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Fourier Analysis — Solutions and Remarks to Exercise sheet 2

In Lectures 2 and 3 we discussed an abstract way to approximate functions in certain functions spaces
— by means of approximate identities and most prominently Theorem 3.7. In the following we start
investigating the connection to Fourier series and also highlight how this approach provides direct proofs
for previously seen results (see Ex. 2.2).

Take-Home-Message: Theorem 3.7 (Approximation in homogeneous Banach spaces)
gives a universal tool to approximate f ′s by f ∗kn where (kn) is an approximate iden-
tity. The Fejér kernel (kn)n = (Fn)n is an important example, in particular since it
is the arithmetic means of the Dirichlet kernel (Dn). Recall that Dn ∗ f equals the
n-th partial sum of the Fourier series of f . In contrast to (Fn), the Dirichlet kernel is
not an approximate identity, which indicates the complexity of the question whether
the partial sums of a Fourier series converge.

Ex 2.0:
Let (an)n∈N be a converging sequence in a Banach space. Show that the sequence of arithmetic means
(bn)n∈N, bn = 1

n

∑n
k=1 ak, converges to the same limit. Also show that the converse fails in general.

Ex 2.1: (Fejér kernel and Dirichlet kernel)
Recall the definition of the Dirichlet kernel (Dn)n∈N0 ⊂ C(T), Dn(t) = 1

2π

∑n
k=−n eikt. Further define

the Fejér kernel (Fn)n∈N0
by

Fn =
1

n+ 1

n∑
k=0

Dk.

(a) Show that Dn(t) = 1
2π

sin((n+ 1
2 )t)

sin t/2 for all t ∈ T and n ∈ N0.

(b) Show that Fn(t) = 1
2π

∑n
k=−n(1− |k|

n+1 )eikt = 1
2π(n+1)

(
sin((n+1) t

2 )
sin t/2

)2

(c) Use (b) to conclude that (Fn)n is an approximate identity with the additional properties

Fn(t) ≥ 0, Fn(t) = Fn(−t), lim
n→∞

sup
s∈[δ,2π−δ]

|Fn(s)| = 0

for n ∈ N0, t ∈ T, δ ∈ (0, π).

(d) Let f ∈ Lp(T), p ∈ [1,∞). Show that
∑n
k=−n f̂(k)(1− |k|

n+1 )eik· converges to f in Lp(T).

Ex 2.2:
Reprove the following results which we have already encountered in the lecture.

(a) Prove Weierstrass’s Theorem — the set of trigonometric polynomials Trig(T) lies dense in C(T)
— by a constructive argument (given f ∈ C(T) explicitly construct a sequence in Trig(T) that
converge to f) Hint: approximate identity.

(b) Prove that C(T) lies dense in L1(T) with the methods of Section 3
BBe aware of a circular argument

(c) Prove that the Fourier coefficients of an L1(T) function are unique, i.e. T : L1(T) → c0(Z) is
injective by using the Fejér kernel from Exercise 2.1.
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Ex 2.3:

(a) There was a TYPO in the original formulation of the exercise in Ex. 2.3: On the right-hand-side h

should have been replaced by R(h) = h(−·). We will discuss (a) again on Exercise sheet 3.

Let f, g ∈ L1(T) and h ∈ L∞(T). Show that
∫
T(f ∗ g)(s)h(s) ds =

∫
T f(s)(g ∗R(h))(s) ds.

Note that this identity can be linked to the “dual operator (also called “conjugate operator”) of

Mg : L1(T)→ L1(T), f 7→ f ∗ g.

Recall that the dual operator T ′ of a bounded linear operator T : X → Y (X, Y Banach spaces)
is defined through

〈Tx, x′〉X,X′ = 〈x, T ′x′〉X,X′ ∀x ∈ X,x′ ∈ X ′.

(b) Use (a) and Ex. 2.1 to show that for any h ∈ L∞(T) there exists a sequence (hn)n∈N ⊂ C(T)
which converges to h in weak* sense, i.e.∫

T
f(s)hn(s) ds

n→∞−→
∫
T
f(s)h(s) ds ∀f ∈ L1(T).

Ex 2.4: (Minkowski’s inequality)

(a) Prove Minkowski’s inequality for homogeneous Banach spaces X on T:

For f ∈ X and g ∈ L1(T) it follows that f ∗ g ∈ X and ‖f ∗ g‖X ≤ ‖g‖L1(T)‖f‖X . 1

This can be rephrased as

Mg :

{
f 7→ g ∗ f
X → X

is a bounded linear operator from X to X with norm less or equal ‖g‖L1(T).

