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Chapter 1

Eilenberg-Watts calculus and relative Serre functors
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Hopf algebras – conventions and recap

Conventions for this talk:
k is an algebraically closed field.
All vector spaces, algebras, Hopf algebras, modules . . . are finite-dimensional
k-vector spaces

Definition

A bialgebra (H, ·, 1,∆, ε) is . . .
A Hopf algebra (H, ·, 1,∆, ε, S) with antipode S is . . . .

Facts

The category H-mod of left modules over a bialgebra is monoidal.

The category H-mod of finite-dimensional left modules over a Hopf
algebra with invertible antipode has left and right duals; action on V ∗ by

ρ(h)∨ = ρ(Sh)t ∨ρ(h) = ρ(S−1h)t

Remark

Order of antipode is related to homological algebra of H-mod.
E.g. S2 = idH and char(k) 6 | dimH ⇒ H and H∗ are semisimple.
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Radford’s S4 theorem, classical statement

Since dimH <∞, space of left / right integrals is one-dimensional, e.g.

dim Il = dim{t ∈ H | ht = ε(h)t} = 1

Corollary: t ∈ Il and h ∈ H, then th ∈ Il , thus th = α(h)t with
α : H → k a morphism of algebras, i.e. a grouplike element in H∗,
i.e. a one-dimensional H-module.

Dually, there are cointegrals and a grouplike element a ∈ H.

Action of H∗ on H: α ⇀ h := h(1)〈α, h(2)〉
with Sweedler notation ∆(h) = h(1) ⊗ h(2).

Theorem (Radford, 1976)

For a finite-dimensional Hopf algebra H, the following holds:

S4(h) = a(α−1 ⇀ h ↼ α)a−1 = α−1 ⇀ (aha−1) ↼ α ∀h ∈ H

Consequences:

The order of the antipode S is finite.

If H and H∗ are unimodular, i.e. a = 1H and α = 1H∗ , then S4 = idH .
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Finite tensor categories

Let k be a field.

Definition (Finite category)

A k-linear abelian category C is finite, if

1 C has finite-dimensional k-vector spaces of morphisms.

2 Every object of C has finite length.

3 C has enough projectives.

4 There are finitely many isomorphism classes of simple objects.

Remark

A linear category is finite, if and only if it is equivalent to the category A-mod
of finite-dimensional A-modules over a finite-dimensional k-algebra.

Definition (Finite tensor category)

A finite tensor category is a finite rigid monoidal linear category.

In particular, the tensor product is exact in each argument; any left exact
functor has a left adjoint.
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Eilenberg-Watts calculus

Classical result about finite categories:

Proposition

Let A-mod and B-mod finite categories. Let

G : A-mod→ B-mod

be a right exact functor. Then G ∼= G(AAA)⊗A −.
The B-A-bimodule G(AAA) is a right A-module via the image of right

multiplication rA : A→ A under EndA(A)
G→ EndB(G(A)).

A similar statement allows to express left exact functors in terms of bimodules.

Morita-invariant formulation: triangle of explicit adjoint equivalences:

Aopp � B

Lex(A,B) Rex(A,B)

Φl Φr

Γlr

Ψl

Γrl

Ψr
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Ends and coends

Based on the Deligne product and (co)ends.

Remarks

Examples of coends and ends: trace and natural transformations∫ v∈vectk
v ⊗ v∗ = k and Nat(F ,G) =

∫
c∈C

HomD(F (c),G(c))

(Co-)Yoneda lemma: G : D → C linear, then∫ Y∈D
G(y)⊗HomD(y ,−) ∼= G(−)

and ∫
Y∈D

G(y)⊗HomD(−, y)∗ ∼= G(−)

Theorem (Fuchs, Schaumann, CS)

Peter-Weyl theorem: as A-bimodules∫
m∈A-mod

m ⊗k m
∗ = A and

∫ m∈A-mod

m ⊗k m
∗ = A∗



Eilenberg-Watts, relative Serre functors Modular tensor categories and CFT

Ends and coends

Based on the Deligne product and (co)ends.

