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CHAPTER 1

Homology theory

1. Chain complexes

Definition 1.1. A chain complex is a sequence of abelian groups, (Cn)n∈Z, together with homomor-
phisms dn : Cn → Cn−1 for n ∈ Z, such that dn−1 ◦ dn = 0.

Let R be an associative ring with unit 1R. A chain complex of R-modules can analoguously be defined
as a sequence of R-modules (Cn)n∈Z with R-linear maps dn : Cn → Cn−1 with dn−1 ◦ dn = 0.

Definition 1.2.
• The dn are differentials or boundary operators.
• The x ∈ Cn are called n-chains.
• Is x ∈ Cn and dnx = 0, then x is an n-cycle.

Zn(C) := {x ∈ Cn|dnx = 0}.

• If x ∈ Cn is of the form x = dn+1y for some y ∈ Cn+1, then x is an n-boundary.

Bn(C) := Im(dn+1) = {dn+1y, y ∈ Cn+1}.

Note that the cycles and boundaries form subgroups of the chains. As dn ◦ dn+1 = 0, we know that the
image of dn+1 is a subgroup of the kernel of dn and thus

Bn(C) ⊂ Zn(C).

We’ll often drop the subscript n from the boundary maps and we’ll just write C∗ for the chain complex.

Definition 1.3. The abelian group Hn(C) := Zn(C)/Bn(C) is the nth homology group of the complex
C∗.

Notation: We denote by [c] the equivalence class of a c ∈ Zn(C).
If c, c′ ∈ Cn satisfy that c− c′ is a boundary, then c is homologous to c′. That’s an equivalence relation.

Examples:

1) Consider

Cn =

{
Z n = 0, 1

0 otherwise

and let d1 be the multiplication with N ∈ N, then

Hn(C) =

{
Z/NZ n = 0

0 otherwise.

2) Take Cn = Z for all n ∈ Z and

dn =

{
idZ n odd

0 n even.

What is the homology of this chain complex?

3) Consider Cn = Z for all n ∈ Z again, but let all boundary maps be trivial. What is the homology of this
chain complex?
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Definition 1.4. Let C∗ and D∗ be two chain complexes. A chain map f : C∗ → D∗ is a sequence of
homomorphisms fn : Cn → Dn such that dDn ◦ fn = fn−1 ◦ dCn for all n, i.e., the diagram

Cn

dC
n //

fn

��

Cn−1

fn−1

��

Dn

dD
n // Dn−1

commutes for all n.

Such an f sends cycles to cycles and boundaries to boundaries. We therefore obtain an induced map

Hn(f) : Hn(C) → Hn(D)

via Hn(f)∗[c] = [fnc].
There is a chain map from the chain complex mentioned in Example 1) to the chain complex D∗ that is

concentrated in degree zero and has D0 = Z/NZ. Note, that H0(f) is an isomorphism on zeroth homology
groups.

Are there chain maps between the complexes from Examples 2) and 3)?

Lemma 1.5. If f : C∗ → D∗ and g : D∗ → E∗ are two chain maps, then Hn(g) ◦Hn(f) = Hn(g ◦ f) for
all n.

When do two chain maps induce the same map on homology?

Definition 1.6. A chain homotopy H between two chain maps f, g : C∗ → D∗ is a sequence of homo-
morphisms (Hn)n∈Z with Hn : Cn → Dn+1 such that for all n

dDn+1 ◦Hn +Hn−1 ◦ dCn = fn − gn.

. . .
dC
n+2

// Cn+1

Hn+1

ww

dC
n+1

//

fn+1

��

gn+1

		

Cn

Hn

ww

dC
n //

fn

��

gn

		

Cn−1

Hn−1

ww

dC
n−1

//

fn−1

��

gn−1

		

. . .

. . .
dD
n+2

// Dn+1

dD
n+1

// Dn

dD
n // Dn−1

dD
n−1

// . . .

If such an H exists, then f and g are (chain) homotopic: f ≃ g.

We will later see geometrically defined examples of chain homotopies.

Proposition 1.7.
(a) Being chain homotopic is an equivalence relation.
(b) If f and g are homotopic, then Hn(f) = Hn(g) for all n.

Proof. (a) If H is a homotopy from f to g, then −H is a homotopy from g to f . Each f is homotopic
to itself with H = 0. If f is homotopic to g via H and g is homotopic to h via K, then f is homotopic to h
via H +K.

(b) We have for every cycle c ∈ Zn(C∗):

Hn(f)[c]−Hn(g)[c] = [fnc− gnc] = [dDn+1 ◦Hn(c)] + [Hn−1 ◦ dCn (c)] = 0.

