Bordism category and definition of a TFT

David Jaklitsch

Department of Mathematics Universität Hamburg

Seminar on Hopf algebras, tensor categories and three manifold invariants October 06, 2020

> THE iversität Hamburg DER EORSCHLING | DER LEHRE | DER BUDLING

1 [Bordism category](#page-1-0)

[Topological Field Theories](#page-14-0)

Let K denote an arbitrary field, then there is a symmetric monoidal category Vec_{K} described by

- **1 Objects:** Vector spaces over K .
- **2 Morphisms:** K-linear maps $f: V \to W$.

Let K denote an arbitrary field, then there is a symmetric monoidal category Vec_{K} described by

- \bullet Objects: Vector spaces over \mathbb{K} .
- **2 Morphisms:** K-linear maps $f: V \to W$.
- **3** Tensor product: $V \otimes_{\mathbb{K}} W$ the usual tensor product with monoidal unit K .
- **4 Associativity constraints:** the canonical isomorphisms

 $(U \otimes_{\mathbb{K}} V) \otimes_{\mathbb{K}} W \to U \otimes_{\mathbb{K}} (V \otimes_{\mathbb{K}} W), (u \otimes v) \otimes w \mapsto u \otimes (v \otimes w)$

Let K denote an arbitrary field, then there is a symmetric monoidal category Vec_{K} described by

- \bullet Objects: Vector spaces over \mathbb{K} .
- **2 Morphisms:** K-linear maps $f: V \to W$.
- **3** Tensor product: $V \otimes_{\mathbb{K}} W$ the usual tensor product with monoidal unit K .
- **4 Associativity constraints:** the canonical isomorphisms

 $(U \otimes_{\mathbb{K}} V) \otimes_{\mathbb{K}} W \to U \otimes_{\mathbb{K}} (V \otimes_{\mathbb{K}} W), (u \otimes v) \otimes w \mapsto u \otimes (v \otimes w)$

6 Braiding: the canonical isomorphisms

$$
U\otimes_{\mathbb{K}}V\to V\otimes_{\mathbb{K}}U,\,u\otimes v\mapsto v\otimes u
$$

There is a symmetric monoidal category $Bord_n$ described by

1 Objects: oriented closed $(n - 1)$ -dimensional smooth manifolds *M*.

There is a symmetric monoidal category Bord_n described by

- **1 Objects:** oriented closed $(n 1)$ -dimensional smooth manifolds *M*.
- **Morphisms:** A morphism between manifolds M and N is an equivalence class of bordisms $W = (B; M, N)$. Where a bordism is an n-dimensional oriented smooth manifold B with boundary $M^* \sqcup N$.

Figure 1: Bordism between manifolds M and N

An equivalence of bordisms is an orientation-preserving diffeomorphism $\psi: \bar B\to B'$ such that the following diagram commutes

3 Composition: Is given by gluing bordisms along their common boundary and the identity of an object M is the cylinder $M \times [0, 1]$.

Figure 2: Composition of bordisms $W = W_1 \sqcup_{M_2} W_2$

Remark

A priori $W_1 \sqcup_{M_2} W_2$ is defined as a topological space. To get the smooth structure we consider "collars" on the $(n-1)$ -manifolds, i.e., $M_2 \times (-\epsilon, \epsilon)$, the boundary parametrisations are defined on $M_2 \times (-\epsilon, 0]$ and $M_2 \times [0, \epsilon)$.

Remark

A priori $W_1 \sqcup_{M_2} W_2$ is defined as a topological space. To get the smooth structure we consider "collars" on the $(n-1)$ -manifolds, i.e., $M_2 \times (-\epsilon, \epsilon)$, the boundary parametrisations are defined on $M_2 \times (-\epsilon, 0]$ and $M_2 \times [0, \epsilon)$.

- **4 Tensor Product:** It is given by the disjoint union of the manifolds and the unit is the empty manifold ∅. The disjoint union of manifolds is associative.
- **Braiding:** Given two $(n-1)$ -manifolds M and N, the cylinder provides a braiding in Bord_n

$$
\beta_{M,N}:\ M\sqcup N\to N\sqcup M
$$

An *n*-dimensional manifold B with boundary $M^* \sqcup N$, it can be seen as

- A morphism $M \to N$.
- A morphism $\emptyset \to M^* \sqcup N$ or $\emptyset \to N \sqcup M^*$.
- A morphism $M^* \sqcup N \to \emptyset$ or $N \sqcup M^* \to \emptyset$.

An *n*-dimensional manifold B with boundary $M^* \sqcup N$, it can be seen as

- A morphism $M \to N$.
- A morphism $\emptyset \to M^* \sqcup N$ or $\emptyset \to N \sqcup M^*$.
- A morphism $M^* \sqcup N \to \emptyset$ or $N \sqcup M^* \to \emptyset$.

