
T3) The universal construction
[Reference: [Co] Costantino, Notes on Topological Quantum Field

Theories, Winter Braids Lecture Notes (2015), 1–45]



Quantization functors
Consider a cobordism category Bord, i.e. a category together with
an empty object ∅ and the notions of disjoint union, orientation
reversal and boundary.

Definition.
A functor V : Bord→ VecK satisfying V (∅) ∼= K is called
quantization functor.

Remark.
It depends on the author, what the exact definition of a
quantization functor is. In this handout we go along with the
definition of [Co].

Remark.
Obviously, any monoidal functor from Bord to VecK is also a
quantization functor. In particular, TFTs are quantization functors.



Quantization functors

Definition.
A quantization functor V : Bord→ K is called cobordism
generated, if for all objects Σ the associated vector space V (Σ) is
generated by the elements V (M)(1) with M ∈ Hom(∅, Σ), i.e.

V (Σ) = span {V (Hom(∅, Σ))(1)} .



Invariants

Definition.
An invariant (of n–dimensional manifolds) is a map 〈−〉 from
closed oriented smooth manifolds of dimension n to a field K,
which is constant on diffeomorphism classes.

Definition.
We say an invariant 〈−〉 is multiplicative, if we have
I 〈M1 tM2〉 = 〈M1〉 〈M2〉 for all closed n–dimensional oriented

smooth manifolds M1,M2 and
I 〈∅〉 = 1.



The universal construction theorem

Theorem.
Let Bordn be a cobordism category and 〈−〉 : Hom(∅,∅)→ K a
multiplicative diffeomorphism invariant of n–dimensional manifolds,
where Hom(∅,∅) is referred to as a Hom–space of the category
Bordn.

Then there exists a unique cobordism generated quantization
functor V : Bordn → VecK whose restriction to Hom(∅,∅) is the
given invariant 〈−〉.



The universal construction theorem – Proof

Proof.
Denote by

F (Σ) = span {Hom(∅, Σ)}

the set freely generated by all cobordisms from ∅ to Σ.

Analogously,
F ′(Σ) = span {Hom(Σ,∅)} .



The universal construction theorem – Proof

Next, we want to define a pairing 〈−,−〉Σ : F ′(Σ)⊗ F (Σ)→ K.

On basis elements M1 ∈ F (Σ),M2 ∈ F ′(Σ) the pairing is the
invariant applied to the composition M2 ◦M1, i.e.

〈M2,M1〉Σ := 〈M2 ◦M1〉 = 〈M2 tΣ M1〉 .

Extending this definition linearly yields a pairing on F ′(Σ)⊗ F (Σ).



The universal construction theorem – Proof

We define a functor V : Bordn → VecK and we start by fixing V
on objects via

V (Σ) := F (Σ)/Ann(F ′(Σ)),

where Ann(F ′(Σ)) = {x ∈ F (Σ) | 〈y , x〉Σ = 0, ∀y ∈ F ′(Σ)}.

Similarly, we define a functor V ′ : Bordop
n → VecK. On objects we

set
V ′(Σ) := F ′(Σ)/Ann(F (Σ)),

where Ann(F (Σ)) = {y ∈ F ′(Σ) | 〈y , x〉Σ = 0 ∀x ∈ F (Σ)}.

Remark that the pairing 〈−,−〉Σ : F ′(Σ)⊗ F (Σ)→ K descends to
a pairing 〈−,−〉Σ : V ′(Σ)⊗ V (Σ)→ K, which is non–degenerate
by construction.
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The universal construction theorem – Proof

We have to define the functors V and V ′ on morphisms. Let
therefore N ∈ Hom(Σ1, Σ2) be a morphism in Bordn. For a basis
element M ∈ Hom(∅, Σ1) of V (Σ1) we define

V (N)[M] := [N ◦M] = [N tΣ1 M].

This defines a functor, since for any morphism N ′ ∈ Hom(Σ2, Σ3)
we have

V (N ′ ◦ N)[M] = [(N ′ ◦ N) ◦M] = [N ′ ◦ (N ◦M)]
= V (N ′)[N ◦M] = (V (N ′) ◦ V (N))[M].



The universal construction theorem – Proof

Similarly, for a morphism M ∈ Hom(Σ2,∅) we define

V ′(N)[M] := [M ◦ N] = [M tΣ2 N].

This defines a contravariant functor Bordn → VecK, i.e. a functor
Bordop

n → VecK, since for any morphism N ′ ∈ Hom(Σ0, Σ1) we
have

V ′(N ◦ N ′)[M] = [M ◦ (N ◦ N ′)] = [(M ◦ N) ◦ N ′]
= V ′(N ′)[M ◦ N] = (V ′(N ′) ◦ V ′(N))[M].



The universal construction theorem – Proof

Now that we have the two functors V and V ′, we observe that for
all morphisms N ∈ Hom(Σ1, Σ2) and basis elements M1 of V (Σ1)
and M2 of V (Σ2) the equality

〈V ′(N)(M2),M1〉Σ = 〈M2 ◦ N ◦M1〉 = 〈M2,V (N)(M1)〉Σ

holds and conclude that by linearity and non–degeneracy of
〈−,−〉Σ either of the functors V and V ′ is uniquely determined by
the other one.