Remarks

Examples of coends and ends: trace and natural transformations∫ v∈vectk
v ⊗ v∗ = k and Nat(F ,G) =

∫
c∈C

HomD(F (c),G(c))

(Co-)Yoneda lemma: G : D → C linear, then∫ Y∈D
G(y)⊗HomD(y ,−) ∼= G(−)

and ∫
Y∈D

G(y)⊗HomD(−, y)∗ ∼= G(−)

Theorem (Fuchs, Schaumann, CS)

Peter-Weyl theorem: as A-bimodules∫
m∈A-mod

m ⊗k m
∗ = A and

∫ m∈A-mod

m ⊗k m
∗ = A∗



Eilenberg-Watts, relative Serre functors Modular tensor categories and CFT

Ends and coends

Based on the Deligne product and (co)ends.

Remarks

Examples of coends and ends: trace and natural transformations∫ v∈vectk
v ⊗ v∗ = k and Nat(F ,G) =

∫
c∈C

HomD(F (c),G(c))

(Co-)Yoneda lemma: G : D → C linear, then∫ Y∈D
G(y)⊗HomD(y ,−) ∼= G(−)

and ∫
Y∈D

G(y)⊗HomD(−, y)∗ ∼= G(−)

Theorem (Fuchs, Schaumann, CS)

Peter-Weyl theorem: as A-bimodules∫
m∈A-mod

m ⊗k m
∗ = A and

∫ m∈A-mod

m ⊗k m
∗ = A∗



Eilenberg-Watts, relative Serre functors Modular tensor categories and CFT

Eilenberg-Watts calculus

Aopp � B

Lex(A,B) Rex(A,B)

Φl Φr

Γlr

Ψl

Γrl

Ψr



Eilenberg-Watts, relative Serre functors Modular tensor categories and CFT

Eilenberg-Watts calculus

Aopp � B

Lex(A,B) Rex(A,B)

Φl Φr

Γlr

Ψl

Γrl

Ψr

Φl ≡ Φl
A,B : Aopp � B '−−→ Lex(A,B) ,

a � b 7−→ HomA(a,−)⊗ b ,

Ψl ≡ Ψl
A,B : Lex(A,B)

'−−→ Aopp � B ,
F 7−→

∫ a∈A
a � F (a) ,

Φr ≡ Φr
A,B : Aopp � B '−−→ Rex(A,B) ,

a � b 7−→ HomA(−, a)∗ ⊗ b ,

Ψr ≡ Ψr
A,B : Rex(A,B)

'−−→ Aopp � B ,
G 7−→

∫
a∈A a � G(b)
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Eilenberg-Watts calculus

Φl ≡ Φl
A,B : Aopp � B '−−→ Lex(A,B) ,

a � b 7−→ HomA(a,−)⊗ b ,

Ψl ≡ Ψl
A,B : Lex(A,B)

'−−→ Aopp � B ,
F 7−→

∫ a∈A
a � F (a) ,

Φr ≡ Φr
A,B : Aopp � B '−−→ Rex(A,B) ,

a � b 7−→ HomA(−, a)∗ ⊗ b ,

Ψr ≡ Ψr
A,B : Rex(A,B)

'−−→ Aopp � B ,
G 7−→

∫
a∈A a � G(b)

In particular, idA ∈ Lex(A,A) is mapped to the right exact functor

N r
A :=

∫ a∈A
HomA(−, a)∗ ⊗ a .
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Nakayama functors

N r
A :=

∫ a∈A
HomA(−, a)∗ ⊗ a and N l

A :=

∫
a∈A

HomA(a,−)⊗ a

Lemma

For A = A-mod:

N r
A = A∗ ⊗A − ∼= HomA(−,A)∗ and N l

A = HomA(A∗,−) .
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Nakayama functors

N r
A :=

∫ a∈A
HomA(−, a)∗ ⊗ a and N l

A :=

∫
a∈A

HomA(a,−)⊗ a

Lemma

For A = A-mod:

N r
A = A∗ ⊗A − ∼= HomA(−,A)∗ and N l

A = HomA(A∗,−) .