If B is an *n*-dimensional manifold without boundary it can be seen as a morphism $\emptyset \to \emptyset$.

An *n*-dimensional manifold B with boundary $M^* \sqcup N$, it can be seen as

- A morphism $M \to N$.
- A morphism $\emptyset \to M^* \sqcup N$ or $\emptyset \to N \sqcup M^*$.
- A morphism $M^* \sqcup N \to \emptyset$ or $N \sqcup M^* \to \emptyset$.

If B is an *n*-dimensional manifold without boundary it can be seen as a morphism $\emptyset \to \emptyset$.

Similarly, a diffeomorphism $\phi : M \to M'$ between $(n-1)$ -dimensional manifolds induces an isomorphism in Bord_n via the cylinder

$$
M\times [0,1]\overset{\iota}{\leftarrow}M\times \{1\}\overset{\phi}{\cong}M'
$$

2 [Topological Field Theories](#page-14-0)

Definition (Topological Field Theory)

An n-dimensional TFT is a symmetric monoidal functor

 $\mathcal{Z}:$ Bord_n \rightarrow Vec_K

We will see in detail what does this data entail

Topological Field Theories

4 Assignment on objects:

For every manifold M we obtain a vector space $\mathcal{Z}(M)$.

2 Assignment on morphisms:

For every bordism $B : M \to N$ there is a linear map

 $\mathcal{Z}(B) : \mathcal{Z}(M) \to \mathcal{Z}(N)$

4 Assignment on objects:

For every manifold M we obtain a vector space $\mathcal{Z}(M)$.

2 Assignment on morphisms:

For every bordism $B : M \to N$ there is a linear map

 $\mathcal{Z}(B) : \mathcal{Z}(M) \to \mathcal{Z}(N)$

3 Functoriality:

For every $M\in\mathsf{Bord}_n,$ the morphism $\mathcal{Z}(M\times [0,1])=\mathsf{id}_{\mathcal{Z}(M)}.$ For bordisms $B_1 : M \to N$ and $B_2 : N \to L$,

$$
\mathcal{Z}(B_2 \sqcup_N B_1) = \mathcal{Z}(B_2) \circ \mathcal{Z}(B_1) : \mathcal{Z}(M) \to \mathcal{Z}(L)
$$

4 Assignment on objects:

For every manifold M we obtain a vector space $\mathcal{Z}(M)$.

2 Assignment on morphisms:

For every bordism $B : M \to N$ there is a linear map

 $\mathcal{Z}(B) : \mathcal{Z}(M) \to \mathcal{Z}(N)$

3 Functoriality:

For every $M\in\mathsf{Bord}_n,$ the morphism $\mathcal{Z}(M\times [0,1])=\mathsf{id}_{\mathcal{Z}(M)}.$ For bordisms $B_1 : M \to N$ and $B_2 : N \to L$,

$$
\mathcal{Z}(B_2 \sqcup_N B_1) = \mathcal{Z}(B_2) \circ \mathcal{Z}(B_1) : \mathcal{Z}(M) \to \mathcal{Z}(L)
$$

4 Monoidal structure:

- \bullet $\mathcal{Z}(\emptyset) \cong \mathbb{K}.$
- $\mathcal{Z}(M \sqcup N) \cong \mathcal{Z}(M) \otimes_{\mathbb{K}} \mathcal{Z}(N)$ for $M, N \in \text{Bord}_n$.

Some properties

Notice that given an n-manifold B with boundary $\partial B = M$, from the bordism $B : \emptyset \to M$ we obtain a map $\mathcal{Z}(B) : \mathbb{K} \to \mathcal{Z}(M)$.

Moreover, in the case that B has no boundary we obtain a map

$$
\mathcal{Z}(B):\mathbb{K}\to\mathbb{K}
$$

and therefore an invariant.

Proposition

Let \mathcal{Z} : Bord_n \rightarrow Vec_K be a TFT, then for every $M \in Bord_n$ we have that $\mathcal{Z}(M)$ is a finite dimensional vector space. Additionally $\mathcal{Z}(M^*)\cong \mathcal{Z}(M)^*.$

Proof: Let $M \in \text{Bord}_n$, and consider the cylinder $M \times [0, 1]$, which can be viewed as a morphism

$$
\text{ev}_M: M^* \sqcup M \to \emptyset, \qquad \text{coev}_M: \emptyset \to M \sqcup M^*
$$

Then the following equation holds due to diffeomorphism invariance

$$
ev_M \sqcup id_{M^*} \circ id_{M^*} \sqcup coev_M = id_{M^*}
$$
 (1)

Topological Field Theories

UH

Proof: (continuation) Now denote by $U:=\mathcal{Z}(M)$ and $V:=\mathcal{Z}(M^{\ast}),$ then we obtain, by applying Z , the following linear maps

