T3) The universal construction

[Reference: [Co] Costantino, Notes on Topological Quantum Field Theories, Winter Braids Lecture Notes (2015), 1–45]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Quantization functors

Consider a cobordism category Bord, i.e. a category together with an empty object \varnothing and the notions of disjoint union, orientation reversal and boundary.

DEFINITION. A functor $V : \text{Bord} \to \text{Vec}_{\mathbb{K}}$ satisfying $V(\emptyset) \cong \mathbb{K}$ is called *quantization functor*.

Remark.

It depends on the author, what the exact definition of a quantization functor is. In this handout we go along with the definition of [Co].

Remark.

Obviously, any monoidal functor from ${\rm Bord}$ to ${\rm Vec}_{\mathbb K}$ is also a quantization functor. In particular, TFTs are quantization functors.

DEFINITION.

A quantization functor $V : Bord \to \mathbb{K}$ is called *cobordism* generated, if for all objects Σ the associated vector space $V(\Sigma)$ is generated by the elements V(M)(1) with $M \in Hom(\emptyset, \Sigma)$, i.e.

 $V(\Sigma) = \operatorname{span} \left\{ V(\operatorname{Hom}(\emptyset, \Sigma))(1) \right\}.$

Invariants

DEFINITION.

An *invariant* (of *n*-dimensional manifolds) is a map $\langle - \rangle$ from closed oriented smooth manifolds of dimension *n* to a field \mathbb{K} , which is constant on diffeomorphism classes.

DEFINITION.

We say an invariant $\langle - \rangle$ is *multiplicative*, if we have

• $\langle M_1 \sqcup M_2 \rangle = \langle M_1 \rangle \langle M_2 \rangle$ for all closed *n*-dimensional oriented smooth manifolds M_1, M_2 and

$$\blacktriangleright \langle \varnothing \rangle = 1.$$

The universal construction theorem

THEOREM.

Let $Bord_n$ be a cobordism category and $\langle - \rangle : Hom(\emptyset, \emptyset) \to \mathbb{K}$ a multiplicative diffeomorphism invariant of n-dimensional manifolds, where $Hom(\emptyset, \emptyset)$ is referred to as a Hom-space of the category $Bord_n$.

Then there exists a unique cobordism generated quantization functor $V : \operatorname{Bord}_n \to \operatorname{Vec}_{\mathbb{K}}$ whose restriction to $\operatorname{Hom}(\emptyset, \emptyset)$ is the given invariant $\langle - \rangle$.

PROOF. Denote by

$$F(\Sigma) = \operatorname{span} \{\operatorname{Hom}(\emptyset, \Sigma)\}$$

the set freely generated by all cobordisms from \varnothing to $\Sigma.$ Analogously,

$$F'(\Sigma) = \operatorname{span} \left\{ \operatorname{Hom}(\Sigma, \varnothing) \right\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Next, we want to define a pairing $\langle -, - \rangle_{\Sigma} : F'(\Sigma) \otimes F(\Sigma) \to \mathbb{K}$.

On basis elements $M_1 \in F(\Sigma)$, $M_2 \in F'(\Sigma)$ the pairing is the invariant applied to the composition $M_2 \circ M_1$, i.e.

$$\langle M_2, M_1 \rangle_{\Sigma} := \langle M_2 \circ M_1 \rangle = \langle M_2 \sqcup_{\Sigma} M_1 \rangle.$$

Extending this definition linearly yields a pairing on $F'(\Sigma) \otimes F(\Sigma)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We define a functor $V\colon {\rm Bord}_n\to {\rm Vec}_{\mathbb K}$ and we start by fixing V on objects via

$$V(\Sigma) := F(\Sigma) / \operatorname{Ann}(F'(\Sigma)),$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

where $\operatorname{Ann}(F'(\Sigma)) = \{x \in F(\Sigma) \mid \langle y, x \rangle_{\Sigma} = 0, \forall y \in F'(\Sigma)\}.$

We define a functor $V\colon {\rm Bord}_n\to {\rm Vec}_{\mathbb K}$ and we start by fixing V on objects via

$$V(\Sigma) := F(\Sigma) / \operatorname{Ann}(F'(\Sigma)),$$

where $\operatorname{Ann}(F'(\Sigma)) = \{x \in F(\Sigma) \mid \langle y, x \rangle_{\Sigma} = 0, \forall y \in F'(\Sigma)\}.$

Similarly, we define a functor $V'\colon {\rm Bord}_n^{\rm op}\to {\rm Vec}_{\mathbb K}.$ On objects we set

$$V'(\Sigma) := F'(\Sigma) / \operatorname{Ann}(F(\Sigma)),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\operatorname{Ann}(F(\Sigma)) = \{ y \in F'(\Sigma) \mid \langle y, x \rangle_{\Sigma} = 0 \quad \forall x \in F(\Sigma) \}.$

