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Abstract. We introduce a modification of the Turán density of ordered graphs and
investigate this graph parameter.

§1 Introduction

1.1. Unordered graphs. Given an (unordered) graph F and a natural number n we
write expn, F q for the maximal number of edges that a graph on n vertices can have, if it
is F -free, i.e., if it has no subgraphs isomorphic to F . An averaging argument shows that
the sequence n ÞÝÑ expn, F q{

`

n
2

˘

is nonincreasing and, therefore, the limit

πpF q “ lim
nÝÑ8

expn, F q
`

n
2

˘ , (1.1)

known as the Turán density of F , exists. Results of Erdős, Simonovits, and Stone [6, 7]
yield an exact formula for this graph parameter. Specifically, if F has at least one edge,
then

πpF q “ 1 ´
1

χpF q ´ 1 , (1.2)

where χpF q denotes the chromatic number of F . With the exception of the bipartite case,
this gives a fairly complete picture.

One popular direction of further study replaces the ambient host graph Kn, in which
the extremal F -free graphs are thought of as living and whose number of edges appears
in the denominator of (1.1), by other graphs. For instance, beginning with the work of
Kostočka [8] people have been investigating Turán problems in hypercubes (see also [1, 3]).
Trying to optimise over the host graph, however, is less interesting than it might appear at
first. By averaging over all permutations of V pGq one can show that

every graph G has an F -free subgraph G1 with at least πpF qepGq edges. (1.3)

Moreover, for every fixed graph F this statement becomes false if we replace πpF q by any
larger constant (as can be seen by taking G “ Kn and letting n tend to infinity).
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1.2. Ordered graphs. From now on all graphs we consider will be ordered, that is they
will be equipped with a distinguished linear ordering of their vertex sets. Accordingly,
when we say that a graph G contains another graph F as a subgraph, this also means
that F appears ‘correctly ordered’ in G. Bearing this in mind, one can define extremal
numbers áexpn, F q and Turán densities áπpF q as in the unordered case. Research on these
quantities was initiated by Pach and Tardos [9], who found the appropriate adaptation
of (1.2) to ordered graphs, namely

áπpF q “ 1 ´
1

χăpF q ´ 1 . (1.4)

Here χăpF q denotes the so-called interval chromatic number of F , defined to be the least
number of colours required to colour V pF q properly, but with the additional constraint
that every colour class needs to be an interval.

A notable example, where χ and χă differ significantly, is the ascending path Pk with k

edges, defined by V pPkq “ rk ` 1s and EpPkq “ tti, i ` 1u : i P rksu. It is plain that Pk is
bipartite and has Turán density zero in the unordered sense; but due to χăpPkq “ k ` 1
we have

áπpPkq “
k ´ 1

k
.

The averaging argument (1.3) does not extend to ordered graphs, because the class of
(extremal) F -free graphs is, in general, not closed under permutations of vertices. This
leads us to a new interesting graph parameter.

Definition 1.1. Given an ordered graph F we define ϱpF q, called the relative Turán
density of F , to be the largest real number ς P r0, 1s with the following property: Every
graph G has an F -free subgraph G1 with epG1q ě ςepGq.

It follows from the definition that

ϱpF q ď
áπpF q (1.5)

for every ordered graph F and equality holds for the ordered cliques Kr on r ě 2 vertices.
In the other direction we observe for any ordered graph F

ϱpF q ě
ℓpF q ´ 1

2ℓpF q
, (1.6)

where ℓpF q is number of edges of a longest monotone path in F . Given an ordered graph G

we consider all maps φ : V pGq ÝÑ rℓpF qs. For each of them we let Gφ be the subgraph
of G having all edges xy with x ă y and φpxq ă φpyq. Since there are no strictly monotone
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sequences of length ℓpF q ` 1 in rℓpF qs, all these graphs Gφ are F -free. Moreover, on
average Gφ has

ℓpF q ´ 1
2ℓpF q

epGq

edges and thus there exists some map φ such that Gφ Ď G exemplifies the lower bound (1.6).
A result on shift graphs due to Arman, Rödl, and Sales [2] implies ϱpP2q “ 1

4 , which
shows that the lower bound (1.6) is optimal in this case. Our main result generalises this
to longer monotone paths and will be proved in §3.

