mathbb{D}^n, C_*)$, and from \mathbb{S}^n to C_* , $\mathsf{Ch}(\mathbb{S}^n, C_*)$, in terms of subobjects of C_n .
 - b) What are the homology groups of \mathbb{D}^n and \mathbb{S}^n ?
- c) Prove or disprove the following claim: A chain complex C_* is trivial if and only if $\mathsf{Ch}(\mathbb{D}^n, C_*) = 0$ for all $n \in \mathbb{Z}$.

3 (Right or wrong?)

Let $f_*: C_* \to C'_*$ be a chain map and assume that f_n is a monomorphism for all n. Do we then know that $H_n(f_*)$ is also a monomorphism? What about epis and isos?

4 (Too much to ask for?)

a) What are the homology groups of the chain complex

$$C_* = \dots \longrightarrow \mathbb{Z}/4\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z}/4\mathbb{Z} \cdot 2 \longrightarrow \mathbb{Z}/4\mathbb{Z} \longrightarrow \dots$$
?

b) Is there a chain homotopy from the identity of C_* to the zero map, *i.e.*, can there be maps $s_n : C_n \to C_{n+1}$ with $d \circ s + s \circ d = \mathrm{id}_{C_n}$ for all $n \in \mathbb{Z}$?

5 (Lego)

Let $(A_n)_{n\in\mathbb{Z}}$ be an arbitrary family of finitely generated abelian groups. Is there a chain complex F_* with F_n free abelian for all $n\in\mathbb{Z}$ and with $H_n(F_*)\cong A_n$? (Recall the structure theorem for finitely generated abelian groups for this.)