□

Definition 1.8. Let f : C∗ → D∗ be a chain map. We call f a chain homotopy equivalence, if there is
a chain map g : D∗ → C∗ such that g ◦ f ≃ idC∗ and f ◦ g ≃ idD∗ . The chain complexes C∗ and D∗ are then
chain homotopically equivalent.

Note, that such chain complexes have isomorphic homology. However, chain complexes with isomorphic
homology do not have to be chain homotopically equivalent. (Can you find a counterexample?)
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Definition 1.9. If C∗ and C ′
∗ are chain complexes, then their direct sum, C∗⊕C ′

∗, is the chain complex
with

(C∗ ⊕ C ′
∗)n = Cn ⊕ C ′

n = Cn × C ′
n

with differential d = d⊕ given by

d⊕(c, c
′) = (dc, dc′).

Similarly, if (C
(j)
∗ , d(j))j∈J is a family of chain complexes, then we can define their direct sum as follows:

(
⊕
j∈J

C
(j)
∗ )n :=

⊕
j∈J

C(j)
n

as abelian groups and the differential d⊕ is defined via the property that its restriction to the jth summand
is d(j).

2. Singular homology

Let v0, . . . , vn be n+ 1 points in Rn+1. Consider the convex hull

K(v0, . . . , vn) := {
n∑

i=0

tivi|
n∑

i=0

ti = 1, ti ⩾ 0}.

Definition 2.1. If the vectors v1 − v0, . . . , vn − v0 are linearly independent, then K(v0, . . . , vn) is the
simplex generated by v0, . . . , vn. We denote such a simplex by simp(v0, . . . , vn).

Example. The standard topological n-simplex is ∆n := simp(e0, . . . , en). Here, ei is the vector in Rn+1 that
has a 1 in coordinate i + 1 and is zero in all other coordinates. The first examples are: ∆0 is the point e0,
∆1 is the line segment between e0 and e1, ∆

2 is a triangle in R3 and ∆3 is homeomorphic to a tetrahedron.
The coordinate description of the n-simplex is

∆n = {(t0, . . . , tn) ∈ Rn+1|
∑

ti = 1, ti ⩾ 0}.

We consider ∆n as ∆n ⊂ Rn+1 ⊂ Rn+2 ⊂ . . ..
The boundary of ∆1 consists of two copies of ∆0, the boundary of ∆2 consists of three copies of ∆1. In

general, the boundary of ∆n consists of n+ 1 copies of ∆n−1.
We need the following face maps for 0 ⩽ i ⩽ n

di = dn−1
i : ∆n−1 ↪→ ∆n; (t0, . . . , tn−1) 7→ (t0, . . . , ti−1, 0, ti, . . . , tn−1).

The image of dn−1
i in ∆n is the face that is opposite to ei. It is the simplex generated by e0, . . . , ei−1,

ei+1, . . . , en.
Draw the examples of the faces in ∆1 and ∆2!

Lemma 2.2. Concerning the composition of face maps, the following rule holds:

dn−1
i ◦ dn−2

j = dn−1
j ◦ dn−2

i−1 , 0 ⩽ j < i ⩽ n.

Example: face maps for ∆0 and composition into ∆2: d2 ◦ d0 = d0 ◦ d1.

Proof. Both expressions yield

dn−1
i ◦ dn−2

j (t0, . . . , tn−2) = (t0, . . . , tj−1, 0, . . . , ti−2, 0, . . . , tn−2) = dn−1
j dn−2

i−1 (t0, . . . , tn−2).

□

Let X be an arbitrary topological space, X ̸= ∅.

Definition 2.3. A singular n-simplex in X is a continuous map α : ∆n → X.

Note, that α just has to be continuous, not smooth or anything!

Definition 2.4. Let Sn(X) be the free abelian group generated by all singular n-simplices in X. We
call Sn(X) the nth singular chain module of X.
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Elements of Sn(X) are finite sums
∑

i∈I λiαi with λi = 0 for almost all i ∈ I and αi : ∆
n → X.

For all n ⩾ 0 there are non-trivial elements in Sn(X), because we assumed that X ̸= ∅: we can always
take an x0 ∈ X and the constant map κx0 : ∆

n → X as α. By convention, we define Sn(∅) = 0 for all n ⩾ 0.
If we want to define maps from Sn(X) to some abelian group then it suffices to define such a map on

generators.

Example. What is S0(X)? A continuous α : ∆0 → X is determined by its value α(e0) =: xα ∈ X, which is a
point in X. A singular 0-simplex

∑
i∈I λiαi can thus be identified with the formal sum of points

∑
i∈I λixαi

.
For instance if you count the zeroes and poles of a meromorphic function with multiplicities then this gives
an element in S0(X). In algebraic geometry a divisor is an element in S0(X).

Definition 2.5. We define ∂i : Sn(X) → Sn−1(X) on generators

∂i(α) = α ◦ dn−1
i

and call it the ith face of α.

