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Abstract

This handout is meant to accompany one of the talks in the seminar on Hopf alge-
bras, tensor categories and 3-manifold invariants (Summer term 2020) at Universität
Hamburg. We plan to review the concept of strict monoidal categories and strict
monoidal functors, that will lead to understand the utility of Mac Lane’s coherence
theorem. We will then focus on strict ribbon categories in order to explore their re-
lation to ribbon graphs and define the category RibV , from which we can construct
isotopy invariants.

1 Stritification and Mac Lane’s coherence theorem

The main focus of this first part is to reach an understanding of the Mac Lane coherence
theorem: it allows to extend any result obtained for strict monoidal categories to arbitrary
monoidal categories. To do so, we will first review the concepts of strict monoidal categories
and (strict) monoidal functors following [1].

Recall that in the previous seminar we defined a monoidal category (C, ⊗, I, a, l, r) as a
category C which is endowed with a tensor product ⊗ : C × C → C, with a unit of the tensor
category I, an associativity constraint or associator a, a left unit constraint l and a right
unit constraint r with respect to I such that the Pentagon Axiom and the Triangle Axiom
were satistified.

Definition 1.1. A monoidal category is said to be strict if the associativity and unit
constraints a, l and r are all identities of the category.

We will show that given a tensor category C, one can construct a strict tensor category Cstr.
To do so, we need to define first the main class of objects to relate monoidal categories. For
clarity, we will use indices to denote which categories the structure elements belong to in
the beginning, but we will drop them afterwards unless necessary.

Definition 1.2. (a) Let C = (C,⊗C , IC , aC , lC , rC) and D = (D,⊗D, ID, aD, lD, rD) be tensor
categories. A tensor functor or monoidal functor from C to D is a triple (F,ϕ0, ϕ2) where
F : C → D is a functor, ϕ0 is an isomorphism from ID to F (IC) in D, and

ϕ2(U, V ) : F (U)⊗D F (V )→ F (U ⊗C V )

is a family of natural isomorphisms indexed by all couples (U, V ) of objects of C such that
the following diagrams
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(F (U)⊗ F (V ))⊗ F (W ) F (U)⊗ (F (V )⊗ F (W ))

F (U ⊗ V )⊗ F (W ) F (U)⊗ F (V ⊗W )

F ((U ⊗ V )⊗W ) F (U ⊗ (V ⊗W )),

ϕ2(U, V )⊗ idF (W )

aF (U),F (V ),F (W )

idF (U)⊗ϕ2(V,W )

ϕ2(U ⊗ V,W ) ϕ2(U, V ⊗W )

F (aU,V,W )

I ⊗ F (U) F (U) F (U)⊗ I F (U)

and

F (I)⊗ F (U) F (I ⊗ U) F (U)⊗ F (I) F (U ⊗ I)

ϕ0⊗idF (U)

lF (U)

idF (U)⊗ϕ0

rF (U)

ϕ2(I, U)

F (lU )

ϕ2(U, I)

F (rU )

commute for all objects (U, V,W ) in C. We say the functor is compatible with the associator,
the left unit and the right unit constraints, respectively. The tensor functor (F,ϕ0, ϕ2) is
said to be strict if the isomorphism ϕ0 and the natural transformation ϕ2 are identities in
D.

(b) A natural tensor transformation η : (F,ϕ0, ϕ2)→ (F ′, ϕ′0, ϕ
′
2) between tensor functors

from C to D is a natural transformation η : F → F ′ such that the following diagrams
commute for each couple (U,V) of objects in C:

F (I) F (U)⊗ F (V ) F (U ⊗ V )

I and

F ′(I) F ′(U)⊗ F ′(V ) F (U ⊗ V ).

η(I)

ϕ2(U,V)

η(U)⊗ η(V ) η(U ⊗ V )

ϕ0

ϕ′0

ϕ′2 (U, V )

A natural tensor isomorphism is a natural tensor transformation that is also a natural
isomorphism.

(c) A tensor equivalence between tensor categories is a tensor functor F : C → D such
there exist a tensor functor F ′ : D → C and natural tensor isomorphisms η : idD → FF ′

and θ : F ′F → idC .