 $\langle -, - \rangle := \mathcal{Z}(\text{ev}_M) : V \otimes_{\mathbb{K}} U \to \mathbb{K}, \qquad f := \mathcal{Z}(\text{coev}_M) : \mathbb{K} \to U \otimes_K V$

and therefore equation [\(1\)](#page-20-0) becomes the identity

$$
(\langle -, - \rangle \otimes \mathsf{id}_V) \circ (\mathsf{id}_V \otimes f) = \mathsf{id}_V \tag{2}
$$

Now consider $1 \in \mathbb{K}$, then we can write $f(1) = \sum_{i=1}^{n} u_i \otimes v_i$ with $u_i \in U$ and $v_i \in V$. For $v \in V$ equation [\(2\)](#page-21-0) implies that

$$
v=\sum_{i=1}^n\langle v,u_i\rangle v_i
$$

thus V is finite-dimensional. Additionally $V \to U^*, v \mapsto \langle v, - \rangle$ is an iso.

[Bordism category](#page-1-0)

[Topological Field Theories](#page-14-0)

$\mathcal{Z}: \text{ Bord}_1 \rightarrow \text{Vec}_{\mathbb{K}}$

Revisit of Bord₁:

Objects: Oriented 0-dimensional closed manifolds correspond to disjoint unions of \bullet_+ and \bullet_- .

$\mathcal{Z}: \text{ Bord}_1 \to \text{Vec}_{\mathbb{K}}$

Revisit of Bord $_1$:

Objects: Oriented 0-dimensional closed manifolds correspond to disjoint unions of \bullet_+ and \bullet_- .

Morphisms: Are diffeomorphism classes of lines connecting the oriented points. For example

is a morphism between $\bullet_+ \sqcup \bullet_- \sqcup \bullet_+ \sqcup \bullet_-$ and $\bullet_+ \sqcup \bullet_-$.

1d TFT's

In general every bordism in Bord₁ is generated by gluing and taking disjoint unions of

 $\wedge \vee \wedge \vee \vee \times$

In general every bordism in Bord₁ is generated by gluing and taking disjoint unions of

 \bigcap \bigcup \bigcap \bigcup \bigtimes

subject to the relations coming from the invariance under diffeomorphism

$$
\text{supp}=\text{supp}(\text{sup
$$

In general every bordism in Bord₁ is generated by gluing and taking disjoint unions of

 \bigcap_{i} $\bigcup_{i} \bigcap_{i}$ $\bigcup_{i} \times$

subject to the relations coming from the invariance under diffeomorphism

$$
\bigcup_{i=1}^{n} \mathbb{P}\left\{ \mathbb{P}\left(\bigcup_{i=1}^{n} \mathbb{P}_{i} \left(\bigcup_{i=1}^{n} \mathbb{P}_{i}\left(\bigcup_{i=1}^{n} \
$$

Theorem

There is one-to-one correspondence between 1d TFT's \mathcal{Z} : Bord₁ \rightarrow Vec_K and finite-dimensional vector spaces, via $\mathcal{Z} \mapsto \mathcal{Z}(\bullet_+).$

David Jaklitsch [Bordism category and definition of a TFT](#page-0-0) Cortober 06, 2020 17/22

1d TFT's

Conversely, given a finite-dimensional space define $\mathcal{Z}(\bullet_+) := V$ and $\mathcal{Z}(\bullet_-):=V^*.$ For the 0-manifold $M:=\bullet_+\sqcup\bullet_+\sqcup\bullet_-\sqcup\bullet_-,$ the space $\mathcal{Z}(M) = V \otimes_{\mathbb{K}} V \otimes_{\mathbb{K}} V^* \otimes_{\mathbb{K}} V^*$ is assigned.

1d TFT's

TH

Conversely, given a finite-dimensional space define $\mathcal{Z}(\bullet_+) := V$ and $\mathcal{Z}(\bullet_-):=V^*.$ For the 0-manifold $M:=\bullet_+\sqcup\bullet_+\sqcup\bullet_-\sqcup\bullet_-,$ the space $\mathcal{Z}(M) = V \otimes_{\mathbb{K}} V \otimes_{\mathbb{K}} V^* \otimes_{\mathbb{K}} V^*$ is assigned. If we consider a basis $\{e_i\}$ of V, to the bordism generators we assign the linear maps