We define a functor $V\colon {\rm Bord}_n\to {\rm Vec}_{\mathbb K}$ and we start by fixing V on objects via

$$V(\Sigma) := F(\Sigma) / \operatorname{Ann}(F'(\Sigma)),$$

where $\operatorname{Ann}(F'(\Sigma)) = \{x \in F(\Sigma) \mid \langle y, x \rangle_{\Sigma} = 0, \forall y \in F'(\Sigma)\}.$

Similarly, we define a functor $V'\colon {\rm Bord}_n^{\rm op}\to {\rm Vec}_{\mathbb K}.$ On objects we set

$$V'(\Sigma) := F'(\Sigma) / \operatorname{Ann}(F(\Sigma)),$$

where $\operatorname{Ann}(F(\Sigma)) = \{ y \in F'(\Sigma) \mid \langle y, x \rangle_{\Sigma} = 0 \quad \forall x \in F(\Sigma) \}.$

Remark that the pairing $\langle -, - \rangle_{\Sigma} : F'(\Sigma) \otimes F(\Sigma) \to \mathbb{K}$ descends to a pairing $\langle -, - \rangle_{\Sigma} : V'(\Sigma) \otimes V(\Sigma) \to \mathbb{K}$, which is non–degenerate by construction.

We have to define the functors V and V' on morphisms. Let therefore $N \in \operatorname{Hom}(\Sigma_1, \Sigma_2)$ be a morphism in Bord_n . For a basis element $M \in \operatorname{Hom}(\emptyset, \Sigma_1)$ of $V(\Sigma_1)$ we define

$$V(N)[M] := [N \circ M] = [N \sqcup_{\Sigma_1} M].$$

This defines a functor, since for any morphism $\mathit{N}' \in \operatorname{Hom}(\Sigma_2, \Sigma_3)$ we have

$$V(N' \circ N)[M] = [(N' \circ N) \circ M] = [N' \circ (N \circ M)]$$

= $V(N')[N \circ M] = (V(N') \circ V(N))[M].$

Similarly, for a morphism $M \in \operatorname{Hom}(\Sigma_2, \varnothing)$ we define

$$V'(N)[M] := [M \circ N] = [M \sqcup_{\Sigma_2} N].$$

This defines a contravariant functor $\mathrm{Bord}_n \to \mathrm{Vec}_\mathbb{K}$, i.e. a functor $\mathrm{Bord}_n^{\mathrm{op}} \to \mathrm{Vec}_\mathbb{K}$, since for any morphism $N' \in \mathrm{Hom}(\Sigma_0, \Sigma_1)$ we have

$$egin{aligned} V'(N\circ N')[M] &= [M\circ (N\circ N')] = [(M\circ N)\circ N'] \ &= V'(N')[M\circ N] = (V'(N')\circ V'(N))[M]. \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Now that we have the two functors V and V', we observe that for all morphisms $N \in \operatorname{Hom}(\Sigma_1, \Sigma_2)$ and basis elements M_1 of $V(\Sigma_1)$ and M_2 of $V(\Sigma_2)$ the equality

$$\langle V'(N)(M_2), M_1 \rangle_{\Sigma} = \langle M_2 \circ N \circ M_1 \rangle = \langle M_2, V(N)(M_1) \rangle_{\Sigma}$$

holds and conclude that by linearity and non–degeneracy of $\langle -, - \rangle_{\Sigma}$ either of the functors V and V' is uniquely determined by the other one.

To see that V is indeed a quantization functor, we need that the given invariant $\langle - \rangle$ is multiplicative. We write $y, x \in F(\emptyset) = F'(\emptyset)$ in basis with $k_i, k'_j \in \mathbb{K}$ as $y = \sum_i k_i y_i$ and $x = \sum_j k'_j x_j$ and compute

$$\begin{split} V(\varnothing) &= F(\varnothing) / \operatorname{Ann}(F'(\varnothing)) \\ &= F(\varnothing) / \left\{ x \in F(\varnothing) \mid \langle y, x \rangle_{\varnothing} = 0, \forall y \in F'(\varnothing) \right\} \\ &= F(\varnothing) / \left\{ x \in F(\varnothing) \mid \sum_{i,j} k_i k'_j \langle y_i, x_j \rangle_{\varnothing} = 0, \forall y \in F'(\varnothing), \forall i, j \right\} \\ &= F(\varnothing) / \left\{ x \in F(\varnothing) \mid \sum_{i,j} k_i k'_j \langle y_i \sqcup x_j \rangle = 0, \forall y \in F'(\varnothing), \forall i, j \right\} \\ &= F(\varnothing) / \left\{ x \in F(\varnothing) \mid \sum_{i,j} k_i k'_j \langle y_i \rangle \langle x_j \rangle = 0, \forall y \in F'(\varnothing), \forall i, j \right\} \\ &= F(\varnothing) / \left\{ x \in F(\varnothing) \mid \langle x_j \rangle = 0, \forall j \right\}. \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For a moment, denote by \emptyset the empty manifold regarded as an element of Hom(\emptyset, \emptyset). Since $\langle - \rangle$ is multiplicative, we have