If there exists a tensor equivalence as defined in (c), we say that C andD are tensor equivalent.
Note the composition of any two tensor functors is as well a tensor functor. From (a), it is
immediately clear that the identity functor is a strict tensor functor.

We now proceed to show how, given a tensor category C, we can construct a strict tensor
category Cstr which is tensor equivalent to C. Again, we are going to follow [1].

Let S be the class of all the finite sequences S = (V1, ..., Vk) of objects in C, including the
empty sequence ∅. The integer k is by definition the length of S. By convention, if S = ∅,
k = 0. We define the following product

S ∗ S′ = (V1, . . . , Vk, Vk+1, . . . , Vk+n)
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for any two sequences S = (V1, ..., Vk) and S′ = (Vk+1, ..., Vk+n), obtained by plaacing S′

after S. Note that by this definition, S ∗ ∅ = S = ∅ ∗ S.

To any sequence S of S , we assign an object F (V ) of C defined by

F (∅) = I, F ((V )) = V, F (S ∗ (V )) = F (S)⊗ V.

This can be seen explicitly as

F ((V1, V2, . . . , Vk−1, Vk)) = F ((V1, V2, . . . , Vk−1))⊗ Vk

= (F ((V1, V2, . . . , Vk−2))⊗ Vk−1)⊗ Vk = ((· · · (V1 ⊗ V2)⊗ · · · )⊗ Vk−1)⊗ Vk,

where the parentheses are being placed on the left side of the first element.

The category Cstr has elements of S, i.e. finite sequences of objects of C, with morphisms
given by

HomCstr (S, S′) = HomC(F (S), F (S′)).

Proposition 1.3. The categories Cstr and C are equivalent.

Proof. We can extend the map F to a functor from Cstr to C, which is the identity on
morphisms, hence fully faithful. Note also any single object in C is isomorphic to the image
under F os a sequence of length one, so F is essentially surjective. This defines a functor
G : C → Cstr such that FG = idC and GF = idCstr via θ(S) = idF (S) = GF (S)→ S.

Now that it is clear that we can obtain one category from the other, it suffices to identify
S ⊗ S′ = S ∗ S′ in order to endow Cstr with the structure of a strict tensor category. For
the morphisms we can define the following natural isomorphism

ϕ(S, S′) : F (S)⊗ F (S′)→ F (S ∗ S′)

for any pair in Cstr. Set ϕ(∅, S) = lS , ϕ(S, ϕ) = rS and

ϕ(S, (V )) = idF (S)⊗V : F (S)⊗ V → F (S ⊗ (V )),

ϕ(S, S′ ∗ (V )) = (ϕ(S, S′)⊗ idV ) ◦ a−1F (S),F (S′),V .

We state the following lemma involving more than two objects in Cstr without proving it.

Lemma 1.4. If S, S′, S′′ are objects on Cstr, we have

ϕ(S, S′ ∗ S′′) ◦ (idS ⊗ ϕ(S′, S′′)) ◦ aF (S),F (S′),F (S′′)

= ϕ(S ∗ S′, S′′) ◦ (ϕ(S, S′)⊗ idS′′).

Note the equality can be naturally extended from (S, S′, S′′) to (S, S′, S′′ ∗ (V )).

The same way we identified a tensor product between elements, we can now define the tensor
product of two morphisms of Cstr. If f : F (S)→ F (T ) and f ′ : F (S′)→ F (T ′) are any pair
of morphisms in C, we define the tensor product f ∗ f ′ in Cstr by the commutative diagram

F (S)⊗ F (S′) F (S ∗ S′)

F (T )⊗ F (T ′) F (T ∗ T ′).

ϕ(S,S’)

f ⊗ f ′ f ∗ f ′

ϕ(T, T ′)
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Theorem 1.5. Equipped with this tensor product Cstr is a strict tensor category. The
categories C and Cstr are tensor equivalent.

We refer to [1] for the proof. Theorem 1.5 implies Mac Lane’s coherence theorem which
asserts that every diagram in a monoidal category made up of the associativity and unitality
constraints commutes, as mentioned in [3]; that is, in a tensor category any diagram built
from the constraints a, l, r, and the identities by composing and tensoring, is commutative.
This can also be shown by interchanging in an unique way the order of parenthesis of the
tensor products in the Pentagon Axiom. Interestingly enough, this establishes an equivalence
between any monoidal category and a certain strict monoidal category. For our case, this
means that the results obtained for strict ribbon categories directly extend to arbitrary
ribbon categories.