Theorem 1.2. We have ϱpPkq “ k´1
2k

for every k ě 2.

We shall also show that, like many other variants of the Turán density, ϱ is invariant under
taking blow-ups. Given an ordered graph F and a positive integer t we shall write F ptq for
the ordered graph obtained from F by replacing each vertex x by an interval Ix of size t

and every edge xy by all t2 edges from Ix to Iy. We also require that for all vertices x ă y

of F , all vertices in Ix precede all vertices in Iy with respect to the ordering of F ptq. A
standard supersaturation argument carried out in §2 yields the following.

Proposition 1.3. For all ordered graphs F and integers t ě 1 we have ϱpF ptqq “ ϱpF q.

§2 Blow-ups

Proof of Proposition 1.3. The estimate ϱpF ptqq ě ϱpF q being clear, we shall show that

ϱpF ptqq ď ϱpF q ` 2ε

holds for every given ε ą 0. To this end we take a graph G which has no F -free
subgraph G1 of size epG1q ě pϱpF q ` εqepGq. Suppose for the sake of notational simplicity
that V pGq “ rms holds for some natural number m.

We contend that for a sufficiently large integer n (relative to m, vpF q, t, and ε) the
blow-up H “ Gpnq exemplifies ϱpF ptqq ď ϱpF q ` 2ε. In other words, we shall prove that
every subgraph H 1 of H of size epH 1q ě pϱpF q ` 2εqepHq contains a copy of F ptq.

Let I1, . . . , Im be the vertex classes of H. By a transversal we shall mean an m-element
subset of V pHq intersecting each of these classes exactly once. Denoting the set of all
transversals by T we have |T| “ nm and

ÿ

T PT

eH 1pT q “ nm´2epH 1
q ě pϱpF q ` 2εqnm´2epHq “ pϱpF q ` 2εqnmepGq .

Consequently, the subset

T‹ “ tT P T : eH 1pT q ě pϱpF q ` εqepGq
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of ‘rich’ transversals satisfies

pϱpF q ` 2εqepGqnm
ď pϱpF q ` εqepGqnm

` epGq|T‹| ,

whence |T‹| ě εnm.
By our choice of G, each rich transversal T P T‹ contains a copy of F which crosses

the partition tI1, . . . , Imu, i.e., whose vertex set intersects each class Ii at most once.
Conversely, every crossing copy of F in H 1 belongs to at most nm´vpF q transversals. For
these reasons, there are at least εnvpF q crossing copies of F in H 1. Setting f “ vpF q

this yields f indices mp1q ă ¨ ¨ ¨ ă mpfq in rms such that the f -partite subgraph of H 1

induced by Vmp1q, . . . , Vmpfq contains at least εnf {
`

m
f

˘

crossing copies of F . So the f -partite
f -uniform hypergraph with these vertex classes whose edges correspond to the crossing
copies of F has positive density. By a result of Erdős [4], a sufficiently large choice of n

guarantees that this hypergraph contains a complete f -partite hypergraph with vertex
classes of size t. Consequently, H 1 has indeed a subgraph isomorphic to F ptq. □

§3 Paths

Throughout this section, which is devoted to the proof of Theorem 1.2, we fix an
integer k ě 2. We note that the lower bound follows from the general inequality (1.6).
The corresponding upper bound requires the construction of appropriate graphs G. Before
introducing those, we shall discuss a quadratic inequality, which we require later. We write

∆k “ tpα1, . . . , αkq P r0, 1s
k : α1 ` ¨ ¨ ¨ ` αk “ 1u

for the pk ´ 1q-dimensional standard simplex. We designate elements of Rk by lowercase
greek letters and the coordinates of any ξ P Rk will be denoted by ξ1, . . . , ξk. For every
nonnegative integer d the function hd : ∆k ÝÑ R is defined by

hdpαq “ pd ` 2qp1 ´ }α}
2
q ` k

d
ÿ

r“1

1
r

,

where } ¨ } refers to the Euclidean standard norm.

