Generalized negligible morphisms and their tensor ideals Or: How zero is zero?

Thorsten Heidersdorf

joint with Hans Wenzl

Mathematisches Institut Bonn

イロト イロト イヨト イヨト ヨー わへで

1/17

Dimensions in monoidal categories

- Let C be a monoidal rigid spherical category whose Hom spaces are k-vector spaces over a field k, End(1) ≅ k.
- For any object can define the trace function Tr_X on End(X).
- The dimension of X is then $Tr(id_X) \in End(1) \cong k$.
- If C is semisimple, then dim $(X) \neq 0$ for all indecomposable X.
- $\bullet\,$ If ${\mathcal C}$ is not semisimple, it has a largest proper tensor ideal

$$\mathcal{N}(X,Y) = \{f \in \mathit{Hom}(X,Y) \mid \mathit{Tr}(f \circ g) = 0 \; \forall g : Y \to X\},$$

the ideal of negligible morphisms.

The associated thick ideal is

$$N = \{X \mid X \text{ indecomposable }, \dim(X) = 0.\}$$

• Observation: Often times this categorial dimension is zero. Aim: Introduce a measure for for the "nullity" of the dimension.

Examples

- Tilt(U_q(g)) (g a semisimple Lie algebra), the category of tilting modules for (Lusztig's) quantum group at a primitive ℓ-th root of unity q over Q(q) or C.
- *Tilt(G)*, the category of tilting modules for semisimple and simply connected *G* over F_p (or its algebraic closure).
- In both cases indecomposable tilting modules are parametrized by X⁺, the dominant integral weights. Their categorial dimension vanishes iff λ is not in the fundamental alcove (for ℓ and p bigger than h).
- Rep(GL_n), Deligne's interpolating category for the parameter n ∈ Z. Indecomposable objects are parametrized by bipartitions (λ^L, λ^R). The categorial dimension vanishes iff length(λ^L) + length(λ^R) > |n|.

Let C be a monoidal category. A *tensor ideal* \mathcal{I} in C consists of a subgroup $\mathcal{I}(X, Y) \subset Hom(X, Y)$ for all $X, Y \in C$ such that

• for all $X, Y, Z, W \in C$ and $f \in Hom(X, Y)$ and $h \in Hom(Z, W)$

 $f \in \mathcal{I}(Y, Z)$ implies $f \circ g \in \mathcal{I}(X, Y)$ and $h \circ f \in \mathcal{I}(Y, W)$;

• $f \in Hom(X, Y)$ implies $id_Z \otimes f \in \mathcal{I}(Z \otimes X, Z \otimes Y)$ and likewise from the right.

A collection of objects I in a monoidal category C is called a *thick ideal* of C if the following conditions are satisfied:

- (i) $X \otimes Y \in I$ whenever $X \in C$ and $Y \in I$.
- (ii) If $X \in C$, $Y \in I$ and there exist $\alpha : X \to Y$, $\beta : Y \to X$ such that $\beta \circ \alpha = id_X$, then $X \in I$.

To any tensor ideal \mathcal{I} we can associate the thick ideal I given by

$$I = \{X \in \mathcal{C} \mid id_X \in \mathcal{I}(X, X)\}.$$

I-negligible morphisms

- Let R be a local ring with maximal ideal m. We assume C(R) to be a monoidal rigid spherical tensor category whose Hom spaces are free R-modules.
- We call a morphism $f : X \to Y$ *I*-negligible if $Tr_X(g \circ f) \in I$ and $Tr_Y(f \circ g) \in I$ for all morphisms $g : Y \to X$. An object X is called *I*-negligible if $Tr_X(a) \in I$ for all $a \in End(X)$.
- Then the *I*-negligible morphisms form a tensor ideal N_I in C(R) and the *I*-negligible objects form a thick ideal N_I .
- Special case: $I = \mathfrak{m}^k$. Then we use the notation \mathcal{N}_k and N_k .