Proof:
Suppose A ∼= A-mod.

Since N r
A is right exact, the Eilenberg-Watts theorem implies

N r
A ∼= N r (AAA)⊗A −

Thus compute the bimodule N r (AAA):

N r
A(AAA) =

∫ y∈A
HomA(A, y)∗ ⊗ y ∼=

∫ y∈A
y∨ ⊗ y ∼= (AAA)∗

where in the last step, we used Peter-Weyl.
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Nakayama functors

N r
A :=

∫ a∈A
HomA(−, a)∗ ⊗ a and N l

A :=

∫
a∈A

HomA(a,−)⊗ a

Lemma

For A = A-mod:

N r
A = A∗ ⊗A − ∼= HomA(−,A)∗ and N l

A = HomA(A∗,−) .

For this reason, we call N r
A and N l

A Nakayama functors.

Proposition

1 The Nakayama functors are adjoints, N l
A a N r

A.

2 N l
A equivalence ⇔ N r

A equivalence. ⇔ A is selfinjective.
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Radford’s S4-theorem

For linear functors, we have

Theorem (Fuchs, Schaumann, CS)

Let A,B be finite categories. Let F ∈ Lex(A,B) such that F la is left exact so
that F lla exists. Assume that F lla is left exact as well. Then there is a natural
isomorphism

ϕl
F : N l

B ◦ F ∼= F lla ◦ N l
A

that is coherent with respect to composition of functors.

Apply this to bimodule categories over finite tensor categories:
Tensor ideals are bimodule categories. We will only consider (bi)module
categories over finite tensor categories that are finite categories and thus in
particular abelian. The ideal of projectives is not abelian.
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Radford’s S4-theorem

Apply this to bimodule categories over finite tensor categories:

Definition (Module categories)

Let A and B be linear monoidal categories.

1 A left A-module category is a linear category M with a bilinear functor
⊗ : A×M→M and natural isomorphisms

α : ⊗ ◦ (⊗× idM)
∼→ ⊗ ◦ (idA ×⊗) λ : ⊗ ◦ (idA ×−)

∼→ idM

satisfying obvious pentagon and triangle axioms. We write a.m := a⊗m.

2 Right module categories are defined analogously.

3 An A-B bimodule category is a linear category D, with the structure of a
left A and right D-module category and a natural associator isomorphism
(a.d).b ∼= c.(d .b).

4 Module functors, module natural transformations defined in obvious way.

Tensor ideals are bimodule categories. We will only consider (bi)module
categories over finite tensor categories that are finite categories and thus in
particular abelian. The ideal of projectives is not abelian.
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Radford’s S4-theorem

For linear functors, we have

Theorem (Fuchs, Schaumann, CS)

Let A,B be finite categories. Let F ∈ Lex(A,B) such that F la is left exact so
that F lla exists. Assume that F lla is left exact as well. Then there is a natural
isomorphism

ϕl
F : N l

B ◦ F ∼= F lla ◦ N l
A

that is coherent with respect to composition of functors.

Apply this to bimodule categories over finite tensor categories:

Theorem (Fuchs, Schaumann, CS)

Let A,B be finite tensor categories and M an A-B bimodule. Then the
Nakayama functor has the structure of a twisted bimodule functor:

N l
M(a.m.b) ∼= a∨∨.N l

M(m). ∨∨b

Tensor ideals are bimodule categories. We will only consider (bi)module
categories over finite tensor categories that are finite categories and thus in
particular abelian. The ideal of projectives is not abelian.
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Recovering Radford’s S4-theorem

N l
M(a.m.b) ∼= a∨∨.N l

M(m). ∨∨b

Observe

The finite tensor category A is a bimodule over itself.

N l
A(1) =

∫
a∈A

HomA(a, 1)⊗ a = DA

is the canonical invertible object of A.

