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Also in this talk I'm going to experiment with referring

to a symmetric
monoidal functor

2 nCob Vea

as a
bordism representation Why

It's a bit less scary than TQFT

It's a bit more precise and
mathematics sounding

We can reserve the word TQFT for what it always
referred to originally a QFT with a topological actionSo eg
the ChernSimons TQFTgivesriseto a bordism representation
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bordism representation

27
Bw 3Cob s 3Vect

Uses triangulations
and Packermoves

Given a semisimple
modularcategory D we get a one extended

anomalous bordism representation

2M 3Cobasis s 2Vect

Uses surgery on knots or the BHMV skein theory formalism
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The fundamental relationship between these two approaches is

Theorem Turaev Virelizier 2010 BalsamKirilloi
Given a spherical fusion category C we have

2mW Zaza
o 3Cobor s VectI

Formulated TVBW as a 3 2 l theory

theirformalism did not usethe languageof highercategories

RelatedTVBW to RT on these basic building blocks



Goosen in his PhD thesis took a differentapproach



Goosen in his PhD thesis took a differentapproach

Gives a spherical fusion category C he wrotedown a generators

and relations 123 bordism representation using the formalismof

string nets

zstringnets Bord s 2Vect
123



Goosen in his PhD thesis took a differentapproach

Gives a spherical fusion category C he wrotedown a generators

atom 123 bordism representation using the
formalismoft

string
nets

zstringnets Bord s 2Vect
123

1

This refers to the finite presentationof the oriented

1 23 bordism bicategory found in

B Douglas SchommerfriesVicary Extended 3dimensional
bordism as

thetheory of modular objects



Goosen in his PhD thesis took a differentapproach

Gives a spherical fusion category C he wrotedown a generators

and relations 123 bordism representation using the formalismof

st
suingnets Bord WeZ123

The graphical calculus technique of usingeaawspshgi.ca
sfusion category to naturally associate

to surfaces



Goosen in his PhD thesis took a differentapproach

Gives a spherical fusion category C he wrotedown a generators

and relations 123 bordism representation using the formalismof

suingnets Bord WeZ123

The graphical calculus technique of usingegospshpoiacea
fusion category to naturally associate

to surfaces Camefrom physics LevinWen and

formalized mathematically by Kirillov



Goosen in his PhD thesis took a differentapproach

Gives a spherical fusion category C he wrotedown a generators

and relations 123 bordism representation using the formalismof

string nets

zstringnets Bord s 2Vect
123

Theorem Goosen 2018 There is a canonical equivalence oforiented 123
bordism representations

zsinjgnets zijn



Goosen in his PhD thesis took a differentapproach

Gives a fsphiVXaemsfsaisymmaengoycd.ae
ebownMa gaau

and relations 123 boism representation using the formalismof

string nets
stringnets Bord s 2Vect

Theorem Goosen 2018 There is a canonical equivalence oforiented 123
bordism representations

zsyjg.es I zigBw o Bordas 2kt



Goosen in his PhD thesis took a differentapproach
This refersto a bicategorical formulationof TVBW inthe

Giver a spherical fusion category C he roledown a aerators

languageof generatorsandrelations
and relations I 2 odes r re ion r a

string nets
stringnets Bord s 2Vect

Theorem Goosen 2018 There is a canonical equivalence oforiented 123
bordism representations or

zsinjgnets I w
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This refersto a bicategorical formulationof TVBW inthe

Giver a 9phqdagadoffgiegfatofsateangfyrdanof.is Ffs dooseklydorwefaiedatogenerators

and relationsbot2necessoroirldyismdiofferrapr.es tatieon Hsiangtheory
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In these talks I want to explain this ideaof string nets and

how it can be used to formulate
both TVBW theory based on a

spherical categoryC
and RT theory based on a

modular
category D inan

entirely graphical way



2 String nets forspherical fusion categories



A fusioncategory is a E linear semisimple category withfairlysimpleobjects

equipped withthe structureof a rigid monoidalcategory We
also demand that

the tensor unit 11 is
simple
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This is a finite explicit set of data In graphical terms

ni simpleobjects Xi El n

basis for Horn XiXj Xu
mustsatisfy pentagon e rigidity

i

E e His S
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Question Is there a similar finite set of data characterizing a

finite tensor category

As I understand it there are the simple objects
11 4 Xn

ut now also their projective
covers Rti and the action of the

X on the RX by tensoring carton matrix
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A pivotal structure on a fusion category is a monoidal natural isomorphism

xx X

This amounts to a set of nonzero scalars pilies satisfying an equation

A pivotal structure is spherical if left and right dimensions agree

Oni if
This means that a C labelled string diagram on the sphere can be

unambiguously evaluated A sphericalfusioncategory is a fusion category equipped

with a spherical structure
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affb a BEGFusion rules
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Example 2 Yong hee fusion category MG.si

simple objects il X antY
fusion rules

associators a Y.tv
a taHf5

yY aYy a Yf
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Let C be a spherical fusion category and E an oriented surface

which may
have boundary

Definition Kitaev 2003 LevinWen2005 Kirillov 2011 the stringnet

spaceof E is

safe ofisotopy
classes C labelledgraphs

qq.am

seealso Goosen Oriented 123TQFTSvia StringNets and StaleSums PhDthesis 2018
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The boundaryvalue of a C labelledgraph is

I B Vs

where B b bn c D8 are the positionsof the univalent

vertices on D8 and the objects Vb cC are the labelsofthe

outgoing
ie leaving 8

oriented edges

We write Graph E K forthe collection Off
of

a
Cja
belled graphs on E with boundary O
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Let P be a C labelled graph inside an oriented surface E and

let Dc 9 be as embedded disk
suchthat JD intersectsthe

edges of P transversally Let p be the image of
4,0 undertheembedding

Let the labels of the outgoing edges of D
be Vii Vn starting

from p
and proceeding

counterclockwise
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A formal linearcombination P c P t tenP o la kedgraphs is
thesubspaceformed by theunionofall

called a null combination if null combinations forall embeddeddisks

r 0

for some embedded disk D
c E

J and lee
Definition Let 9 be as oriented surface possibly with boundary

be a choice of boundary
condition The stringnetspace is

Zsting g v
Graph E K

Nuh G K
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The nice thing about this definition is that it is very
natural and

is similar in spirit to
standard algebraic topology constructions

Indeed siring nets is morallythe
Compare with eg somethingas factorizationhomology

H E Z If oriented 1manifoldsin a if.fi o

o



The stringnet spaces are monoidal with respect to disjoint union
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need to keeptrackof

the marked half edges

I
not thesame