Mod \mathfrak{m} evaluations

- If M is a free R-module of rank r, we obtain a well-defined vector space M/mM over k = R/m of dimension r. We call the mod m evaluation C of C(R) the category C whose objects are in 1-1 correspondence with the ones of C(R), and where Hom(X, Y) = Hom_R(X, Y)/mHom_R(X, Y).
- The images of N_I and N_I define tensor ideals respectively thick ideals in C.
- Example: N_1 are the indecomposable negligible objects, i.e. $\dim_{\mathcal{C}}(X) = 0$.
- Get a chain of thick ideals $N_1 \supset N_2 \supset N_3 \subset ...$ and tensor ideals $\mathcal{N}_1 \supset \mathcal{N}_2 \supset \mathcal{N}_3 \subset ...$ in any mod \mathfrak{m} evaluation as well as quotient functors $\mathcal{C}/\mathcal{N}_3 \rightarrow \mathcal{C}/\mathcal{N}_2 \rightarrow \mathcal{C}/\mathcal{N}$.
- The N_k are "hidden" in C and only become visible when viewing C as a mod \mathfrak{m} evaluation.
- Question: What can we say about the N_k and why are they interesting?
- For $X \in C$ we say X has nullity k if $X \in N_k$ and k is minimal with this property.

Mod I evaluations - examples

Theorem

- Oracle Various Deligne categories over C are mod m evaluations from their analogs over the completion of C[t]_(t−n), the polynomial ring localized at (t − n), i.e. all rational functions over C which are evaluable at t = n.
- Or Tilt(U_q(g)) is the mod m evaluation of Tilt(U_q(g))_R where R is (the completion of) C[v]_(v-q).
- **3** Tilt(G) is the mod \mathfrak{m} evaluation of Tilt(G)_{Z_p} over the p-adic integers Z_p .

Proof: Canonical/Crystal bases and Kempf vanishing over $\mathcal{A} = \mathbf{Z}[v, v^{-1}]$; Lifting of primitive idempotents in towers of algebras.

Example: The categorial dimension in Tilt(G) is the *p*-dimension, the usual dimension reduced mod *p*. The maximal ideal in \mathbb{Z}_p is $p\mathbb{Z}_p$, so $dim_{Tilt(G)}(X) = 0$ iff *p* divides dim X (vector space dimension). So are we measuring the *p*-divisibility of dim X?

The modular SL₂-case

- For SL_2 the tilting modules are parametrized by \mathbb{N} , T(0), T(1), T(2),...
- Introduce $St_r = L((p^r 1)\rho)$ and let $I_r = \langle St_r \rangle$.
- For SL(2) the I_r are a complete list of thick ideals. A tilting module T(m) is in I_r if and only if $m \ge p^r 1$.
- For *p* > 2

 $T(\lambda) \in N_k$ if and only if $p^k | \dim T(\lambda)$

where dim refers to the dimension of $T(\lambda)$ as a vector space. In other words, N_k measures the *p*-divisibility of the dimension of $T(\lambda)$.

• It is important to assume p > 2 here. Indeed the dimensions of the first tilting modules in the p = 2 case are

dim T(0) = 1, dim $T(1) = St_1 = 2$, dim T(2) = 4, dim $T(3) = St_3 = 4$.

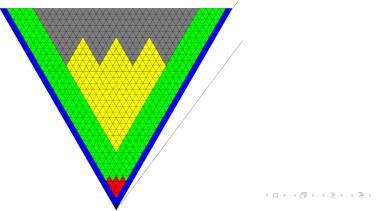
Although dim T(2) = 4, it is not in N₂. Over Z₂ we have Tr(id_{T(2)}) = 4, but we can write T(2) ≅ T(1) ⊗ T(1). Hence there is an endomorphism f of T(2) which permutes the two factors. It is easy to see that Tr(f) = 2, hence the trace is not always contained in (2)² and so T(2) ∉ N₂.