Compute

N l
A(a) = N l

A(a⊗ 1) = a∨∨ ⊗ N l
A(1) = a∨∨ ⊗ DA

and
N l
A(a) = N l

A(1⊗ a) = N l
A(1)⊗ ∨∨a = DA ⊗ ∨∨a

We recover Radford’s S4-theorem in its categorical form
DA ⊗ a⊗ D−1

A
∼= a∨∨∨∨ [ENO, 2004]
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Relative Serre functors

Definition (Fuchs, Schaumann, CS 2016)

Let M be a C-module. A right/left relative Serre functor is an endofunctor
Sr
M / Sl

M of M together with a family

Hom(m, n)∨
∼=−−→ Hom(n, Sr

M(m))
∨Hom(m, n)

∼=−−→ Hom(Sl
M(n),m)

of isomorphisms natural in m, n ∈M.

Relative Serre functors exist, iff M is an exact module category (i.e. p.m
projective, if p ∈ C projective).

Serre functors are equivalences of categories.

Serre functors are twisted module functors:

φc,m : Sr
M(c.m) −→ c∨∨. Sr

M(m) and φ̃c,m : Sl
M(c.m) −→ ∨∨c. Sl

M(m)

Theorem

Let M be an exact A-module. Then

N l
M ∼= DA.S

l
M and N r

M ∼= D−1
A .Sr

M
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Pivotal module categories

Serre functors are twisted module functors:

φc,m : Sr
M(c.m) −→ c∨∨. Sr

M(m) and φ̃c,m : Sl
M(c.m) −→ ∨∨c.Sr

M(m) .

Definition (Schaumann 2015, Shimizu 2019)

A pivotal structure on an exact module category M over a pivotal finite tensor
category (C, π) is an isomorphism of functors π̃ : idM → Sr

M such that the
following diagram commutes for all c ∈ C and m ∈M:

c.m c∨∨.Sr
M(m)

Sr
M(c.m)

πc .π̃m

π̃c.m φc,m

For indecomposable exact module categories, the pivotal structure is
unique up to scalar.

The algebras Hom(m,m) ∈ C for m in a pivotal module category have the
structure of symmetric Frobenius algebras.
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Frobenius algebras and traces

Proposition

The algebras Hom(m,m) ∈ C for m in a pivotal module category M have the
structure of symmetric Frobenius algebras.

For an exact module category M, use the Serre functor to define a trace
on internal Homs, twisted by the Serre functor:

tr : Hom(m, Sr
M(m)) ∼= Hom(m,m)∨

coev∨−→ 1

Now suppose that M is pivotal. Then we get a trace on internal Ends:

εm : Hom(m,m)
(πMm )∗−→ Hom(m, Sr

M(m))
tr−→ 1

which endows Hom(m,m) with the structure of a symmetric Frobenius
algebra (Shimizu, 2019).

In particular, given an endomorphism m
f→ m in M, find

1→ Hom(m,m)
f∗−→ Hom(m,m)

εm−→ 1 .
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The Drinfeld center

For CFT, we need symmetric Frobenius algebras in the Drinfeld center Z(C).

Definition (Half-braiding, Drinfeld center)

Let A be a monoidal category.
A half-braiding for V ∈ A is a natural isomorphism

σV : V ⊗− → −⊗ V

such that σV (X ⊗ Y ) = (idX ⊗ σV (Y )) ◦ (σV (X )⊗ idY ) for all X ,Y ∈ C.
The Drinfeld center Z(A) has pairs (V , σV ) as objects.