Lemma 3.1. If α, β, γ P ∆k satisfy 2α “ β ` γ and d ě 1, then

hd´1pβq ` hd´1pγq ` 4
ÿ

1ďiăjďk

βiγj ď 2hdpαq .

Proof. Set η “ β ´ α “ α ´ γ. The parallelogram law tells us }β}2 ` }γ}2 “ 2p}α}2 ` }η}2q

and thus we only need to show

2
ÿ

1ďiăjďk

βiγj ď p1 ´ }α}
2
q ` pd ` 1q}η}

2
`

k

d
.



RELATIVE ORDERED TURÁN DENSITIES 5

The left side evaluates to

2
ÿ

1ďiăjďk

pαi ` ηiqpαj ´ ηjq “ 2
ÿ

1ďiăjďk

pαiαj ´ ηiηjq ` 2
ÿ

1ďiďk

λiηi , (3.1)

where λi “
ř

jąi αj ´
ř

jăi αj satisfies |λi| ď 1 due to α P ∆k. Because of
ř

i αi “ 1 and
ř

i ηi “ 0 the double sum on the right side of (3.1) simplifies to 1 ´ }α}2 ` }η}2. Therefore,
it remains to prove

2
k

ÿ

i“1
λiηi ď d}η}

2
`

k

d
.

But this is clearly implied by

0 ď d
k

ÿ

i“1
pηi ´ λi{dq

2
ď d}η}

2
´ 2

k
ÿ

i“1
λiηi ` d´1

k
ÿ

i“1
λ2

i . □

Arman, Rödl, and Sales describe in [2, Definition 5] a class of graphs Gεpn, dq that we
shall need as well. If a real number ε P p0, 1s and a nonnegative integer d are given, such
graphs Gεpn, dq exist for all sufficiently large multiples n of 2d. The construction proceeds
by recursion on d. To begin with, for every n P N we let Gεpn, 0q be the empty graph on rns

without any edges. Now suppose that all graphs of the form Gεpn, d ´ 1q have already
been defined and let n be a sufficiently large integer divisible by 2d. Fix a quasirandom
bipartite graph B “ Bεpn, dq with vertex classes rn{2s, pn{2, ns and density 21´d. More
precisely, the demands on this bipartite graph are epBq “ n2{2d`1 and

eBpX, Y q “
|X||Y |

2d´1 ˘
εn2

k2d`2

for all subsets X Ď rn{2s and Y Ď pn{2, ns. (It is well known that such bipartite graphs
exist for all sufficiently large numbers n divisible by 2d`1; we refer to the appendix of [2]
for the standard probabilistic proof.) Having chosen Bεpn, dq we define Gεpn, dq such that

‚ its subgraphs induced by rn{2s and pn{2, ns are isomorphic to Gεpn{2, d ´ 1q

‚ and its bipartite subgraph between rn{2s and pn{2, ns is isomorphic to Bεpn, dq.

For instance, Gεpn, 1q “ Bεpn, 1q is the complete bipartite graph with vertex classes rn{2s

and pn{2, ns. An easy induction on d discloses

epGεpn, dqq “
dn2

2d`1 , (3.2)

whenever the graph Gεpn, dq is defined (cf. [2, Eq. (4)]).

Lemma 3.2. Given ε ą 0 suppose that n and d are such that the graph Gεpn, dq exists.
If rns “ V1 Ÿ . . . Ÿ Vk is a partition, and αi “ |Vi|{n for every i P rks, then the number
of edges xy of Gεpn, dq with x ă y and x P Vi, y P Vj for some i ă j is at most
phdpαq ` dεqn2{2d`2, where α “ pα1, . . . , αkq.
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Proof. We argue by induction on d. The base case, d “ 0, is clear, because Gεpn, 0q has no
edges at all. Now consider the induction step from d ´ 1 to d and let |Vi X r1, n{2s| “ βin{2
as well as |Vi X pn{2, ns| “ γin{2 for every i P rks. Clearly the vectors β “ pβ1, . . . , βkq

and γ “ pγ1, . . . , γkq are in ∆k and satisfy 2α “ β ` γ. There are three kinds of edges to
consider:

(a ) those with x, y P r1, n{2s,
(b ) those with x, y P pn{2, ns,
(c ) and those with 1 ď x ď n{2 ă y ď n.

