Bordism category and definition of a TFT

David Jaklitsch

Department of Mathematics Universität Hamburg

Seminar on Hopf algebras, tensor categories and three manifold invariants October 06, 2020

Bordism category

2 Topological Field Theories

Let $\mathbb K$ denote an arbitrary field, then there is a symmetric monoidal category $\mathsf{Vec}_{\mathbb K}$ described by

- **Objects:** Vector spaces over \mathbb{K} .
- **2** Morphisms: \mathbb{K} -linear maps $f : V \to W$.

Let $\mathbb K$ denote an arbitrary field, then there is a symmetric monoidal category $\mathsf{Vec}_{\mathbb K}$ described by

- **Objects:** Vector spaces over \mathbb{K} .
- **Omega Morphisms:** \mathbb{K} -linear maps $f: V \to W$.
- 3 Tensor product: V ⊗_K W the usual tensor product with monoidal unit K.
- Associativity constraints: the canonical isomorphisms

 $(U \otimes_{\mathbb{K}} V) \otimes_{\mathbb{K}} W \to U \otimes_{\mathbb{K}} (V \otimes_{\mathbb{K}} W), \, (u \otimes v) \otimes w \mapsto u \otimes (v \otimes w)$

Let $\mathbb K$ denote an arbitrary field, then there is a symmetric monoidal category $\mathsf{Vec}_{\mathbb K}$ described by

- **Objects:** Vector spaces over \mathbb{K} .
- **Omega Morphisms:** \mathbb{K} -linear maps $f: V \to W$.
- Itensor product: V ⊗_K W the usual tensor product with monoidal unit K.
- Associativity constraints: the canonical isomorphisms

 $(U \otimes_{\mathbb{K}} V) \otimes_{\mathbb{K}} W \to U \otimes_{\mathbb{K}} (V \otimes_{\mathbb{K}} W), \, (u \otimes v) \otimes w \mapsto u \otimes (v \otimes w)$

OBraiding: the canonical isomorphisms

$$U\otimes_{\mathbb{K}}V\to V\otimes_{\mathbb{K}}U,\, u\otimes v\mapsto v\otimes u$$

There is a symmetric monoidal category $Bord_n$ described by

Objects: oriented closed (n-1)-dimensional smooth manifolds M.

There is a symmetric monoidal category $Bord_n$ described by

- **Objects:** oriented closed (n-1)-dimensional smooth manifolds M.
- Orphisms: A morphism between manifolds *M* and *N* is an equivalence class of bordisms *W* = (*B*; *M*, *N*). Where a bordism is an *n*-dimensional oriented smooth manifold *B* with boundary *M*^{*} ⊔ *N*.

Figure 1: Bordism between manifolds M and N

An equivalence of bordisms is an orientation-preserving diffeomorphism $\psi:B\to B'$ such that the following diagram commutes

• Composition: Is given by gluing bordisms along their common boundary and the identity of an object M is the cylinder $M \times [0, 1]$.

Figure 2: Composition of bordisms $W = W_1 \sqcup_{M_2} W_2$

Remark

A priori $W_1 \sqcup_{M_2} W_2$ is defined as a topological space. To get the smooth structure we consider "collars" on the (n-1)-manifolds, i.e., $M_2 \times (-\epsilon, \epsilon)$, the boundary parametrisations are defined on $M_2 \times (-\epsilon, 0]$ and $M_2 \times [0, \epsilon)$.

Remark

A priori $W_1 \sqcup_{M_2} W_2$ is defined as a topological space. To get the smooth structure we consider "collars" on the (n-1)-manifolds, i.e., $M_2 \times (-\epsilon, \epsilon)$, the boundary parametrisations are defined on $M_2 \times (-\epsilon, 0]$ and $M_2 \times [0, \epsilon)$.