Remarks

1 Z(A) is a braided monoidal category.

2 The forgetful functor Z(A)→ A is exact.

Left adjoint L : c 7→
∫ x∈C

x ⊗ c ⊗ ∨x
Right adjoint R : c 7→

∫
x∈C

∨x ⊗ c ⊗ c

3 C unimodular ⇔ L ∼= R
⇔ R(1) ∈ Z(A) is a (commutative) Frobenius algebra (Shimizu 2017)
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Symmetric Frobenius algebras in the Drinfeld center

For CFT, we need symmetric Frobenius algebras in Z(C).
Let C be a finite tensor category and M and N be C-modules.
The functor category RexC(M,N ) is a module category over Z(C):

(z .F )(m) := z .F (m)

with module functor structure given by half braiding:

(z .F )(c.m) = z .F (c.m) ∼= (z ⊗ c).F (m) ∼= (c ⊗ z).F (m) ∼= c.(z .F )(m)

Theorem (Fuchs, CS 2020)

C a pivotal finite tensor category and M and N exact C-modules.

1 The functor category RexC(M,N ) is an exact module category over Z(C)
with relative Serre functor N r

N ◦ (D.−) ◦ N r
M.

2 If C is unimodular pivotal and M and N are pivotal C-modules,
then RexC(M,N ) is a pivotal Z(C)-module category.

3 In particular, then Nat(F ,F ) is a symmetric Frobenius algebra in the
Drinfeld center Z(C) and Nat(idM, idM) has a natural structure of a
commutative symmetric Frobenius algebra.
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Chapter 2

Modular tensor categories and two-dimensional local conformal field theories
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Modular tensor categories

Definition (Modular tensor category)

A modular tensor category C is a finite ribbon category such that the braiding
is maximally non-degenerate. Various formulations exist and are equivalent
[Shimizu 2016]:

Braided equivalence C � Crev ' Z(C)

Coend L :=
∫ C

U∨ ⊗ U has non-degenerate Hopf pairing ωC

Map Hom(1, L)→ Hom(L, 1) induced by ωC is isomorphism.

C has no transparent objects.

Remarks

The representation category of suitable vertex algebras or nets of
observable algebras has naturally the structure of a modular tensor
category:
The chiral data of a (finite) conformal field theory are described by a
modular tensor category.

From a modular tensor category, one can construct a modular functor
(Lyubashenko, ∼ 1995)
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Fields in two-dimensional local conformal field theory

Fields + OPE  (symmetric Frobenius) algebras.

Frobenius algebras in the appropriate monoidal category

666 D.C. Lewellen / Sewingconstraints
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Fig. 9. The six necessaryandsufficient basic sewing-constraintsfor amplitudeswith bulk andboundary
operators.(a)—(f) correspondto thecasesin fig. 7a, b, d, e, f ando respectively.

The sum runs over primary fields. The omitted terms are the less singular
contributionsfrom the Virasoro descendentfields. The C,,k are constantsto be
determined;the coefficientsof the descendentfields are thencompletelyfixed in
principle by the conformal symmetry.If the fields involved arediagonal(LI1 = LI1)
then the C,Jk aresymmetricin i, j and k given (3.1)

Crossing-symmetryof four-point amplitudesprovidesthebasicconstraintslimit-
ing the choicesfor C.)k. Conformal invariancefixes the form of the four-point
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Fields in two-dimensional local conformal field theory

Fields + OPE  (symmetric Frobenius) algebras.

Frobenius algebras in the appropriate monoidal category

Additional datum to specify local CFT given a modular tensor category:
Suitable module category M over the modular tensor category C.
Boundary

Boundary condition: Object of M
Boundary fields from bc m to n Hom(m, n) ∈ C
OPE composition of inner Homs
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Frobenius algebras in the appropriate monoidal category

Additional datum to specify local CFT given a modular tensor category:
Suitable module category M over the modular tensor category C.
Boundary

Boundary condition: Object of M
Boundary fields from bc m to n Hom(m, n) ∈ C
OPE composition of inner Homs

Modular tensor category C is pivotal.

Require M to be a pivotal module category

Then Hom(m,m) is a symmetric Frobenius algebra for each m ∈M.
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Fields in two-dimensional local conformal field theory

Fields + OPE  (symmetric Frobenius) algebras.

Frobenius algebras in the appropriate monoidal category

Additional datum to specify local CFT given a modular tensor category:
Suitable module category M over the modular tensor category C.
Boundary

Boundary condition: Object of M
Boundary fields from bc m to n Hom(m, n) ∈ C
OPE composition of inner Homs

Modular tensor category C is pivotal.