The tilting cases A_1 and A_2

- For SI₃ every ideal is k-negligible for some k (picture is taken from Andersen Cells in affine Weyl groups for p ≥ 5).
- A complete list of thick ideals is:
- The Steinberg ideals with nullity 3s for s = 1, 2, ... and
- for $s = 0, 1, 2, \ldots$ the ideals generated by the $T(\lambda)$ with

$$(\lambda + \rho, \rho) = p^{s+1}, \ (\lambda + \rho, \alpha_1) = rp^s, 1 \le r < p$$

of nullity 3s + 1.



The example $Rep \ GL_t$

- Let λ be a Young diagram. (i, j) denotes the box in the i-th row and j-th column of λ.
- Let h(i,j) be the length of the hook whose northwest corner is the box (i,j).
- Let R(λ^L, λ^R) denote the indcomposable object corresponding to the bipartition (λ^L, λ^R). Then

$$\dim(R(\lambda,0)) = P_{\lambda}(t) = \prod_{(i,j)\in\lambda} \frac{t-i+j}{h(i,j)} \text{ for } Rep \ GL_t \text{ over } R.$$

Zeros of P_λ(T) are precisely the integers −j + i for (i, j) ∈ λ. For the partition λ = (k^{n+k}) the polynomial has exactly k zeros for t = n, i.e.

$$P_{k^{n+k}}(t) = (t-n)^k \cdot \text{something}.$$

The example $Rep \ GL_t$ part II

• Hence for each $k \in \mathbb{N}$ there must be an N_k . In fact:

Theorem

Every thick ideal resp. every tensor ideal is of the form N_k resp. N_k . These form a strictly decreasing chain of ideals. The same is true for the Rep O_n -case.

- For the thick ideals this gives a new classification of the thick ideals in *Rep GL*_t and *Rep O*_t.
- For the tensor ideals this is based on results by Coulembier.
- Should be true for the quantum versions as long as q is not a root of unity.

Modified traces

Recall that for any objects $X, Y \in C$ and any endomorphism $f \in X \otimes Y$ we have the left trace $t_L(f) \in End_C(X)$ and the right trace $t_R(f) \in End_C(Y)$.

Definition

If I is a thick ideal in C then a *trace on I* is a family of linear functions

$${\mathsf{t}_V: End_{\mathcal{C}}(V) \to R}$$

where V runs over all objects of I and such that following two conditions hold. If $U \in I$ and $W \in C$ then for any $f \in End_{\mathcal{C}}(U \otimes W)$ we have

 $\mathsf{t}_{U\otimes W}(f)=\mathsf{t}_U(tr_R(f)).$

② If U, V ∈ I then for any morphisms f : V → U and g : U → V in C we have

$$\mathsf{t}_V(g \circ f) = \mathsf{t}_U(f \circ g).$$

12 / 17

Modified dimensions and link invariants

- Assume that the maximal ideal $(p) \subset R$ is generated by the element p.
- Let *I* be a tensor ideal all of whose objects are *k*-negligible, e.g. the ideal N_k of all *k*-negligible objects. Then we define the modified trace $Tr_X^{(k)}$ and modified dimension dim^(k)(X) for an object X in *I* by $(a \in End(X))$

$$Tr_X^{(k)}(a) = \frac{1}{p^k} Tr_X(a), \qquad \dim^{(k)}(X) = \frac{1}{p^k} \dim(X),$$

Note that this is well-defined since $Tr_X(a) \in (p)^k \ \forall a \in End(X)$. It is clear that $Tr_X^{(k)}(id_X) = \dim^{(k)}(X)$.

Lemma

Let X, Y be objects in I, and let Z be an object in C. Then we have (a) $Tr_X^{(k)}(ab) = Tr_Y^{(k)}(ba)$ for all morphisms $a : X \to Y$ and $b : Y \to X$, (b) $Tr_{X\otimes Y}^{(k)}(a \otimes c) = Tr_X^{(k)}(a)Tr_Z(c)$ and $\dim^{(k)}(X \otimes Y) = \dim^{(k)}(X)\dim(Y)$ for $a \in End(X)$, $c \in End(Z)$.