- Tensor Product: It is given by the disjoint union of the manifolds and the unit is the empty manifold Ø. The disjoint union of manifolds is associative.
- **Solution** Braiding: Given two (n-1)-manifolds M and N, the cylinder provides a braiding in Bord_n

$$\beta_{M,N}: M \sqcup N \to N \sqcup M$$

An *n*-dimensional manifold *B* with boundary $M^* \sqcup N$, it can be seen as

- A morphism $M \to N$.
- A morphism $\emptyset \to M^* \sqcup N$ or $\emptyset \to N \sqcup M^*$.
- A morphism $M^* \sqcup N \to \emptyset$ or $N \sqcup M^* \to \emptyset$.

An *n*-dimensional manifold *B* with boundary $M^* \sqcup N$, it can be seen as

- A morphism $M \to N$.
- A morphism $\emptyset \to M^* \sqcup N$ or $\emptyset \to N \sqcup M^*$.
- A morphism $M^* \sqcup N \to \emptyset$ or $N \sqcup M^* \to \emptyset$.

If B is an n-dimensional manifold without boundary it can be seen as a morphism $\emptyset \to \emptyset$.

An *n*-dimensional manifold *B* with boundary $M^* \sqcup N$, it can be seen as

- A morphism $M \to N$.
- A morphism $\emptyset \to M^* \sqcup N$ or $\emptyset \to N \sqcup M^*$.
- A morphism $M^* \sqcup N \to \emptyset$ or $N \sqcup M^* \to \emptyset$.

If B is an n-dimensional manifold without boundary it can be seen as a morphism $\emptyset \to \emptyset$.

Similarly, a diffeomorphism $\phi: M \to M'$ between (n-1)-dimensional manifolds induces an isomorphism in Bord_n via the cylinder

$$M \times [0,1] \stackrel{\iota}{\leftarrow} M \times \{1\} \stackrel{\phi}{\cong} M'$$

Bordism category

2 Topological Field Theories

Definition (Topological Field Theory)

An *n*-dimensional *TFT* is a symmetric monoidal functor

 $\mathcal{Z}:\mathrm{Bord}_n\to\mathsf{Vec}_{\mathbb{K}}$

We will see in detail what does this data entail.

Topological Field Theories

UHI

1 Assignment on objects:

For every manifold M we obtain a vector space $\mathcal{Z}(M)$.

Assignment on morphisms:

For every bordism $B: M \rightarrow N$ there is a linear map

 $\mathcal{Z}(B):\mathcal{Z}(M)\to\mathcal{Z}(N)$

Assignment on objects:

For every manifold M we obtain a vector space $\mathcal{Z}(M)$.

Assignment on morphisms:

For every bordism $B: M \rightarrow N$ there is a linear map

 $\mathcal{Z}(B):\mathcal{Z}(M)\to\mathcal{Z}(N)$

Functoriality:

For every $M \in \text{Bord}_n$, the morphism $\mathcal{Z}(M \times [0,1]) = \text{id}_{\mathcal{Z}(M)}$. For bordisms $B_1 : M \to N$ and $B_2 : N \to L$,

$$\mathcal{Z}(B_2 \sqcup_N B_1) = \mathcal{Z}(B_2) \circ \mathcal{Z}(B_1) : \mathcal{Z}(M) \to \mathcal{Z}(L)$$

Assignment on objects:

For every manifold M we obtain a vector space $\mathcal{Z}(M)$.

Assignment on morphisms:

For every bordism $B: M \rightarrow N$ there is a linear map

 $\mathcal{Z}(B):\mathcal{Z}(M)\to\mathcal{Z}(N)$

Functoriality:

For every $M \in \text{Bord}_n$, the morphism $\mathcal{Z}(M \times [0,1]) = \text{id}_{\mathcal{Z}(M)}$. For bordisms $B_1 : M \to N$ and $B_2 : N \to L$,

$$\mathcal{Z}(B_2 \sqcup_N B_1) = \mathcal{Z}(B_2) \circ \mathcal{Z}(B_1) : \mathcal{Z}(M) \to \mathcal{Z}(L)$$

Monoidal structure:

- $\mathcal{Z}(\emptyset) \cong \mathbb{K}$.
- $\mathcal{Z}(M \sqcup N) \cong \mathcal{Z}(M) \otimes_{\mathbb{K}} \mathcal{Z}(N)$ for $M, N \in \text{Bord}_n$.