On Sn(X) we therefore get ∂i(
∑

j λjαj) =
∑

j λj(αj ◦ dn−1
i ).

Lemma 2.6. The face maps on Sn(X) satisfy

∂j ◦ ∂i = ∂i−1 ◦ ∂j , 0 ⩽ j < i ⩽ n.

Proof. The proof follows from the one of Lemma 2.2. □

Definition 2.7. We define the boundary operator on singular chains as ∂ : Sn(X) → Sn−1(X), ∂ =∑n
i=0(−1)i∂i.

Lemma 2.8. The map ∂ is a boundary operator, i.e., ∂ ◦ ∂ = 0.

Proof. We calculate

∂ ◦ ∂ = (

n−1∑
j=0

(−1)j∂j) ◦ (
n∑

i=0

(−1)i∂i) =
∑∑

(−1)i+j∂j ◦ ∂i

=
∑

0⩽j<i⩽n

(−1)i+j∂j ◦ ∂i +
∑

0⩽i⩽j⩽n−1

(−1)i+j∂j ◦ ∂i

=
∑

0⩽j<i⩽n

(−1)i+j∂i−1 ◦ ∂j +
∑

0⩽i⩽j⩽n−1

(−1)i+j∂j ◦ ∂i = 0.

□

We therefore obtain the singular chain complex, S∗(X),

. . . //Sn(X)
∂ //Sn−1(X)

∂ // . . .
∂ //S1(X)

∂ //S0(X) //0.

We abbreviate Zn(S∗(X)) by Zn(X), Bn(S∗(X)) by Bn(X) and Hn(S∗(X)) by Hn(X).

Definition 2.9. For a space X, Hn(X) is the nth singular homology group of X.

Note that Z0(X) = S0(X).
As an example of a 1-cycle consider a 1-chain c = α + β + γ where α, β, γ : ∆1 → X such that α(e1) =

β(e0), β(e1) = γ(e0) and γ(e1) = α(e0) and calculate that ∂c = 0.
We need to understand how continuous maps of topological spaces interact with singular chains and

singular homology.
Let f : X → Y be a continuous map.

Definition 2.10. The map fn = Sn(f) : Sn(X) → Sn(Y ) is defined on generators α : ∆n → X as

fn(α) = f ◦ α : ∆n α //X
f
//Y.
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Lemma 2.11. For any continuous f : X → Y we have

Sn(X)
fn //

∂X

��

Sn(Y )

∂Y

��

Sn−1(X)
fn−1

// Sn−1(Y ),

i.e., (fn)n is a chain map and hence induces a map Hn(f) : Hn(X) → Hn(Y ).

Proof. By definition

∂Y (fn(α)) =

n∑
i=0

(−1)i(f ◦ α) ◦ di =
n∑

i=0

(−1)if ◦ (α ◦ di) = fn−1(∂
Xα).

□

Of course, the identity map on X induces the identity map on Hn(X) for all n ⩾ 0 and if we have a
composition of continuous maps

X
f
//Y

g
//Z,

then Sn(g ◦ f) = Sn(g) ◦ Sn(f) and Hn(g ◦ f) = Hn(g) ◦Hn(f). In categorical language, this says precisely
that Sn(−) and Hn(−) are functors from the category of topological spaces and continuous maps into the
category of abelian groups. Taking all Sn(−) together turns S∗(−) into a functor from topological spaces
and continuous maps into the category of chain complexes with chain maps as morphisms.

One implication of Lemma 2.11 is that homeomorphic spaces have isomorphic homology groups:

X ∼= Y ⇒ Hn(X) ∼= Hn(Y ) for all n ⩾ 0.

Our first (not too exciting) calculation is the following:

Proposition 2.12. The homology groups of a one-point space pt are trivial but in degree zero,

Hn(pt) ∼=

{
0, if n > 0,

Z, if n = 0.

Proof. For every n ⩾ 0 there is precisely one continuous map α : ∆n → pt, namely the constant map.
We denote this map by κn. Then the boundary of κn is

∂κn =

n∑
i=0

(−1)iκn ◦ di =
n∑

i=0

(−1)iκn−1 =

{
κn−1, n even,

0, n odd.

For all n we have Sn(pt) ∼= Z generated by κn and therefore the singular chain complex looks as follows:

. . .
∂=0 //Z ∂=idZ //Z ∂=0 //Z.

□

3. H0 and H1

Before we calculate anything, we define a map.

Proposition 3.1. For any topological space X there is a homomorphism ε : H0(X) → Z with ε ̸= 0 for
X ̸= ∅.