By the induction hypothesis there are at most
phd´1pβq ` pd ´ 1qεqpn{2q2

2d`1 and phd´1pγq ` pd ´ 1qεqpn{2q2

2d`1

edges of types (a ) and (b ), respectively. Moreover, by quasirandomness, there are at most
k

ÿ

i“1

´βi

ř

jąi γj

2d´1

´n

2

¯2
`

εn2

k2d`2

¯

“

`

4
ř

iăj βiγj ` 2ε
˘

n2

2d`3

edges of type (c ). Altogether, the number Ω of edges under consideration satisfies
Ω

n2{2d`3 ď hd´1pβq ` hd´1pγq ` 4
ÿ

iăj

βiγj ` 2dε ,

and by Lemma 3.1 the right side is at most 2hdpαq ` 2dε. □

Now the upper bound ϱpPkq ď k´1
2k

we still seek to establish is a straightforward
consequence of the following result.

Lemma 3.3. For every ε ą 0 there are positive integers d and n such that G “ Gεpn, dq

is defined and every Pk-free subgraph G1 of G satisfies epG1q ď pk´1
2k

` εqepGq.

Proof. Since
řd

r“1 1{r “ log d ` Op1q “ opdq, we can choose d so large that

2 ` k
d

ÿ

r“1

1
r

ď εd . (3.3)

Let n be an arbitrary number for which the graph G “ Gεpn, dq is defined and consider
any Pk-free subgraph G1 of G.

For each vertex x P rns let fpxq be the largest positive integer such that G1 contains an
ascending path of length fpxq ´ 1 ending in x. By our assumption on G1, this function
only attains values in rks. Moreover, if xy with x ă y is an edge in G1, then fpxq ă fpyq.
Thus, setting αi “ |f´1piq|{n for every i P rks and α “ pα1, . . . , αkq, the previous lemma
and (3.2) yield

epG1q

epGq
ď

hdpαq ` dε

2d
.
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Due to }α}2 ě 1{k we also have

hdpαq ď
dpk ´ 1q

k
` 2 ` k

d
ÿ

r“1

1
r

(3.3)
ď d

ˆ

k ´ 1
k

` ε

˙

,

which leads indeed to epG1q ď pk´1
2k

` εqepGq. □

This completes the proof of Theorem 1.2.

§4 Concluding remarks

The case k “ 3 of Theorem 1.2 yields a positive answer to [2, Problem 9]. Here we
discuss a few further problems for future research.

Let Cℓ denote the ordered cycle with vertex set V pCℓq “ rℓs and edge set defined
by EpCℓq “ tti, i ` 1u : i P rℓ ´ 1su Ÿ tt1, ℓuu. Since Cℓ contains a copy of the monotone
path Pℓ´1, Theorem 1.2 yields ϱpCℓq ě ℓ´2

2ℓ´2 leading to the following problem.

Problem 4.1. Determine ϱpCℓq for every fixed ℓ ě 4

The obvious inequality (1.5) suggests the next question.

Problem 4.2. Characterise the class tF : ϱpF q “
áπpF qu.

For instance, all ordered cliques Kr are in this class. Are there any other such graphs?
Similarly, when F “ Pk is a path, then Theorem 1.2 yields ϱpF q “ 1

2
áπpF q; we may thus ask

for a characterisation of the class tF : ϱpF q “ 1
2

áπpF qu. Are there any graphs F satisfying
1
2

áπpF q ă ϱpF q ă
áπpF q ?

It would also be interesting to know whether there is any stability result accompanying
Theorem 1.2.

Problem 4.3. Given k ě 2 and ε ą 0, describe the structure of all graphs G with the
property that every subgraph G1 satisfying epG1q ě pk´1

2k
` εqepGq contains a copy of Pk.

In particular, one may ask whether such graphs need to have any resemblance to Gηpn, dq

for some small η “ ηpk, εq. Perhaps one should also assume here that G be dense, i.e., that
epGq ě εvpGq2.