Some properties

Notice that given an *n*-manifold *B* with boundary $\partial B = M$, from the bordism $B : \emptyset \to M$ we obtain a map $\mathcal{Z}(B) : \mathbb{K} \to \mathcal{Z}(M)$.

Moreover, in the case that ${\boldsymbol{B}}$ has no boundary we obtain a map

$$\mathcal{Z}(B):\mathbb{K}\to\mathbb{K}$$

and therefore an invariant.

Proposition

Let \mathcal{Z} : Bord_n \rightarrow Vec_K be a TFT, then for every $M \in Bord_n$ we have that $\mathcal{Z}(M)$ is a finite dimensional vector space. Additionally $\mathcal{Z}(M^*) \cong \mathcal{Z}(M)^*$.

Proof: Let $M \in Bord_n$, and consider the cylinder $M \times [0, 1]$, which can be viewed as a morphism

$$\operatorname{ev}_M: M^* \sqcup M \to \emptyset, \qquad \operatorname{coev}_M: \emptyset \to M \sqcup M^*$$

Then the following equation holds due to diffeomorphism invariance

$$\operatorname{ev}_{M} \sqcup \operatorname{id}_{M^{*}} \circ \operatorname{id}_{M^{*}} \sqcup \operatorname{coev}_{M} = \operatorname{id}_{M^{*}}$$
(1)

Topological Field Theories

UH #

Proof: (continuation) Now denote by $U := \mathcal{Z}(M)$ and $V := \mathcal{Z}(M^*)$, then we obtain, by applying \mathcal{Z} , the following linear maps

 $\langle -, - \rangle := \mathcal{Z}(ev_M): V \otimes_{\mathbb{K}} U \to \mathbb{K}, \qquad f := \mathcal{Z}(coev_M): \mathbb{K} \to U \otimes_{\mathcal{K}} V$

and therefore equation (1) becomes the identity

$$(\langle -, - \rangle \otimes \mathrm{id}_V) \circ (\mathrm{id}_V \otimes f) = \mathrm{id}_V \tag{2}$$

Now consider $1 \in \mathbb{K}$, then we can write $f(1) = \sum_{i=1}^{n} u_i \otimes v_i$ with $u_i \in U$ and $v_i \in V$. For $v \in V$ equation (2) implies that

$$\mathbf{v} = \sum_{i=1}^n \langle \mathbf{v}, u_i \rangle \mathbf{v}_i$$

thus V is finite-dimensional. Additionally $V \to U^*, v \mapsto \langle v, - \rangle$ is an iso.

Bordism category

2 Topological Field Theories

$\mathcal{Z}: \; \mathsf{Bord}_1 \to \mathsf{Vec}_{\mathbb{K}}$

Revisit of Bord₁:

Objects: Oriented 0-dimensional closed manifolds correspond to disjoint unions of \bullet_+ and $\bullet_-.$

$\mathcal{Z}: \; \mathsf{Bord}_1 \to \mathsf{Vec}_{\mathbb{K}}$

Revisit of Bord₁:

Objects: Oriented 0-dimensional closed manifolds correspond to disjoint unions of \bullet_+ and $\bullet_-.$

Morphisms: Are diffeomorphism classes of lines connecting the oriented points. For example

is a morphism between $\bullet_+ \sqcup \bullet_- \sqcup \bullet_+ \sqcup \bullet_-$ and $\bullet_+ \sqcup \bullet_-$.