$$\langle \emptyset
angle = 1 \in \mathbb{K}.$$

We can linearly extend $\langle - \rangle$ to $F(\emptyset) = \operatorname{span} \{\operatorname{Hom}(\emptyset, \emptyset)\}$ and obtain, that the extension $\langle - \rangle_{ext}$ is surjective onto \mathbb{K} , since

$$\langle k \emptyset \rangle_{ext} = k \langle \emptyset \rangle = k \cdot 1 = k, \quad \forall k \in \mathbb{K}.$$

Further, the kernel of the $\langle - \rangle_{ext}$ is $\{x \in F(\emptyset) \mid \langle x_j \rangle = 0, \forall j\}$. Hence, by the isomorphism theorem,

$$V(\varnothing) = F(\varnothing)/\ker \langle - \rangle_{ext} \cong \mathsf{im} \langle - \rangle_{ext} = \mathbb{K}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

It is left to show that V is cobordism generated. We have just seen, that the isomorphism $V(\emptyset) \cong \mathbb{K}$ is given by the invariant. Hence, the scalar $1 \in \mathbb{K}$ corresponds to the class $[\emptyset] \in V(\emptyset)$ of the empty manifold. Now by construction the functor V is cobordism generated, since for all Σ we have that

$$egin{aligned} &\mathcal{V}(\Sigma) = \mathcal{F}(\Sigma)/\sim \ &= \mathrm{span}\{\mathrm{Hom}(arnothins,\Sigma)\}/\sim. \end{aligned}$$

But for every $N \in \operatorname{Hom}(\emptyset, \Sigma)$ we have by definition $V(N)(1) = V(N)[\emptyset] = [N \sqcup \emptyset] = [N]$, hence $V(\Sigma)$ is generated by $V(\operatorname{Hom}(\emptyset, \Sigma))$.

Remark.

The functor V obtained by the universal construction is not necessarily monoidal.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Remark.

The functor V obtained by the universal construction is not necessarily monoidal.

In general we have for

$$V(\Sigma) = F(\Sigma)/\sim, V(\Sigma') = F(\Sigma')/\sim$$

that

$$V(\Sigma \sqcup \Sigma') = F(\Sigma \sqcup \Sigma') / \sim,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where $F(\Sigma \sqcup \Sigma')$ contains in particular connected manifolds connecting Σ and Σ' .

Remark.

The functor V obtained by the universal construction is not necessarily monoidal.

In general we have for

$$V(\Sigma) = F(\Sigma)/\sim, V(\Sigma') = F(\Sigma')/\sim$$

that

$$V(\Sigma \sqcup \Sigma') = F(\Sigma \sqcup \Sigma')/\sim,$$

where $F(\Sigma \sqcup \Sigma')$ contains in particular connected manifolds connecting Σ and Σ' .

These are a priori not contained in

$$V(\Sigma)\otimes V(\Sigma')=(F(\Sigma)/\sim)\sqcup (F(\Sigma')/\sim).$$

This can only happen, when all of said manifolds connecting Σ and Σ' are divided out of $F(\Sigma \sqcup \Sigma')$ by \sim .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark.

It makes sense to require the obtained functor V to be a quantization functor.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Remark.

It makes sense to require the obtained functor V to be a quantization functor.

In this way we can look at the values, which the obtained functor assigns to closed manifolds regarded as morphisms from \emptyset to \emptyset and since V is a quantization functor, we will again get a scalar in \mathbb{K} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Remark.

It makes sense to require the obtained functor V to be a quantization functor.

In this way we can look at the values, which the obtained functor assigns to closed manifolds regarded as morphisms from \emptyset to \emptyset and since V is a quantization functor, we will again get a scalar in \mathbb{K} .

Further, the universal construction is in such a way that the functor V extends the given invariant, i.e. the invariant obtained from V by looking at the values V(M)(1) for $M \in \text{Hom}(\emptyset, \emptyset)$ is precisely the invariant we started with.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Concrete: If we have a manifold $M \in \text{Hom}(\emptyset, \emptyset)$, then $V(M): V(\emptyset) \to V(\emptyset)$ is the map given by $[N] \mapsto [N \sqcup M]$, in particular $V(M)[\emptyset] = [M]$. Since the isomorphism $V(\emptyset) \cong \mathbb{K}$ is given by the invariant, we get that $V(M): \mathbb{K} \to \mathbb{K}$ is given by $k \mapsto k \langle M \rangle$.