2 Ribbon graphs

In this section we will briefly explain coloring of ribbon graphs by a given ribbon category V
and see how their isotopy classes form a monoidal category, denoted by RibV . Moreover, in
the upcoming seminars we will see how ribbon graphs allow to build 3-manifold invariants
and to study 3-dimensional TFTs.

Before starting with a formal definition, we mention the basic concepts to talk about ribbon
graphs:

• A band is the square [0, 1] × [0, 1] or any homeomorphic image of it, whose intervals
[0, 1]× 0 and [0, 1]× 1 are called bases of the band;

• the image of the band (1/2)× [0, 1] is called the core of the band;

• an annulus is the cylinder S1 × [0, 1] or a homeomorphic image of it;

• a coupon is a band with a distinguished base.

A band or an annulus is said to be directed if its core is oriented, and this orientation of the
core itself is called the direction.

Definition 2.1. Let k, l be non-negative integers. A ribbon (k, l)-graph in R3 is an oriented
surface Ω embedded in the strip R2 × [0, 1] and decomposed into a union of a finite number
of annuli, bands, and coupons such that:

(i) Ω meets the planes R2 × 0, R2 × 1 orthogonally along the following segments which
are bases of certains bands of Ω:

{[i− (1/10), i+ (1/10)]× 0× 0 | i = 1, . . . , k},

{[j − (1/10), j + (1/10)]× 0× 1 | j = 1, . . . , l},

called the boundary intervals of the graph.

(ii) other bases of bands lie on the bases of the coupons – otherwise bands, coupons and
annuli are disjoint;

(iii) the bands and annuli are directed.

A ribbon (k, l)-graph can be considered an oriented compact surface in R3 decomposed into
the pieces defined above with k inputs and l outputs. The choice of orientation of a ribbon
graph is equivalent to a choice of a preferred side of Ω. For simplicity, we may fix the
right-handed orientation in R3.

We are mainly interested in using ribbon graphs because we can generalize knot diagrams
by plane pictures of ribbon graphs. Following the explanation in [2], the plan is to deform
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the graph in R2× [0, 1] in such a way that ends up very close the plane R×0×R, considered
the standard position. By convenience, the bases of the coupons should be oriented parallel
to the horizontal line R × 0 × 0, with the distinguished base in the lower position, forming
rectangles parallel to R×0×R altogether. The orientation of coupons is induced by the one
of the surface Ω , for which, taking into account our fixation, should go counterclockwise
in R × 0 × R. The bands and annuli are supposed to go parallel to this planes, and the
projections of their corresponding cores can only have double transversal crossings and
should not overlap with those of the coupons’. The resulting picture is the diagram of the
ribbon graph.

Figure 1: Example of the deformation explained above for a trefoil graph into its diagram.

The theory of ribbon graphs generalizes the more familiar theory of framed oriented links
in R3, already discussed in the previous seminar. In fact, to each ribbon (0, 0)-graph Ω
consisting of annuli, we can associate the link of circles in R3 formed by their oriented cores.

Once we have set these relations to diagrams of ribbon graphs, we may consider to color
them by a monoidal category. In particular, let V be a strict monoidal category with duality.
A ribbon graph is said to be colored over V if the bands are colored with its objects and
coupons with its morphisms. More precisely, let (V1, . . . , Vm) be the colors of the bands
incident to the bottom base and (W1, . . . ,Wn) the colors of the ones incident to the top. We
denote as ε1 . . . , εm ∈ {−1,+1} and analogously, ν1, . . . νn ∈ {−1,+1}, the numbers that
indicate the directions of the band, so that εi = 1, νj = −1 means they are going out of the
coupon and εi = −1, νj = 1 means they are going in. A color of the coupon is an arbitrary
morphism

f : V ε11 ⊗ · · · ⊗ V εmm →W ν1
1 ⊗ · · · ⊗W νn

n ,

where the objects in V are V +1 = V and V −1 = V ∗. The theory of diagrams extends
naturally from here: it suffices to attach an object of V to the cores of the bands and annuli
respectively, and colors to all the coupons.