Require M to be a pivotal module category

Then Hom(m,m) is a symmetric Frobenius algebra for each m ∈M.

Bulk algebra: commutative algebra in C � Crev ' Z(C).
Tasks:

1 Obtain bulk Frobenius algebras from boundary data

2 Describe correlators for any surface from OPE
(This talk focuses on bulk fields.)
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Bulk fields and defect fields for a fixed modular tensor category C

Include defects and defect fields:
 

G

Miauen.MY

fr
4 Mz phasesof CFT

defect

EG defects field

Poincaré dual↔ M1 M2

G

F

Φ

Defects are labelled by right exact C-module functors F ,G : M1 →M2.
For defect field, need an object DF ,G in Z(C) ' Crev � C:

Theorem (Fuchs, CS 2020)

Nat(F ,G) =

∫
m1∈M1

Hom(F (m1),G(m1)) ∈ Z(C)
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Bulk and defect fields II

DF ,G =

∫
m1∈M1

Hom(F (m1),G(m1)) ∈ Z(C)

Remarks

Recall natural transformations:

Nat(F ,G) =

∫
m1∈M1

Hom(F (m1),G(m1)) ⊂
∏

m1∈M1

Hom(F (m1),G(m1))

For C =M = A-mod, get Z(A) = Nat(id, id) =
∫
m1∈M1

Hom(m1,m1)

Defect fields = “internalized” natural transformations.
In particular, bulk algebra =

∫
m∈MHom(m,m) = “internalized center”.

We have horizontal and vertical compositions of relative natural
transformations.
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Sewing constraints
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(a) (b) (c)

Fig. I. The basic building blocks for sewingconformal field theory amplitudes of bulk or boundary
operators.(a)bulk (‘closedstring”) 3-point function; (b) boundary(“open string”) 3-point function; (c)

bulk—boundary(“open—closedstring”) amplitude.

Sonoda provedthat no ambiguitiesarise in a given sewing prescriptionfor any
bulk amplitude if none appearin computingfour-point treeor one-pointone-loop
amplitudes.Thesegive the constraintsof crossingsymmetry(duality) andmodular
invariance,respectively.

In this work we derive and examine the analogoussewing constraints for
conformal field theorieson surfaceswith boundaries.When boundariesare in-
cludedwe havethe possibility of operatorsliving solely there— boundaryoperators
— which, in general,mediatechangesin the boundaryconditionson the edgeof
the world-sheet.The spectrumof boundaryoperatorsdependson the boundary
conditions consideredand need not coincide with those in the bulk. For the
purposesof our analysiswe demandonly that the boundaryconditions do not
breakconformalinvariance.In the string-theorylanguage(whereboundaryopera-

tors correspondto open-stringvertex operators)the basic building blocks of
amplitudesnow include the open-stringthree-pointfunction andthe closed-string

to open-stringamplitude in additionto the closed-stringthree-pointfunction (fig.
1). The additional ingredientsaredirectly related to the coefficientsappearingin
theshort-distanceexpansionas two boundaryoperatorsapproacheachother,or as
a bulk operator approachesa boundary, respectively.Any amplitude can be
constructedby sewing some number of thesebasic amplitudestogether.Again
thereare many possiblesewingsfor a given amplitude;equatingthe possibilities
leadsto sewingconstraints.In sect. 2 we adaptandextendSonoda’sproof to find
the necessaryand sufficient set of sewingconstraintsfor correlationfunctionsof
bulk andboundaryoperators.Wefind four basicconstraintsin additionto thetwo
alreadyrequired for the consistencyof the bulk theory alone; threedefinedon
surfaceswith the topologyof the half-plane,andone on the cylinder.

