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Ex 5.1: (Pointwise convergence of Dirchlet means for differentiable functions)

Let f ∈ L1(T) be differentiable at t0 ∈ T. Then the partial sums Dn ∗ f of the Fourier series of f
converge to f(t0) at t0.
Hint: Use Ex. 4.1.

Ex 5.2: (The maximum principle for entire functions)

(This exercise may be well-known for those who familiar with basic complex analysis)
A function f : C→ C is called entire if f is a complex power series with radius of convergence equal to
∞, i.e. there exists (an)n∈N such that

f(z) =

∞∑
n=0

anz
n ∀z ∈ C.

(a) Show that for any entire f ,

max
z∈D
|f(z)| = max

|z|=1
|f(z)|.

Hint: Follow the steps

(i) Reduce the claim to complex polynomials f of degree larger than 1.

(ii) Let n > 1 and z ∈ D. Consider U ∈ C(n+1)×(n+1) defined by

U =


z 0 . . . 0

√
1− |z|2√

1− |z|2 0 . . . 0 z̄
0 0
... In−1

...
0 0


where In−1 denotes the identity matrix of dimension (n− 1)× (n− 1).
Show that U is unitary, i.e. U∗U = UU∗ = In+1

1 and that for polynomials f with
deg(f) = n,

f(z) = P1f(U)PT1

where P1 = (1, 0, . . . , 0) ∈ C1×(n+1). Conclude that |f(z)| ≤ ‖f(U)‖2→2 where the opera-
tor norm is induced by the Euclidean norm.

(iii) Conclude the assertion by arguing why ‖f(U)‖2→2 ≤ max|z|=1 |f(z)| (use that U is unitary
and the spectral theorem from linear algebra).

(b) Show that in (a) the set D can be replaced by any bounded, open, connected set Ω in C, i.e.

max
z∈Ω
|f(z)| = max

∂Ω
|f(z)|,

where ∂Ω denotes the boundary of the open set Ω.
Hint: Assume that there exists z ∈ Ω such that |f(z)| ≥ maxz̃∈Ω |f(z̃)|.

(c) (for people familiar with basic complex analysis) Show above statements for functions f that
are analytic on D and continuous on D (or Ω and Ω respectively).

1where T ∗ = (tj,i)i,j denotes the hermitian transpose of the matrix T = (ti,j)i,j .

1



Ex. 5.3: (Isoperimetric inequality in 2D) The goal of this exercise is to show the statement

For any closed, regular, nonself-intersecting, positively orientated C1-curve Γ in R2

2 of length L and with enclosing area A the inequality

(∗) 4πA ≤ L2

holds with equality if and only if the curve is a circle. Here, regular means that
γ′(t) 6= 0 for all t ∈ T for any C1-parametrization γ : T→ R2 of Γ.

For that consider the following steps, where γ : [0, 2π] → R2, with components γ1 and γ2, denotes a
C1-parametrization of Γ, see 1.

(a) Show that the area A enclosed by Γ equals

A =
1

2

∫ 2π

0

γ1(s)γ′2(s)− γ′1(s)γ2(s) ds.

Hint: Use Green’s theorem / Stoke’s theorem)

(b) (Poincaré–Wirtinger inequality in 1D)
Show that for f ∈ C1(T) (or more generally, for f being absolutely continuous with f ′ ∈ L2)
it holds that

‖f − f̂(0)‖L2(T) ≤ ‖f ′‖L2(T).

(c) Show (∗) in the case that ‖γ′(t)‖2 = (γ1(t)2 + γ2(t)2)
1
2 = 1 for all t ∈ T.

(Hint: Consider f(s) = γ1(s) + iγ2(s), show that A = 1
2 Im

∫
T f
′(s)f(s) ds and note that∫

T f
′(s) ds = 0)

(d) Show why the assumption in (c) on γ can always be made by reparametrizing.

(Hint: γ  γ ◦ h−1 where h(t) = 1
L

∫ t
0
‖γ′(s)‖2 ds.)

(e) Show the statement on the equality by investigating when equality holds in (b) and the in-
equalities in the proof of (c).

Ex. 5.4: (Young’s inequality for convolutions) Prove Theorem 2.3 from the lecture for Ω = T.

Let 1
p + 1

q = 1 + 1
r for p, q, r ∈ [1,∞] and f ∈ Lp(Ω), g ∈ Lq(Ω). Then f ∗ g ∈ Lr(Ω)

and
‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq .

Hint: Use Riesz–Thorin’s theorem (and also Minkowski’s inequality, Ex. 2.4).
Conclude why the statement also holds for Ω = R.

2here we mean that there exists a continuously differentiable γ : [0, 2π] → R2 such that γ is injective on [0, 2π), γ′(t) 6=
0 for all t ∈ T, γ(0) = γ(2π) and Γ = γ(T). The length (or perimeter) L of Γ can be expressed as L =

∫ 2π
0 ‖γ′(t)‖2 ds.