As it turns out, v-colored ribbon graphs over V can be organized into a strict monoidal
category, denoted by RibV , whose objects are finite sequences η = ((V1, ε1), . . . , (Vm, εm))
and the morphisms are (an isotopy type of) v–colored ribbon graphs over the same category
V. The tensor product in RibV acts on the objects by juxtaposition, while the morphisms
are placed next to each other without overlapping. Composition of morphisms is basically
obtained by putting one colored ribbon graph on top of the other and gluing them. Note
the identity morphisms consist only of untwist unlinked vertical bands without annuli or
coupons. This endows RibV with the structure of a strict monoidal category.

One may ask if there is a deeper relation between the category or ribbon graphs RibV and
the stric monoidal category V used to color it. So the next step is to define the so called
operator invariant F (Ω) of a given graph Ω. We can already indicate that it is a covariant
functor that preserves the tensor product as defined in the beginning of this seminar.

In order to fully understand this, we first need to specify the morphisms in RibV used to
define this covariant functor. The colors of the strings are objects of V and the name of each
morphisms is indicated below.
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Figure 2: From left to right, the morphisms are referred to as ↓V , ↑V , ϕV , ϕ′V ,∩V ,∩−V ,∪V , and ∪–
V ,

respectively.

Figure 3: Second set of morphisms needed to define F . The names are indicated below each one
of the graph diagrams.

Finally, we are ready to comment more on this functor. From [2]:

Theorem 2.3. Let V be a strict ribbon category with braiding c, twist θ, and compatible
duality (∗, b, d). There exists a unique covariant functor F = FV : RibV → V preserving
the tensor product and satisfying the following conditions:

(1) F transforms any object (V,+1) into V and any object (V,−1) into V *;

(2) for any objects V , W of V, we have

F (X+
V,W ) = cV,W , F (ϕV ) = θV , F (∩V ) = bV , F (∪V ) = dV ;

(3) for any elementary v-colored ribbon graph Γ, we have F (Γ) = f where f is the color
of the only coupon of Γ.
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Moreover, the functor F has the following properties:

F (X−V,W ) = (cW,V )−1, F (Y +
V,W ) = (cW,V *)−1, F (Y −V,W ) = cV *,W ,

F (Z+
V,W ) = (cW*,V )−1 F (Z−V,W ) = cV,W*,

F (T+
V,W ) = cV *,W*, F (T−V,W ) = (cW*,V *)−1, F (ϕ′V ) = (θV )−1.

Sketch of proof. The first part of the proof consists of fully describing the category of v-
colored ribbon graphs RibV in terms of generators and relations between these. The ribbon
graphs in figures 2 and 3 already define a complete system of relations between morphisms,
so we can use the axioms of a strict monoidal category to obtain any relation between these
by composing and tensoring. This allows us to define the value of F for any ribbon graph.

The second part of the proof is focused on proving that, although every ribbon graph admits
different expressions of this kind, they can also be obtained from each other by elementary
local transformations. These local transformations are the Reidemeister moves described
in the previous seminar, and the word associated with each diagram can be shown to be
transformed to another equivalent one, in the sense that can be obtained by the relations
built in the first part of the proof. The invariance of the functor is thus proved by using
these local transformations.

Remark 2.4. The term operator invariant is meant to recall the following properties of F :

F (↓V ) = idV , F (↑V ) = idV ∗ and F (ΩΩ′) = F (Ω)F (Ω′)

for any pair of composable ribbon graphs. Moreover, by definition, note F is a functor that
preserves the tensor product, F (Ω⊗ Ω′) = F (Ω)⊗ F (Ω′).

Remark 2.5. If the graphs Ω and Ω′ are isotopic, F (Ω) = F (Ω′). This amplifies the
graphical calculus used up to this point, with the addition of isotopy invariance of the
morphisms in the category RibV . These invariants can be regarded as a generalization of
the Jones polynomial seen in the last seminar and in fact, more examples will be discussed
in the upcoming talks due to its importance in 3-manifold invariants and TFTs.
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