EXAMPLE.

Let Z be a one–dimensional TFT, i.e. a symmetric monoidal functor $\mathbb{Z} \colon \operatorname{Bord}_1 \to \mathbb{K}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We know that $Z(\bullet_+) = V$ and $Z(\bullet_-) = V^*$ for some finite-dimensional \mathbb{K} -vector space V.

EXAMPLE.

Let Z be a one–dimensional TFT, i.e. a symmetric monoidal functor $\mathbb{Z} \colon \operatorname{Bord}_1 \to \mathbb{K}$.

We know that $Z(\bullet_+) = V$ and $Z(\bullet_-) = V^*$ for some finite-dimensional K-vector space V.

Assume Z arose from a universal construction and is hence cobordism generated. We then have in particular

$$V = Z(\bullet_+) = \operatorname{span} \left\{ \operatorname{Hom}(\emptyset, \bullet_+) \right\}.$$

EXAMPLE.

Let Z be a one–dimensional TFT, i.e. a symmetric monoidal functor $\mathbb{Z} \colon \operatorname{Bord}_1 \to \mathbb{K}$.

We know that $Z(\bullet_+) = V$ and $Z(\bullet_-) = V^*$ for some finite-dimensional K-vector space V.

Assume Z arose from a universal construction and is hence cobordism generated. We then have in particular

$$V = Z(\bullet_+) = \operatorname{span} \left\{ \operatorname{Hom}(\emptyset, \bullet_+) \right\}.$$

But every one-dimensional closed oriented manifold with boundary has to have an even number of boundary points, hence

$$\operatorname{Hom}(\emptyset, \bullet_+) = \emptyset.$$

Thus,

$$V = \operatorname{span} \{ \varnothing \} = \{ 0 \}.$$

Analogously, we get $Z(\bullet_{-}) = V^* = \{ 0 \}.$

Further, Z is as a TFT a symmetric monoidal functor and hence

$$Z(\bullet_{+}\sqcup\bullet_{-})=Z(\bullet_{+}\otimes\bullet_{-})\cong Z(\bullet_{+})\otimes Z(\bullet_{-})=\{0\}\otimes\{0\}\cong\{0\}.$$

In fact, monoidality already implies $Z(\Sigma) = \{0\}$ for all objects Σ in Bord₁ (except $Z(\emptyset) = \mathbb{K}$).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Hence, Z is on all non-trivial objects trivial and so it is on all morphism sets other than $Hom(\emptyset, \emptyset)$.

Further, Z is as a TFT a symmetric monoidal functor and hence

$$Z(\bullet_{+}\sqcup\bullet_{-})=Z(\bullet_{+}\otimes\bullet_{-})\cong Z(\bullet_{+})\otimes Z(\bullet_{-})=\{0\}\otimes\{0\}\cong\{0\}$$

In fact, monoidality already implies $Z(\Sigma) = \{0\}$ for all objects Σ in Bord₁ (except $Z(\emptyset) = \mathbb{K}$).

Hence, Z is on all non-trivial objects trivial and so it is on all morphism sets other than $Hom(\emptyset, \emptyset)$.

But morphisms in $Hom(\emptyset, \emptyset)$ are just disjoint unions of circles.

Since Z is monoidal, it is enough to show that Z is trivial on the morphism $S^1 \in \text{Hom}(\emptyset, \emptyset)$ to show that Z is trivial on all morphisms and objects other than \emptyset . We compute

$$Z(S^{1}) = Z(ev \circ coev) = Z(ev) \circ Z(coev),$$

which is a composition of trivial maps.

Thus we have proven that any cobordism generated 1-dimensional TFT is trivial and we conclude, that non-trivial 1-dimensional TFTs cannot be obtained by the universal construction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Remark.

One can ask the question, how the functor obtained from the universal construction in dimension 1 looks like.

We see that if Σ is a 0-dimensional manifold consisting of an odd number of points, then $\operatorname{Hom}(\emptyset, \Sigma) = \emptyset$ and hence,

$$V(\Sigma) = \operatorname{span}\{\varnothing\} = \{0\}.$$

For an object with an even number of points, the construction becomes more subtle and the result will in general be non-trivial.

Application to Reshetikhin–Turaev invariants

Remark.

One can show that the Reshetikhin–Turaev construction is cobordism generated and indeed obtained by the universal construction theorem applied to the Reshetikhin–Turaev invariants.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00