(b) Show Minkowski’s inequality for X = L∞(T).

(c) Show that Minkowski’s inequality is sharp2 for the cases

X = L1(T), X = L∞(T), X = C(T)

by showing that ‖Mg‖X→X = ‖g‖L1(T).

(d) For X = L2(T) show that ‖Mg‖X→X = 2π‖ĝ‖`∞(Z) and again conclude that Minkowski’s
inequality is sharp.

Hints: (a): Consider first g ∈ C(T) and inspect (the proof) of Theorem 3.7.
(c): To show the case X = L1 “imagine” that there exists e ∈ X \ {0} such e ∗ g = g. For X = L∞(T)
find a suitable f and for X = C(T) use Ex. 2.1.

Solution: In the proof of Theorem 3.7 (“Approximation on homogeneous Banach spaces”) we have proved
the following “lemma”

For k ∈ C(T) we have shown that B1 : X → X : f 7→
∫
T k(s)f(· − s) ds is a well-

defined bounded operator with, for f ∈ X, B1f = B2f := k ∗ f and

(?) ‖B2f‖X = ‖B1f‖X ≤ ‖k‖L1(T) max
s∈T
‖f(· − s)‖X = ‖k‖L1(T)‖f‖X , 3

where the last equality follows from properties of X.

1Note that this proves the special case p = r of Young’s inequality for convolutions,

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq , f ∈ Lp(T), g ∈ Lq(T), 1
p

+ 1
q

= 1 + 1
r
.

2Here “sharp” means that the inequality in the above statement (for fixed X) can not be replaced by ‖f ∗ g‖X ≤
c‖g‖L1‖f‖X for any c < 1 (with c not depending on f and g!)

3the inequality simply follows from ‖
∫
‖ ≤

∫
‖‖.



In the following we write g instead of k and note that B2 =Mg. Then the above shows that for g ∈ C(T)
we have that Mg is bounded from X to X with norm ‖Mg‖X→X ≤ ‖g‖L1(T). It remains to consider

general g ∈ L1(T). Let (gn)n∈N ⊂ C(T) approximate g in the L1(T) norm, e.g. set gn = g ∗ Fn and use
Ex. 2.1(d). For f ∈ X, we observe the following

• As f, g ∈ L1(T), Mgf = f ∗ g ∈ L1(T) and Mgnf →Mgf in L1(T) by basic properties of the
convolution (Thm. 2.2).

• Mgnf ∈ X for all n ∈ N, by the first step in the proof since gn ∈ C(T).

• The sequence (Mgnf)n∈N is a Cauchy sequence in X. This follows from (?) and the fact that
(gn)n∈N is Cauchy in L1(T). Hence, (Mgnf)n∈N has a limit in X.

• Since X is continuously embedded in L1(T) (“the ‖ · ‖X is stronger than ‖ · ‖L1(T)”), the limits

of (Mgnf)n∈N in L1(T) and X coincide.

Thus we have shown thatMgf lies in X and henceMg is well-defined from X to X. That ‖Mg‖X→X ≤
‖g‖L1(T) now follows from the assertion for continuous g, i.e.

‖Mgf‖X = lim
n→∞

‖Mgnf‖X ≤ lim
n→∞

‖gn‖L1(T)‖f‖X = ‖g‖L1‖f‖X ,

where we used again that Mgnf →Mgf in X for n→∞, as seen above.

(b): first note that X = L∞(T) is not a homogeneous Banach space and hence (a) does not apply.
However, the assertion follows easily by the definition of the convolution and triangle inequality.

(c): X = L1(T). Obviously we would be done if there existed an e ∈ X such that e ∗ g = g and
‖e‖X = 1. As such e does not exists (see Ex. 2.6), we consider an approximate identity (kn)n with
‖kn‖L1(T) = 1 instead. By Theorem 3.7, kn ∗ g → g in L1(T). Thus ‖Mgkn‖ → ‖g‖L1(T) which shows
that ‖Mg‖L1→L1 = ‖g‖L1(T). For X = L∞(T) one can explicitly find f ∈ X such that ‖f‖X = 1 and
‖Mgf‖X = ‖g‖L1(T). Alternatively, one may argue by duality (and using Ex. 2.3). For X = C(T),
one can approximate the special f ∈ L∞(T) from the case X = L∞(T) suitably in C(T), i.e. consider
fn = f ∗Fn where (Fn)n denotes the Fejer kernel. Then fn ∈ C(T), thus Mgfn ∈ C(T) and, by (b) and
since g ∗ Fn → g in L1,

‖Mgfn‖C(T) = ‖(g ∗ Fn) ∗ f‖L∞(T) = ‖Mg∗Fn
f‖L∞(T) → ‖Mgf‖L∞ = ‖g‖L1(T).