Proof. If X ̸= ∅, then we define ε(α) = 1 for any α : ∆0 → X, thus ε(
∑

i∈I λiαi) =
∑

i∈I λi on S0(X).
As only finitely many λi are non-trivial, this is in fact a finite sum.

We have to show that this map is well-defined on homology, i.e., that it vanishes on boundaries. One
possibility is to see that ε can be interpreted as the map on singular chains that is induced by the projection
map of X to a one-point space.
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One can also show the claim directly: Let S0(X) ∋ c = ∂b be a boundary and write b =
∑

i∈I νiβi with

βi : ∆
1 → X. Then we get

∂b = ∂
∑
i∈I

νiβi =
∑
i∈I

νi(βi ◦ d0 − βi ◦ d1) =
∑
i∈I

νiβi ◦ d0 −
∑
i∈I

νiβi ◦ d1

and hence

ε(c) = ε(∂b) =
∑
i∈I

νi −
∑
i∈I

νi = 0.

□

We said that S0(∅) is zero, so H0(∅) = 0 and in this case we define ε to be the zero map.
If X ̸= ∅, then any α : ∆0 → X can be identified with its image point, so the map ε on S0(X) counts

points in X with multiplicities.

Proposition 3.2. If X is a path-connected, non-empty space, then ε : H0(X) ∼= Z.

Proof. As X is non-empty, there is a point x ∈ X and the constant map κx with value x is an element
in S0(X) with ε(κx) = 1. Therefore ε is surjective. For any other point y ∈ X there is a continuous path
ω : [0, 1] → X with ω(0) = x and ω(1) = y. We define αω : ∆

1 → X as

αω(t0, t1) = ω(1− t0).

Then

∂(αω) = ∂0(αω)− ∂1(αω) = αω(e1)− αω(e0) = αω(0, 1)− αω(1, 0) = κy − κx,

and the two generators κx, κy are homologous. This shows that ε is injective. □

From now on we will identify paths w and their associated 1-simplices αw.

Corollary 3.3. If X is of the form X =
⊔

i∈I Xi such that the Xi are non-empty and path-connected,
then

H0(X) ∼=
⊕
i∈I

Z.

In this case, the zeroth homology group of X is the free abelian group generated by the path-components.

Proof. The singular chain complex of X splits as the direct sum of chain complexes of the Xi:

Sn(X) ∼=
⊕
i∈I

Sn(Xi)

for all n. Boundary summands ∂i stay in a component, in particular,

∂ : S1(X) ∼=
⊕
i∈I

S1(Xi) →
⊕
i∈I

S0(Xi) ∼= S0(X)

is the direct sum of the boundary operators ∂ : S1(Xi) → S0(Xi) and the claim follows. □

Next, we want to relate H1 to the fundamental group. Let X be path-connected and x ∈ X.

Lemma 3.4. Let ω1, ω2, ω be paths in X.

(a) Constant paths are null-homologous.
(b) If ω1(1) = ω2(0), then ω1 ∗ ω2 − ω1 − ω2 is a boundary. Here ω1 ∗ ω2 is the concatenation of ω1

followed by ω2.
(c) If ω1(0) = ω2(0), ω1(1) = ω2(1) and if ω1 is homotopic to ω2 relative to {0, 1}, then ω1 and ω2 are

homologous as singular 1-chains.
(d) Any 1-chain of the form ω̄ ∗ ω is a boundary. Here, ω̄(t) := ω(1− t).
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Proof. For a), consider the constant singular 2-simplex α(t0, t1, t2) = x and cx, the constant path on
x. Then ∂α = cx − cx + cx = cx.

For b), we define a singular 2-simplex β : ∆2 → X as follows.

�
�
�
�
�
��

A
A
A

A
A
AK

-
ω1

ω2ω1 ∗ ω2 Q
QQ

Q
Q

Q
QQ

Q
QQ

e0 e1

e2

We define β on the boundary components of ∆2 as indicated and prolong it constantly along the sloped
inner lines. Then

∂β = β ◦ d0 − β ◦ d1 + β ◦ d2 = ω2 − ω1 ∗ ω2 + ω1.

For c): Let H : [0, 1]× [0, 1] → X a homotopy from ω1 to ω2. As we have that H(0, t) = ω1(0) = ω2(0),
we can factor H through the quotient [0, 1]× [0, 1]/{0} × [0, 1] ∼= ∆2 with induced map h : ∆2 → X. Then

∂h = h ◦ d0 − h ◦ d1 + h ◦ d2.

The first summand is null-homologous, because it’s constant (with value ω1(1) = ω2(1)), the second one is
ω2 and the last is ω1, thus ω1 − ω2 is null-homologous.

For d): Consider γ : ∆2 → X as indicated below.