The constraintsof crossing-symmetryand modular invariance are of great
practical importance in the exploration of conformal field theories. In bulk
conformalfield theoriesthe crossingconstraintscanbe usedto solve explicitly for
the OPE coefficients[1,3], ClJk, andmodular invariancerestrictsthe spectrumof
operatorswhich canappear[4]. In sect. 3 we carefully specifyour conventionsfor
bulk and boundaryoperatorsand the various OPE coefficients which connect
them,andshow how thesewingconstraintsfound in sect.2 relatethesequantities.

(Lewellen, 1992)
Structure morphisms:

– Multiplications and comultiplications
– Component maps Nat(id, id)→ Hom(m,m)

Relations:

– (a), (c): bulk and boundary are Frobenius
– (e): component map is morphism of algebras
– (d) dinaturality of the (co)end component
morphisms
– (b) and (f)=Cardy relation are genus 1
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Outlook

Outlook

1 C semisimple: correlators for boundary and defect fields though string nets.

2 Stringnets beyond semisimplicity.

3 Bulk algebras and other fields beyond semisimplicity.

4 Combination with approximation schemes.
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Appendix

Correlators for semisimple modular tensor categories via string nets



CFT correlators through string net models

String net models

Σ oriented smooth surface, possibly with boundary
Γ unoriented graph on Σ.

 

Eifre

e

Coloring: C a spherical fusion category
Edge: Object V (e) ∈ C not necessarily simple Vertex: Morphism v ∈ V (Γ)

Define: Graph(Σ,V ) := Set of all graphs on Σ with boundary value V
VGraph(Σ,V ) := spanCGraph(Σ,V )
Impose local relations via graphical calculus on disks.

Definition

The string net space is the quotient

Hstring (Σ,V ) := VGraph(Σ,V )/N(Σ,V )

Remarks

A colored graph Γ defines a vector 〈Γ〉 ∈ Hstring (Σ,V ).

Hstring (Σ,V ) carries a geometric action of the mapping class group of Σ.

Remark

String nets can be used to define a fully-fledged 3-2-1 topological field theory
that is equivalent to the Turaev-Viro-Barrett-Westbury state sum model.
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Consistent systems of correlators

Correlators for bulk fields with bulk object F
=vector vΣ ∈ tftCrev�C(Σ) for all surfaces Σ

(since Crev � C ' Z(C))
=specific vector in the string net space Hstring (Σ) for all Σ

Boundary value F at each boundary component

vΣ ∈ Hstring (Σ,F )

Invariant under mapping class group

Compatible with sewing

C semisimple and modular, M pivotal. Write M = modC − A. Then

FM = Nat(id, id) =

∫
m∈M

Hom(m,m) = ⊕α∈IMHom(mαmα) = ⊕αmα⊗Amα
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Correlators from string nets

Theorem (Fuchs, CS, Yang Yang, 2020)

The vector vΣ specified by the following string net on Σ is invariant under the
mapping class group:

11
4 Consistent systemsof bulk fields

4 I Extended surface
o o

e
o E Ef 0

in out

Mappingdass group homotopy classesoforientationpreserving
homeomorphism magp Input Ü Julmt Ü

Correlationfor bulk fields specific conformal block

go.li eEZIe
c Haus F

with boundary value Fat each
mashedpoint

invariant in dermapping dem group
compatible with sewing

4 2 Lego Teichmüller game
Gt system and feinmarkings

red lines  canonical color
green lines  Bulk Frobenius algebra FM
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Proof of the theorem

Cardy case: M = C:

Locally, at the boundary löt töte löt töte

Globally, on a pair of pants

O

0

in

 

O

0

in

We get essentially empty string nets that are manifestly invariant under the
mapping class group.
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General pivotal module categories

The string net on the pair of pants reduces to the dual of a triangulation
labelled by the Frobenius algebra A which is famously an invariant under the
mapping class group.
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CFT correlators through string net models

Outlook

Outlook

1 C semisimple: correlators for boundary and defect fields though string nets.

2 Stringnets beyond semisimplicity.

3 Bulk algebras and other fields beyond semisimplicity.

4 Combination with approximation schemes.
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