15.12.2020

Progress report on ongoing joint work w. Kerin Walker

<u>Goal</u>:

Understand Semissimple & non-semisimple TFTs in a uniform & computationally explicit way.

In other words, we propose an answer to the question; where did the formulas in Ingo's talk last week "come from?

Outline:

i) Semisimple story (Where does Reshetikhin-Turgevis invariant "come from"?)

ii) Generalizing to the non-semisimple case.

Altogether, skein theory gives:
CYe: Cob2,3 ~ 2 Vector
Sym. mon. (2,1)- category of
(closed oriented 2mplds.
(compart oriented 3-bordisms
orientation-preserving diffeomorphisms)
(prior functors
natle trafes.
Natle trafes.
Really: Fully extended TPT into a ppropriate higher Morita category target,
Really: Fully extended TPT into a ppropriate higher Morita category target,
Really: Fully extended TPT into a ppropriate higher Morita category target,
If activization homology beta¹¹ Agala-Prancis, Scheim bauer, Cooke, Morrison-Walker, Johnson-Freyd,...
What about 4-manifolds?
(i) I will give an explicit formula to set a feeling & compare with RT
(ii) Then, I will explain that this is forced on us & is the
unique extension (up to a
$$\lambda \in K^{\times}$$
) of Cye to 4-manifolds.

Let
$$\varphi \xrightarrow{W} M$$
 be represented by a link $L \in S^{3}$.
Then:
 $Skein_{E}(\varphi)^{V} = K \xrightarrow{CY_{E}(W)} Skein_{E}(M)^{V}$
 $\downarrow^{12+indh+1} \underbrace{Sdin(h_{1})}_{X_{1}} \underbrace{\nabla \varphi}_{A} \xrightarrow{W} M$ handle diagram of $\varphi \xrightarrow{D} S^{2}xS^{3}$
 $Analogons formulas for general $M_{in} \xrightarrow{W} M_{out}$.
Observe:
 $RT_{E} \left(\underbrace{M^{3}}_{surgery along L \leq S^{3}} \right) = K \xrightarrow{CY_{E}(W_{L})}_{A} CY_{E}(M^{3}) = Stein_{E}(M) \xrightarrow{W} Kein} K$
 $E if we choose a normalization s.t. $\lambda^{2} = dim(e)$]
 $\Rightarrow RT_{E} is a boundary theory of CY_{E}: CY_{E}(M^{3}) = empty skein} K$
 $If C modular \Rightarrow CY_{E}(M^{3})$ is one -dimensional.
 $If C modular \Rightarrow CY_{E}(M^{3})$ is one -dimensional.
 $If C modular \Rightarrow CY_{E}(M^{3}) = CY_{E}(W) = CY_{E}(W)$ for all W, W : $\varphi \rightarrow M^{3}$$$

For skein theory:

Therefore:

$$extensions of extensions of the semisimple is the se$$

IV Combining everything
80%-Thm [R.-Walker]
Let C be a modular, unimodular finite ribbon category.
Then, extensions of Skein projec⁽⁻⁾ to an oriented 4d TOPT
then, extensions of Skein projec⁽⁻⁾ to an oriented 4d TOPT
correspond to choiles of non-degenerate modified traves on Breile.
Moreover, if C is anomaly-free and if s is a C-labeled ribbon
In contrast to
graph in a closed oriented M³, then

$$k \frac{Ze(W^4)}{Ze(M^3)} = Skein projec(M) \xrightarrow{S'} K is not an
is independent of the choile of compact oriented W 4 with DW 4M3
and a grees with the renormalized Lynbashenko invariant of
[De Renzi-Gainutdinov-Geer - Paturean-Mirand -Runkel]$$