�
�
�
�
�
��

A
A
A

A
A
AK

-
ω̄

ωω(1)

�
�
�
��

�
�
�

��

e0 e1

e2

□

Definition 3.5. Let h : π1(X,x) → H1(X) be the map, that sends the homotopy class of a closed path
ω, [ω]π1 , to its homology class [ω] = [ω]H1 . This map is called the Hurewicz-homomorphism.

Witold Hurewicz: 1904–1956 https://en.wikipedia.org/wiki/Witold_Hurewicz (Mayan pyramids
are dangerous, at least for mathematicians.)

Lemma 3.4 ensures that h is well-defined and

h([ω1][ω2]) = h([ω1 ∗ ω2]) = [ω1] + [ω2] = h([ω1]) + h([ω2]);

thus h is a homomorphism.
Note that for a closed path ω we have that [ω̄] = −[ω] in H1(X).

Definition 3.6. Let G be an arbitrary group, then its abelianization, Gab, is G/[G,G].

Recall that [G,G] is the commutator subgroup of G. That is the smallest subgroup of G containing all
commutators ghg−1h−1, g, h ∈ G. It is a normal subgroup of G: If c ∈ [G,G], then for any g ∈ G the element
gcg−1c−1 is a commutator and also by the closure property of subgroups the element gcg−1c−1c = gcg−1 is
in the commutator subgroup.
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Proposition 3.7. The Hurewicz homomorphism factors through the abelianization of π1(X,x) and
induces an isomorphism

π1(X,x)ab ∼= H1(X)

for all path-connected X.

π1(X,x)
h //

p

��

H1(X)

π1(X,x)ab = π1(X,x)/[π1(X,x), π1(X,x)]

∼=
hab

33

Proof. We will construct an inverse to hab. For any y ∈ X we choose a path uy from x to y. For y = x
we take ux to be the constant path on x. Let α be an arbitrary singular 1-simplex and yi = α(ei). Define
ϕ : S1(X) → π1(X,x)ab on generators as ϕ(α) = [uy0

∗α ∗ ūy1
] and extend ϕ linearly to all of S1(X), keeping

in mind that the composition in π1 is written multiplicatively.
We have to show that ϕ is trivial on boundaries, so let β : ∆2 → X. Then

ϕ(∂β) = ϕ(β ◦ d0 − β ◦ d1 + β ◦ d2) = ϕ(β ◦ d0)ϕ(β ◦ d1)−1ϕ(β ◦ d2).

Abbreviating β ◦ di with αi we get as a result

[uy1
∗ α0 ∗ ūy2

][uy0
∗ α1 ∗ ūy2

]−1[uy0
∗ α2 ∗ ūy1

] = [uy0
∗ α2 ∗ ūy1

∗ uy1
∗ α0 ∗ ūy2

∗ uy2
∗ ᾱ1 ∗ ūy0

].

Here, we’ve used that the image of ϕ is abelian. We can reduce ūy1 ∗ uy1 and ūy2 ∗ uy2 and are left with
[uy0 ∗ α2 ∗ α0 ∗ ᾱ1 ∗ ūy0 ] but α2 ∗ α0 ∗ ᾱ1 is the closed path tracing the boundary of β and therefore it is
null-homotopic in X. Thus ϕ(∂β) = 0 and ϕ passes to a map

ϕ : H1(X) → π1(X,x)ab.

The composition ϕ ◦ hab evaluated on the class of a closed path ω gives

ϕ ◦ hab[ω]π1
= ϕ[ω]H1

= [ux ∗ ω ∗ ūx]π1
.

But we chose ux to be constant, thus ϕ ◦ hab = id.
If c =

∑
λiαi is a cycle, then hab ◦ ϕ(c) is of the form [c + D∂c] where the D∂c-part comes from the

contributions of the uyi
. The fact that ∂(c) = 0 implies that the summands in D∂c cancel off and thus

hab ◦ ϕ = idH1(X). □

Note, that abelianization doesn’t change anything for abelian groups, i.e., whenever we have an abelian
fundamental group, we know that H1(X) ∼= π1(X,x).

Corollary 3.8. Knowledge of π1 gives

H1(Sn) = 0, for n > 1,

H1(S1) ∼= Z,
H1(S1 × . . .× S1︸ ︷︷ ︸

n

) ∼= Zn,

H1(S1 ∨ S1) ∼= (Z ∗ Z)ab ∼= Z⊕ Z,

H1(RPn) ∼=

{
Z, n = 1,

Z/2Z, n > 1,

H1(Fg) ∼= Z2g, for g ⩾ 1,

H1(K) ∼= Z⊕ Z/2Z.

In the last case, K denotes the Klein bottle.
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4. Homotopy invariance

We want to show that two continuous maps that are homotopic induce identical maps on the level of
homology groups.