David Jaklitsch

Bordism category and definition of a TFT

In general every bordism in Bord_1 is generated by gluing and taking disjoint unions of

 \land \lor \land \lor X

In general every bordism in Bord_1 is generated by gluing and taking disjoint unions of

 \land \lor \land \lor X

subject to the relations coming from the invariance under diffeomorphism

$$\bigcup_{i=1}^{n} = \bigcup_{i=1}^{n} \bigcup_{i=1}^{n} \bigcup_{i=1}^{n} = \bigcup_{i=1}^{n} \bigcup_{i=1}^{n}$$

In general every bordism in Bord_1 is generated by gluing and taking disjoint unions of

 \land \cup \land \cup X

subject to the relations coming from the invariance under diffeomorphism

$$\begin{array}{c} & & \\ & & \\ & & \\ \end{array} = \left \{ \begin{array}{c} & \\ & \\ \end{array} \right \}, \quad \left (\begin{array}{c} & \\ & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right \} = \left \{ \begin{array}{c} & \\ \end{array} \right \}, \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right \}, \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right \}, \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right \}, \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right \}, \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right \}, \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right \}, \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right \}, \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right \}, \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right \}, \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right \}, \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right \}, \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right \}, \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right \}, \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right \}, \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right), \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right), \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right), \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right), \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right), \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right), \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right), \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right), \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right), \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right), \quad \left (\begin{array}{c} & \\ \end{array} \right) = \left \{ \begin{array}{c} & \\ \end{array} \right), \quad \left (\begin{array}{c} & \\ \end{array}), \quad \left (\begin{array}{c} &$$

Theorem

There is one-to-one correspondence between 1d TFT's \mathcal{Z} : Bord₁ \rightarrow Vec_K and finite-dimensional vector spaces, via $\mathcal{Z} \mapsto \mathcal{Z}(\bullet_+)$.

David Jaklitsch

Bordism category and definition of a TFT

1d TFT's

Conversely, given a finite-dimensional space define $\mathcal{Z}(\bullet_+) := V$ and $\mathcal{Z}(\bullet_-) := V^*$. For the 0-manifold $M := \bullet_+ \sqcup \bullet_+ \sqcup \bullet_- \sqcup \bullet_-$, the space $\mathcal{Z}(M) = V \otimes_{\mathbb{K}} V \otimes_{\mathbb{K}} V^* \otimes_{\mathbb{K}} V^*$ is assigned.

1d TFT's

UHI Ř

Conversely, given a finite-dimensional space define $\mathcal{Z}(\bullet_+) := V$ and $\mathcal{Z}(\bullet_-) := V^*$. For the 0-manifold $M := \bullet_+ \sqcup \bullet_+ \sqcup \bullet_- \sqcup \bullet_-$, the space $\mathcal{Z}(M) = V \otimes_{\mathbb{K}} V \otimes_{\mathbb{K}} V^* \otimes_{\mathbb{K}} V^*$ is assigned. If we consider a basis $\{e_i\}$ of V, to the bordism generators we assign the linear maps

$$\begin{split} \mathcal{Z}\Big(\bigcap^{} \Big) &: V^* \otimes_{\mathbb{k}} V \longrightarrow \mathbb{k} \,, \quad \varphi \otimes v \longmapsto \varphi(v) \,, \\ \mathcal{Z}\Big(\bigcirc^{} \Big) &: \mathbb{k} \longrightarrow V \otimes_{\mathbb{k}} V^* \,, \quad \lambda \longmapsto \sum_i \lambda \cdot e_i \otimes e_i^* \,, \\ \mathcal{Z}\Big(\bigcap^{} \Big) &: V \otimes_{\mathbb{k}} V^* \longrightarrow \mathbb{k} \,, \quad v \otimes \varphi \longmapsto \varphi(v) \,, \\ \mathcal{Z}\Big(\bigcirc^{} \Big) &: \mathbb{k} \longrightarrow V^* \otimes_{\mathbb{k}} V \,, \quad \lambda \longmapsto \sum_i \lambda \cdot e_i^* \otimes e_i \,, \\ \mathcal{Z}\Big(\bigcirc^{} \Big) &: \mathbb{k} \longrightarrow V^* \otimes_{\mathbb{k}} V \,, \quad u \otimes v \longmapsto v \otimes u \,. \end{split}$$

$\mathcal{Z}: \ \mathsf{Bord}_2 \to \mathsf{Vec}_{\mathbb{K}}$

Revisit of Bord₂:

Objects: Oriented 1-dimensional closed manifolds correspond to disjoint unions of the circle S^1 .