Finally, the definition of ϱp¨q generalises straightforwardly to hypergraphs. A special
case studied by Erdős, Hajnal, and Szemerédi [5] in the context of independent sets in
shift graphs concerns the ascending r-uniform path P

prq

2 of length 2, i.e., the hypergraph
on rr ` 1s with edges rrs and t2, . . . , r ` 1u. In the current notation, they showed

ϱpP
prq

2 q ě

$

&

%

1
2 ´ 1

r
if r is even

1
2 ´ 1

2r
if r is odd.
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For r “ 4 the quantitative improvement ϱpP
p4q

2 q ě 3
8 was obtained in [2] (see the footnote

on page 9).

Problem 4.4. Determine ϱpP
prq

2 q for all r ě 3. In particular, is ϱpP
p3q

2 q “ 1
3 true?

Of course, one may also ask the same question for longer paths.

References

[1] N. Alon, A. Krech, and T. Szabó, Turán’s theorem in the hypercube, SIAM J. Discrete Math. 21 (2007),
no. 1, 66–72, DOI 10.1137/060649422. MR2299695 Ò1.1

[2] A. Arman, V. Rödl, and M. T. Sales, Independent sets in subgraphs of a shift graph, Electron. J.
Combin. 29 (2022), no. 1, Paper No. 1.26, 11, DOI 10.37236/10453. MR4395933 Ò1.2, 3, 3, 4, 4

[3] M. Axenovich, A class of graphs of zero Turán density in a hypercube, Combin. Probab. Comput. 33
(2024), no. 3, 404–410, DOI 10.1017/s0963548324000063. MR4730908 Ò1.1

[4] P. Erdős, On extremal problems of graphs and generalized graphs, Israel Journal of Mathematics 2
(1964), 183–190, DOI 10.1007/BF02759942. Ò2

[5] P. Erdős, A. Hajnal, and E. Szemerédi, On almost bipartite large chromatic graphs, Theory and practice
of combinatorics, North-Holland Math. Stud., vol. 60, North-Holland, Amsterdam, 1982, pp. 117–123.
MR806975 Ò4

[6] P. Erdős and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar 1 (1966),
51–57. MR0205876 (34 #5702) Ò1.1

[7] P. Erdős and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946),
1087–1091. MR0018807 (8,333b) Ò1.1

[8] E. A. Kostočka, Piercing the edges of the n-dimensional unit cube, Diskret. Analiz (1976), 55–64, 79
(Russian). MR467534 Ò1.1

[9] J. Pach and G. Tardos, Forbidden paths and cycles in ordered graphs and matrices, Israel J. Math. 155
(2006), 359–380, DOI 10.1007/BF02773960. MR2269435 Ò1.2

Fachbereich Mathematik, Universität Hamburg, Hamburg, Germany
Email address: christian.reiher@uni-hamburg.de

Department of Mathematics, Emory University, Atlanta, USA
Email address: vrodl@emory.edu

Department of Mathematics, University of California, Irvine, CA, USA
Email address: mtsales@uci.edu

Fachbereich Mathematik, Universität Hamburg, Hamburg, Germany
Email address: schacht@math.uni-hamburg.de

https://doi.org/10.1137/060649422
http://www.ams.org/mathscinet-getitem?mr=2299695
https://doi.org/10.37236/10453
http://www.ams.org/mathscinet-getitem?mr=4395933
https://doi.org/10.1017/s0963548324000063
http://www.ams.org/mathscinet-getitem?mr=4730908
https://doi.org/10.1007/BF02759942
http://www.ams.org/mathscinet-getitem?mr=806975
http://www.ams.org/mathscinet-getitem?mr=0205876
http://www.ams.org/mathscinet-getitem?mr=0205876
http://www.ams.org/mathscinet-getitem?mr=0018807
http://www.ams.org/mathscinet-getitem?mr=0018807
http://www.ams.org/mathscinet-getitem?mr=467534
https://doi.org/10.1007/BF02773960
http://www.ams.org/mathscinet-getitem?mr=2269435

	1. Introduction
	1.1. Unordered graphs
	1.2. Ordered graphs

	2. Blow-ups
	3. Paths
	4. Concluding remarks
	References