Heuristics: If α : ∆n → X is a singular n-simplex and if f, g are homotopic maps from X to Y , then
the homotopy from f ◦ α to g ◦ α starts on ∆n × [0, 1]. We want to translate this geometric homotopy into
a chain homotopy on the singular chain complex. To that end we have to cut the prism ∆n × [0, 1] into
(n+ 1)-simplices. In low dimensions this is easy:

∆0 × [0, 1] is homeomorphic to ∆1, ∆1 × [0, 1] ∼= [0, 1]2 and this can be cut into two copies of ∆2 and
∆2 × [0, 1] is a 3-dimensional prism and that can be glued together from three tetrahedrons, e.g., like

@@

@@

�����

�����
@@�����

�
�
�
��

�
�
�
�
�
�

@@

�����

�
�
�
��

�
�
�
�
�
�
��

@@�����
�
�
�
�
�
�
��

�
�
�

�
�
�

As you might guess now, we use n+ 1 copies of ∆n+1 to build ∆n × [0, 1].

Definition 4.1. For i = 0, . . . , n define pi : ∆
n+1 → ∆n × [0, 1] as

pi(t0, . . . , tn+1) = ((t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn+1), ti+1 + . . .+ tn+1) ∈ ∆n × [0, 1].

On the standard basis vectors ek we obtain

pi(ek) =

{
(ek, 0), for 0 ⩽ k ⩽ i,

(ek−1, 1), for k > i.

We obtain maps Pi : Sn(X) → Sn+1(X × [0, 1]) via Pi(α) = (α× id) ◦ pi:

∆n+1 pi //∆n × [0, 1]
α×id

//X × [0, 1].

For k = 0, 1 let jk : X → X × [0, 1] be the inclusion x 7→ (x, k).

Lemma 4.2. The maps Pi satisfy the following relations

(a) ∂0 ◦ P0 = Sn(j1),
(b) ∂n+1 ◦ Pn = Sn(j0),
(c) ∂i ◦ Pi = ∂i ◦ Pi−1 for 1 ⩽ i ⩽ n.
(d)

∂j ◦ Pi =

{
Pi ◦ ∂j−1, for i ⩽ j − 2

Pi−1 ◦ ∂j , for i ⩾ j + 1.

Proof. Note that it suffices to check the corresponding claims for the pi’s and dj ’s.
For the first two points, we note that on ∆n we have

p0 ◦ d0(t0, . . . , tn) = p0(0, t0, . . . , tn) = ((t0, . . . , tn),
∑

ti) = ((t0, . . . , tn), 1) = j1(t0, . . . , tn)

and
pn ◦ dn+1(t0, . . . , tn) = pn(t0, . . . , tn, 0) = ((t0, . . . , tn), 0) = j0(t0, . . . , tn).

For c), one checks that pi ◦ di = pi−1 ◦ di on ∆n: both give ((t0, . . . , tn),
∑n

j=i tj) on (t0, . . . , tn).

13



For d) in the case i ⩾ j + 1, consider the following diagram

∆n+1

pi

''

∆n

dj

99

pi−1
%%

∆n × [0, 1]

∆n−1 × [0, 1]

dj×id

77

Checking coordinates one sees that this diagram commutes. The remaining case follows from a similar
observation. □

Definition 4.3. We define P : Sn(X) → Sn+1(X × [0, 1]) as P =
∑n

i=0(−1)iPi.

Lemma 4.4. The map P is a chain homotopy between (Sn(j0))n and (Sn(j1))n, i.e., ∂ ◦ P + P ◦ ∂ =
Sn(j1)− Sn(j0).

Proof. We take an α : ∆n → X and calculate

∂Pα+ P∂α =

n∑
i=0

n+1∑
j=0

(−1)i+j∂jPiα+

n−1∑
i=0

n∑
j=0

(−1)i+jPi∂jα.

If we single out the terms involving the pairs of indices (0, 0) and (n, n+1) in the first sum, we are left with

Sn(j1)(α)− Sn(j0)(α) +
∑

(i,j)̸=(0,0),(n,n+1)

(−1)i+j∂jPiα+

n−1∑
i=0

n∑
j=0

(−1)i+jPi∂jα.

Using Lemma 4.2 we see that only the first two summands survive. □

So, finally we can prove the main result of this section:

Theorem 4.5. (Homotopy invariance)
If f, g : X → Y are homotopic maps, then they induce the same map on homology.

Proof. Let H : X × [0, 1] → Y be a homotopy from f to g, i.e., H ◦ j0 = f and H ◦ j1 = g. Set
Kn := Sn+1(H) ◦ P . We claim that (Kn)n is a chain homotopy between (Sn(f))n and (Sn(g))n. Note that
H induces a chain map (Sn(H))n. Therefore we get

∂ ◦ Sn+1(H) ◦ P + Sn(H) ◦ P ◦ ∂ = Sn(H) ◦ ∂ ◦ P + Sn(H) ◦ P ◦ ∂
= Sn(H) ◦ (∂ ◦ P + P ◦ ∂)
= Sn(H) ◦ (Sn(j1)− Sn(j0)) = Sn(H ◦ j1)− Sn(H ◦ j0)
= Sn(g)− Sn(f).