The universal construction theorem – Proof

To see that V is indeed a quantization functor, we need that the
given invariant 〈−〉 is multiplicative.
We write y , x ∈ F (∅) = F ′(∅) in basis with ki , k ′j ∈ K as
y =

∑
i kiyi and x =

∑
j k ′jxj and compute

V (∅) = F (∅)/Ann(F ′(∅))
= F (∅)/

{
x ∈ F (∅) | 〈y , x〉∅ = 0, ∀y ∈ F ′(∅)

}
= F (∅)/{x ∈ F (∅) |

∑
i ,j

kik ′j 〈yi , xj〉∅ = 0,∀y ∈ F ′(∅),∀i , j}

= F (∅)/{x ∈ F (∅) |
∑
i ,j

kik ′j 〈yi t xj〉 = 0, ∀y ∈ F ′(∅), ∀i , j}

= F (∅)/{x ∈ F (∅) |
∑
i ,j

kik ′j 〈yi〉 〈xj〉 = 0,∀y ∈ F ′(∅), ∀i , j}

= F (∅)/{x ∈ F (∅) | 〈xj〉 = 0, ∀j}.



The universal construction theorem – Proof

For a moment, denote by ∅ the empty manifold regarded as an
element of Hom(∅,∅). Since 〈−〉 is multiplicative, we have

〈∅〉 = 1 ∈ K.

We can linearly extend 〈−〉 to F (∅) = span {Hom(∅,∅)} and
obtain, that the extension 〈−〉ext is surjective onto K, since

〈k∅〉ext = k〈∅〉 = k · 1 = k, ∀k ∈ K.

Further, the kernel of the 〈−〉ext is {x ∈ F (∅) | 〈xj〉 = 0,∀j}.
Hence, by the isomorphism theorem,

V (∅) = F (∅)/ker 〈−〉ext ∼= im 〈−〉ext = K.



The universal construction theorem – Proof

It is left to show that V is cobordism generated. We have just
seen, that the isomorphism V (∅) ∼= K is given by the invariant.
Hence, the scalar 1 ∈ K corresponds to the class [∅] ∈ V (∅) of
the empty manifold. Now by construction the functor V is
cobordism generated, since for all Σ we have that

V (Σ) = F (Σ)/ ∼
= span{Hom(∅, Σ)}/ ∼ .

But for every N ∈ Hom(∅, Σ) we have by definition
V (N)(1) = V (N)[∅] = [N t∅] = [N], hence V (Σ) is generated
by V (Hom(∅, Σ)).

�



Consequences
Remark.
The functor V obtained by the universal construction is not
necessarily monoidal.

In general we have for

V (Σ) = F (Σ)/ ∼,V (Σ′) = F (Σ′)/ ∼

that
V (Σ t Σ′) = F (Σ t Σ′)/ ∼,

where F (Σ t Σ′) contains in particular connected manifolds
connecting Σ and Σ′.

These are a priori not contained in

V (Σ)⊗ V (Σ′) = (F (Σ)/ ∼) t (F (Σ′)/ ∼).

This can only happen, when all of said manifolds connecting Σ and
Σ′ are divided out of F (Σ t Σ′) by ∼.
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Consequences

Remark.
It makes sense to require the obtained functor V to be a
quantization functor.

In this way we can look at the values, which the obtained functor
assigns to closed manifolds regarded as morphisms from ∅ to ∅
and since V is a quantization functor, we will again get a scalar in
K.

Further, the universal construction is in such a way that the
functor V extends the given invariant, i.e. the invariant obtained
from V by looking at the values V (M)(1) for M ∈ Hom(∅,∅) is
precisely the invariant we started with.
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Remark.
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Consequences

Concrete: If we have a manifold M ∈ Hom(∅,∅), then
V (M) : V (∅)→ V (∅) is the map given by [N] 7→ [N tM], in
particular V (M)[∅] = [M]. Since the isomorphism V (∅) ∼= K is
given by the invariant, we get that V (M) : K→ K is given by
k 7→ k〈M〉.



Application in dimension 1
Example.
Let Z be a one–dimensional TFT, i.e. a symmetric monoidal
functor Z : Bord1 → K.

We know that Z (•+) = V and Z (•−) = V ∗ for some
finite–dimensional K–vector space V .

Assume Z arose from a universal construction and is hence
cobordism generated. We then have in particular

V = Z (•+) = span {Hom(∅, •+)} .

But every one–dimensional closed oriented manifold with boundary
has to have an even number of boundary points, hence

Hom(∅, •+) = ∅.

Thus,
V = span {∅} = {0}.

Analogously, we get Z (•−) = V ∗ = {0}.
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Application in dimension 1
Further, Z is as a TFT a symmetric monoidal functor and hence

Z (•+ t •−) = Z (•+ ⊗ •−) ∼= Z (•+)⊗ Z (•−) = {0} ⊗ {0} ∼= {0}.

In fact, monoidality already implies Z (Σ) = {0} for all objects Σ in
Bord1 (except Z (∅) = K).

Hence, Z is on all non–trivial objects trivial and so it is on all
morphism sets other than Hom(∅,∅).

But morphisms in Hom(∅,∅) are just disjoint unions of circles.

Since Z is monoidal, it is enough to show that Z is trivial on the
morphism S1 ∈ Hom(∅,∅) to show that Z is trivial on all
morphisms and objects other than ∅. We compute

Z (S1) = Z (ev ◦ coev) = Z (ev) ◦ Z (coev),

which is a composition of trivial maps.
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Application in dimension 1

Thus we have proven that any cobordism generated 1–dimensional
TFT is trivial and we conclude, that non–trivial 1–dimenional
TFTs cannot be obtained by the universal construction.



Application in dimension 1

Remark.
One can ask the question, how the functor obtained from the
universal construction in dimension 1 looks like.
We see that if Σ is a 0–dimensional manifold consisting of an odd
number of points, then Hom(∅, Σ) = ∅ and hence,

V (Σ) = span{∅} = {0}.

For an object with an even number of points, the construction
becomes more subtle and the result will in general be non–trivial.



Application to Reshetikhin–Turaev invariants

Remark.
One can show that the Reshetikhin–Turaev construction is
cobordism generated and indeed obtained by the universal
construction theorem applied to the Reshetikhin–Turaev invariants.