$\mathcal{Z}: \mathsf{Bord}_2 \to \mathsf{Vec}_{\mathbb{K}}$

Revisit of Bord₂:

Objects: Oriented 1-dimensional closed manifolds correspond to disjoint unions of the circle S^1 .

Morphisms: Are generated by the following bordisms

$\mathcal{Z}: \mathsf{Bord}_2 \to \mathsf{Vec}_{\mathbb{K}}$

Revisit of Bord₂:

Objects: Oriented 1-dimensional closed manifolds correspond to disjoint unions of the circle S^1 .

Morphisms: Are generated by the following bordisms

under the relations

2d TFT's

We obtain a finite-dimensional space $A := \mathcal{Z}(S^1)$. Which comes together with linear maps coming from the bordism generators

$$\begin{split} \mu &= \mathcal{Z}\!\left(\bigoplus\right) \colon A \otimes_{\Bbbk} A \longrightarrow A \,, \qquad \eta &= \mathcal{Z}\!\left(\bigoplus\right) \colon \Bbbk \longrightarrow A \,, \\ \Delta &= \mathcal{Z}\!\left(\bigoplus\right) \colon A \longrightarrow A \otimes_{\Bbbk} A \,, \qquad \varepsilon &= \mathcal{Z}\!\left(\bigoplus\right) \colon A \longrightarrow \Bbbk \,. \end{split}$$

This maps provide a Frobenius algebra structure on A.

2d TFT's

We obtain a finite-dimensional space $A := \mathcal{Z}(S^1)$. Which comes together with linear maps coming from the bordism generators

$$\begin{split} \mu &= \mathcal{Z}\!\left(\bigoplus^{}\right) \colon A \otimes_{\Bbbk} A \longrightarrow A \,, \qquad \eta &= \mathcal{Z}\!\left(\bigoplus^{}\right) \colon \Bbbk \longrightarrow A \,, \\ \Delta &= \mathcal{Z}\!\left(\bigoplus^{}\right) \colon A \longrightarrow A \otimes_{\Bbbk} A \,, \qquad \varepsilon &= \mathcal{Z}\!\left(\bigoplus^{}\right) \colon A \longrightarrow \Bbbk \,. \end{split}$$

This maps provide a Frobenius algebra structure on A.

Definition

A Frobenius algebra is a vectors space A together with

- An associative algebra structure (A, μ, η) .
- A coassociative coalgebra structure (A, Δ, ϵ) .

fulfilling the Frobenius property, i.e.,

$$(\mu \otimes id) \circ (id \otimes \Delta) = \Delta \circ \mu = (id \otimes \mu) \circ (\Delta \otimes id)$$

The maps μ and η fulfill the corresponding relations and determine an algebra structure on A which is commutative.

$$(a \cdot b) \cdot c = Z\left((a \otimes b \otimes c) = Z\left((a \otimes b \otimes c) = a \cdot (b \cdot c),\right)$$
$$Z(\bigcirc)(1) \cdot Z(\bigcirc)(a) = Z\left((a \otimes b) = Z\left((a \otimes b) = a,\right)$$
$$a \cdot b = Z\left((a \otimes b) = Z\left((a \otimes b) = Z\left((a \otimes b) = b \cdot a,\right)\right)$$

Similarly, the maps Δ and ϵ determine a coalgebra structure on A.

David Jaklitsch

The Frobenius property is fulfilled by using functoriality of $\ensuremath{\mathcal{Z}}$ on the relation

The Frobenius property is fulfilled by using functoriality of $\ensuremath{\mathcal{Z}}$ on the relation

Theorem

There is a one-to-one correspondence between 2-dimensional TFT's \mathcal{Z} : Bord₂ \rightarrow Vec_K and commutative Frobenius algebras A.