Hence these two maps are chain homotopic and Hn(g) = Hn(f) for all n. □

Corollary 4.6. If two spaces X,Y are homotopy equivalent, then H∗(X) ∼= H∗(Y ). In particular, if
X is contractible, then

H∗(X) ∼=

{
Z, for ∗ = 0,

0, otherwise.

Examples. As Rn is contractible for all n, the above corollary gives that its homology is trivial but in
degree zero where it consists of the integers.

As the Möbius strip is homotopy equivalent to S1, we know that their homology groups are isomorphic.
If you know about vector bundles: the zero section of a vector bundle induces a homotopy equivalence

between the base and the total space, hence these two have isomorphic homology groups.
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5. The long exact sequence in homology

A typical situation is that there is a subspace A of a topological space X and you might know something
about A or X and want to calculate the homology of the other space using that partial information.

But before we can move on to topological applications we need some techniques about chain complexes.
We need to know that a short exact sequence of chain complexes gives rise to a long exact sequence in
homology.

Definition 5.1. Let A,B,C be abelian groups and

A
f
//B

g
//C

a sequence of homomorphisms. Then this sequence is exact, if the image of f is the kernel of g.

Definition 5.2. If

. . .
fi+1

//Ai
fi //Ai−1

fi−1
// . . .

is a sequence of homomorphisms of abelian groups (indexed over the integers), then this sequence is called
(long) exact, if it is exact at every Ai, i.e., the image of fi+1 is the kernel of fi for all i.

An exact sequence of the form

0 //A
f
//B

g
//C //0

is called a short exact sequence.

Examples. The sequence

0 //Z 2· //Z π //Z/2Z //0

is a short exact sequence.

If ι : U → A is a monomorphism, then 0 //U
ι //A is exact. Similarly, an epimorphism ϱ : B → Q

gives rise to an exact sequence B
ϱ
//Q //0 and an isomorphism ϕ : A ∼= A′ sits in an exact sequence

0 //A
ϕ
//A′ //0.

A sequence

0 //A
f
//B

g
//C //0

is exact iff f is injective, the image of f is the kernel of g and g is an epimorphism. Another equivalent
description is to view a sequence as above as a chain complex with vanishing homology groups. Homology
measures the deviation from exactness.

Definition 5.3. If A∗, B∗, C∗ are chain complexes and f∗ : A∗ → B∗, g : B∗ → C∗ are chain maps, then
we call the sequence

A∗
f∗ //B∗

g∗ //C∗

exact, if the image of fn is the kernel of gn for all n ∈ Z.
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Thus such an exact sequence of chain complexes is a commuting double ladder

...

d

��

...

d

��

...

d

��

An+1

fn+1
//

d

��

Bn+1

gn+1
//

d

��

Cn+1

d

��

An
fn //

d

��

Bn
gn //

d

��

Cn

d

��

An−1

fn−1
//

d��

Bn−1

gn−1
//

d��

Cn+1

d��

...
...

...

in which every row is exact.

Example. Let p be a prime, then

0

��

0

��

0

��

Z id //

p

��

Z 0 //

p2

��

0

��

Z
p

//

π

��

Z π //

π

��

Z/pZ

id

��

Z/pZ
p
//

��

Z/p2Z π //

��

Z/pZ

��

0 0 0

has exact rows and columns, in particular it is an exact sequence of chain complexes. Here, π denotes varying
canonical projection maps.

Proposition 5.4. If 0 //A∗
f
//B∗

g
//C∗ //0 is a short exact sequence of chain complexes,

then there exists a homomorphism δ : Hn(C∗) → Hn−1(A∗) for all n ∈ Z which is natural, i.e., if

0 // A∗
f
//

α

��

B∗
g
//

β

��

C∗ //

γ

��

0

0 // A′
∗

f ′
// B′

∗
g′
// C ′

∗
// 0

is a commutative diagram of chain maps in which the rows are exact then Hn−1(α) ◦ δ = δ ◦Hn(γ),

Hn(C∗)
δ //

Hn(γ)

��

Hn−1(A∗)

Hn−1(α)

��

Hn(C
′
∗)

δ // Hn−1(A
′
∗)

The method of proof is an instance of a diagram chase. The homomorphism δ is called connecting
homomorphism. The implicit claim in the proposition above is that δ is not always the zero map.
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Proof. We show the existence of a δ first and then prove that the constructed map satisfies the natu-
rality condition.

a) Definition of δ:
Is c ∈ Cn with d(c) = 0, then we choose a b ∈ Bn with gnb = c. This is possible because gn is surjective.