Gives a *modified* trace on I in the sense of Geer, Kujawa, Patureau-Mirand,... In particular: All ideals in Deligne categories and for Tilt(...) have nontrivial modified traces.

Modified dimensions and link invariants II

 Any link L with m components can be obtained as the closure of a braid β. For chosen objects X₁,..., X_m obtain

$$\Phi(\beta) \in End(X_1^{\otimes c_1} \otimes X_2^{\otimes c_2} \otimes ... \otimes X_m^{\otimes c_m}).$$

• The link invariant $\mathcal{L}^{(X_1, \dots, X_m)}(L)$ is then defined by

$$\mathcal{L}^{(X_1, \dots, X_m)}(L) = Tr(\Phi(\beta)).$$

Theorem

(a) If the object $\mathbf{X}^{\otimes m}$ is k-negligible, then we obtain a new link invariant $\mathcal{L}^{(X_1, \dots, X_m), (k)}$ defined by

$$\mathcal{L}^{(X_1, \dots, X_m), (k)}(L) = \frac{1}{p^k} \mathcal{L}^{(X_1, \dots, X_m)}(L)$$

which is well-defined and yields an invariant with values in R/(p). (b) If $R = \widehat{\mathbb{C}[v]}_{(v-q)}$ and p = v - q, then $R/(p) \cong \mathbb{C}$ and the value of the R/(p)-valued invariant is equal to $k! \frac{d^k}{dq^k} \mathcal{L}^{(X_1, \ldots, X_m)}(L)_{|v=q}$, which is valid for its evaluation on any m-component link L.

How do the tensor ideals look like in the quantum case?

• Have a system of hyperplanes on \mathfrak{h}^* from the orbits of the generating hyperplanes under the affine Weyl group. They can be described explicitly by

$$H_{\alpha,k} = \{x \in \mathfrak{h}^*, (x,\alpha) = k\ell\}, \quad \alpha \in \Delta_+, k \in \mathbf{Z},$$

if $d|\ell$.

- These hyperplanes make h^{*} into a cell complex as follows: We call an intersection of k hyperplanes maximal if it has dimension n k, and we denote by h^{*}(n k) the union of all maximal intersections of k hyperplanes.
- The set of *j*-cells then is given by all connected components of $\mathfrak{h}^*(j) \setminus \mathfrak{h}^*(j-1)$, with $\mathfrak{h}^*(-1)$ being the empty set.
- Call the *n*-cells *alcoves*, and lower-dimensional cells *facets*. The (*n* 1)-cells which are in the closure of a given alcove A are called the *walls* of A.

Quantum ideals

The following theorem gives an explicit description of all thick ideals in quantum $U_q(\mathfrak{sl})_n$. In this case Ostrik constructed thick ideals corresponding to two-sided cells in the affine Weyl group. These cells are parametrized by partitions λ of n. To each λ we associate a facet $F_0(\lambda)$.

Theorem

The thick ideal $\mathcal{I}(\lambda) = \mathcal{I}(F_0(\lambda))$ generated by the tilting modules $T(\nu)$ for which $\nu + \rho \in F_0(\lambda)$ coincides with the thick ideal constructed by Ostrik for the cell in the dominant Weyl chamber corresponding to the two-sided cell labeled by the partition λ^T . The nullity of any generating module $T(\nu)$ of that ideal is equal to the value of Lusztig's a-function of that cell.

Remark: The thick ideal N_k is the sum of the $I(\lambda)$ (λ partition of n) for which the nullity is $\geq k$.

We have an analogous conjecture for modular type A.

Open questions

- Extension to more general categories? E.g. small quantum group?
- Classify thick ideals for Deligne categories at roots of unity.
- Currently we define modified traces only if the maximal ideal has one generator. It would be interesting to define modified traces if the maximal ideal is not principal.
- Understand the relation between the nullity and the *a*-function in the quantum case.