$$
\begin{split} &Z\Big(\bigwedge\limits^{r}\Big): V^*\otimes_{\mathbf{k}} V\longrightarrow \mathbf{k}\,,\quad \varphi\otimes v\longmapsto \varphi(v)\,,\\ &Z\Big(\bigcup\limits^{r}\Big): \mathbf{k}\longrightarrow V\otimes_{\mathbf{k}} V^*\,,\quad \lambda\longmapsto \sum_{i}\lambda\cdot e_i\otimes e_i^*,\\ &Z\Big(\bigwedge\limits^{r}\Big): V\otimes_{\mathbf{k}} V^*\longrightarrow \mathbf{k}\,,\quad v\otimes \varphi\longmapsto \varphi(v)\,,\\ &Z\Big(\bigcup\limits^{r}\Big): \mathbf{k}\longrightarrow V^*\otimes_{\mathbf{k}} V\,,\quad \lambda\longmapsto \sum_{i}\lambda\cdot e_i^*\otimes e_i\,,\\ &Z\Big(\bigvee\limits^{r}\Big): V\otimes_{\mathbf{k}} V\longrightarrow V\otimes_{\mathbf{k}} V\,,\quad u\otimes v\longmapsto v\otimes u\,. \end{split}
$$

$\mathcal{Z}:$ Bord₂ \rightarrow Vec_K

Revisit of Bord₂:

Objects: Oriented 1-dimensional closed manifolds correspond to disjoint unions of the circle S^1 .

$\mathcal{Z}:$ Bord₂ \rightarrow Vec_K

Revisit of Bord $_2$:

Objects: Oriented 1-dimensional closed manifolds correspond to disjoint unions of the circle S^1 .

Morphisms: Are generated by the following bordisms

$\mathcal{Z}:$ Bord₂ \rightarrow Vec_K

Revisit of Bord₂:

Objects: Oriented 1-dimensional closed manifolds correspond to disjoint unions of the circle S^1 .

Morphisms: Are generated by the following bordisms

 \Box \Box \heartsuit , \circ , \circ .

under the relations

 $AD - AD$. $V - V$. $AV - 57 - V$ $\bigwedge -1 - \bigwedge, \bigvee -1 - \bigvee,$

2d TFT's

We obtain a finite-dimensional space $A:=\mathcal{Z}(S^1).$ Which comes together with linear maps coming from the bordism generators

$$
\mu = Z\left(\bigotimes_{A} A\right) : A\otimes_{\mathbf{k}} A \longrightarrow A, \qquad \eta = Z\left(\bigodot_{A} A\right) : \mathbf{k} \longrightarrow A,
$$

$$
\Delta = Z\left(\bigodot_{A} A\right) : A \longrightarrow A\otimes_{\mathbf{k}} A, \qquad \varepsilon = Z\left(\bigodot_{A} A\right) : A \longrightarrow \mathbf{k}.
$$

This maps provide a Frobenius algebra structure on A.

2d TFT's

We obtain a finite-dimensional space $A:=\mathcal{Z}(S^1).$ Which comes together with linear maps coming from the bordism generators

$$
\mu = Z\left(\bigotimes_{A} A\right) : A\otimes_{\mathbf{k}} A \longrightarrow A, \qquad \eta = Z\left(\bigoplus_{A} A\right) : \mathbf{k} \longrightarrow A,
$$

$$
\Delta = Z\left(\bigotimes_{A} A\right) : A \longrightarrow A\otimes_{\mathbf{k}} A, \qquad \varepsilon = Z\left(\bigoplus_{A} A\right) : A \longrightarrow \mathbf{k}.
$$

This maps provide a Frobenius algebra structure on A.

Definition

A Frobenius algebra is a vectors space A together with

- An associative algebra structure (A, μ, η) .
- A coassociative coalgebra structure (A, Δ, ϵ) .

fulfilling the Frobenius property, i.e.,

$$
(\mu \otimes id) \circ (id \otimes \Delta) = \Delta \circ \mu = (id \otimes \mu) \circ (\Delta \otimes id)
$$

The maps μ and η fulfill the corresponding relations and determine an algebra structure on A which is commutative.

$$
(a \cdot b) \cdot c = Z \left(\bigcap_{a \otimes b \otimes c} a \otimes b \otimes c\right) = Z \left(\bigcap_{a \otimes b \otimes c} a \otimes b \otimes c\right) = a \cdot (b \cdot c),
$$

$$
Z(\bigcirc)(1) \cdot Z(\bigcirc)(a) = Z \left(\bigcirc)(a) = Z \left(\bigcirc)(a) = a,
$$

$$
a \cdot b = Z \left(\bigcirc)(a \otimes b) = Z \left(\bigcirc)(a \otimes b) = b \cdot a.
$$

Similarly, the maps Δ and ϵ determine a coalgebra structure on A.

The Frobenius property is fulfilled by using functoriality of Z on the relation

The Frobenius property is fulfilled by using functoriality of Z on the relation

Theorem

There is a one-to-one correspondence between 2-dimensional TFT's \mathcal{Z} : Bord₂ \rightarrow Vec_K and commutative Frobenius algebras A.