We know that dgnb = dc = 0 = gn−1db thus db is in the kernel of gn−1, hence it is in the image of fn−1.
Thus there is an a ∈ An−1 with fn−1a = db. We have that fn−2da = dfn−1a = ddb = 0 and as fn−2 is
injective, this shows that a is a cycle.

We define δ[c] := [a].

Bn ∋ b
� gn // c ∈ Cn

An−1 ∋ a
� fn−1

// db ∈ Bn−1

In order to check that δ is well-defined, we assume that there are b and b′ with gnb = gnb
′ = c. Then

gn(b− b′) = 0 and thus there is an ã ∈ An with fnã = b− b′. Define a′ as a− dã. Then

fn−1a
′ = fn−1a− fn−1dã = db− db+ db′ = db′

because fn−1dã = db − db′. As fn−1 is injective, we get that a′ is uniquely determined with this property.
As a is homologous to a′ we get that [a] = [a′] = δ[c], thus the latter is independent of the choice of b.

In addition, we have to make sure that the value stays the same if we add a boundary term to c, i.e.,
take c′ = c+ dc̃ for some c̃ ∈ Cn+1. Choose preimages of c, c̃ under gn and gn+1, i.e., b and b̃ with gnb = c

and gn+1b̃ = c̃. Then the element b′ = b+ db̃ has boundary db′ = db and thus both choices will result in the
same a.

Therefore δ : Hn(C∗) → Hn−1(A∗) is well-defined.
b) We have to show that δ is natural with respect to maps of short exact sequences.
Let c ∈ Zn(C∗), then δ[c] = [a] for a b ∈ Bn with gnb = c and an a ∈ An−1 with fn−1a = db. Therefore,

Hn−1(α)(δ[c]) = [αn−1(a)].
On the other hand, we have

f ′
n−1(αn−1a) = βn−1(fn−1a) = βn−1(db) = dβnb

and
g′n(βnb) = γngnb = γnc

and we can conclude that by the construction of δ

δ[γn(c)] = [αn−1(a)]

and this shows δ ◦Hn(γ) = Hn−1(α) ◦ δ. □

With this auxiliary result at hand we can now prove the main result in this section:

Proposition 5.5. For any short exact sequence

0 //A∗
f
//B∗

g
//C∗ //0

of chain complexes we obtain a long exact sequence of homology groups

. . .
δ //Hn(A∗)

Hn(f)
//Hn(B∗)

Hn(g)
//Hn(C∗)

δ //Hn−1(A∗)
Hn−1(f)

// . . .

Proof. a) Exactness at the spot Hn(B∗):
We have Hn(g) ◦Hn(f)[a] = [gn(fn(a))] = 0 because the composition of gn and fn is zero. This proves

that the image of Hn(f) is contained in the kernel of Hn(g).

For the converse, let [b] ∈ Hn(B∗) with [gnb] = 0. Then there is a c ∈ Cn+1 with dc = gnb. As gn+1 is
surjective, we find a b′ ∈ Bn+1 with gn+1b

′ = c. Hence

gn(b− db′) = gnb− dgn+1b
′ = dc− dc = 0.

Exactness gives an a ∈ An with fna = b − db′ and da = 0 and therefore fna is homologous to b and
Hn(f)[a] = [b] thus the kernel of Hn(g) is contained in the image of Hn(f).

17



b) Exactness at the spot Hn(C∗):
Let b ∈ Hn(B∗), then δ[gnb] = 0 because b is a cycle, so 0 is the only preimage under fn−1 of db = 0.

Therefore the image of Hn(g) is contained in the kernel of δ.

Now assume that δ[c] = 0, thus in the construction of δ, the a is a boundary, a = da′. Then for a
preimage of c under gn, b, we have by the definition of a

d(b− fna
′) = db− dfna

′ = db− fn−1a = 0.

Thus b − fna
′ is a cycle and gn(b − fna

′) = gnb − gnfna
′ = gnb − 0 = gnb = c, so we found a preimage for

[c] and the kernel of δ is contained in the image of Hn(g).

c) Exactness at Hn−1(A∗):
Let c be a cycle in Zn(C∗). Again, we choose a preimage b of c under gn and an a with fn−1(a) = db.

Then Hn−1(f)δ[c] = [fn−1(a)] = [db] = 0. Thus the image of δ is contained in the kernel of Hn−1(f).

If a ∈ Zn−1(A∗) with Hn−1(f)[a] = 0. Then fn−1a = db for some b ∈ Bn. Take c = gnb. Then by
definition δ[c] = [a]. □
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