(d) Use that f̂ ∗ g = 2πf̂ ĝ and the fact that L2(T) is isometric isomorphic to `2(Z) via the Fourier
coefficients. That ‖Mg‖L2(T)→L2(T) then follows from basic properties of multiplication operators on `2

(check!). For the sharpness of Minkowski’s inequality find g ∈ L1(T) such that 2π‖ĝ‖`∞(Z) = ‖g‖L1(T).

Ex 2.5: (Convergence of Fourier series in L1(T), C(T) and pointwise)

(a) Show that the following statement is wrong for general functions f ∈ L1(T).

The partial sums

SNf =

N∑
k=−N

f̂(k)eikt

of the Fourier series converge to f in the L1(T)-norm (as N →∞).

Can we find a “large” (say “dense”) subspace D of L1(T) such that the above statement holds
indeed true for all f ∈ D?

(b) Show that the following statement is wrong for general functions f ∈ C(T).

The partial sums of the Fourier series converge to f pointwise.

(c) Conclude that the Dirichlet kernel (Dn)n∈N0
is not an approximate identity.

Hint: (a): you may freely use that supn∈N ‖Dn‖1 =∞ and Exercise 2.4(c).
(b): similar as in (a), also note that Mgτs = τsMg, where τsf = f(· − s).

Solution: (a) and the statement we would get if “L1(T)” is replaced by “C(T)” in (a) follow from the
following general theorem, we will prove on Monday May 7:



Let X be a homogeneous Banach space. Then the partial sums of the Fourier series,
Dn ∗ f , converge in X for every f ∈ X if and only if the operator norm of

MDn : X → X

is uniformly bounded in n ∈ N (where we use the notation from Ex. 2.4).

Note that this is a direct consequence of the uniform boundedness principle. Here, we only need the
direction “⇒”. Hence, it suffices to show that supn∈N ‖MDn‖X→X =∞ for X = L1(T) and X = C(T).
By Ex. 2.4(c) we have that in both cases ‖MDn

‖X→X = ‖Dn‖L1(T) which is unbounded in n (it behaves
like log(n) as we have seen in the lecture and Ex. 1.3.
The second question in (a) can be answered affirmatively by setting D = L2(T) (recall why!).
(b): The assertion is stronger than what we have just shown for X = C(T). Assume that the statement
was true and denote by Et : C(T) → C, f 7→ f(t) the point-evaluation operator for t ∈ T. Therefore
for any f ∈ C(T) and t ∈ T, the sequence (EtMDn

f)n∈N would be bounded. Hence, by the uniform
boundedness principle, for fixed t ∈ T, the operators EtMDn

are uniformly bounded in n, i.e.

(??) sup
n∈N
‖EtMDn

‖C(T)→C = sup
n∈N

sup
‖f‖∞=1

|EtMDn
f | <∞.

In (a) we have already observed that supn∈N ‖MDn
‖C(T)→C(T) =∞. Therefore, there exists a sequence

fn ∈ C(T) such that ‖fn‖C(T) = 1 and ‖MDnfn‖C(T) →∞ as n→∞. Since the maximum norm of a
continuous function is attained at some point in T, we also find a sequence (tn)n∈N ⊂ T such that

|EtnMDnfn| = ‖MDnfn‖C(T) →∞.
Finally note that Etf = E0τ−tf where τ−tf = f(·+ t) and that Mgτ−t = τ−tMg (check!) and thus,

EtnMDn
fn = E0MDn

τ−tnfn.

Defining hn = τ−tnfn now gives a sequence in C(T) with ‖hn‖C(T) = 1 for all n ∈ N and ‖E0Mghn‖C(T) →
∞. This contradicts (??).

Ex 2.6*: (Approximate identity)
Show that there exists no element e in L1(T) such that e ∗ f = f for all f ∈ L1(T).


