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Ex 5.1: (Pointwise convergence of Dirchlet means for differentiable functions)

Let f € LY(T) be differentiable at ¢y € T. Then the partial sums D,, * f of the Fourier series of f
converge to f(tg) at to.
Hint: Use Fx. 4.1.

Ex 5.2: (The mazimum principle for entire functions) — an alternative approach due to ORR-SHALIT!

(This exercise may be well-known for those who are familiar with basic complex analysis)
A function f: C — C is called entire if f is a complex power series with radius of convergence equal to
00, i.e. there exists (an)nen such that

f(z) = Z anz" Vz e C.
n=0

(a) Show that for any entire f,
max | f(z)| = max|[f(z)].

zeD [z|=1
Hint: Follow the steps
(i) Reduce the claim to complex polynomials f of degree larger than 1.

Idea: For given € > 0 chose p(z) = ZTJLO anz™ with sufficiently large N such that || f —
p||oo,ﬁ < €. Assuming that the claim holds for polynomials we derive

max | f(z)| < max|f(z) — p(z)| + max |p(z)| < e + max [p(z)| < 2 + max | f(2)
zeD z€D z€D =1 =1

|| ||
(ii) Let n > 1 and z € D. Consider U € C("+1*("+1) defined by
0 ... O 1—1z2
1—1]z2 0 ... O —Z
U= 0 0
: I, :
0 0
where I,,_; denotes the identity matrix of dimension (n —1) x (n —1).
Show that U is unitary, i.e. U*U = UU* = I,4; 2 and that for polynomials f with
deg(f) = n, .
f(z) = PLf(U)P
where P, = (1,0,...,0) € C>*(*+D_ Conclude that |f(z)] < | f(U)|2—2 where the
operator norm is induced by the Euclidean norm.
(iii) Conclude the assertion by arguing why || f(U)[|2—2 < max|;—; |f(2)| (use that U is unitary
and the spectral theorem from linear algebra).
(b) Show that in (a) the set D can be replaced by any bounded, open, connected set Q in C, i.e.
max|f(z)] = max|£(2)],
where 0f) denotes the boundary of the open set Q.
Hint: Assume that there exists z € (0 such that | f(z)| > max; g |f(2)].

LORR SHALIT 4 sneaky proof of the mazimum modulus principle, The American Mathematical Monthly Vol. 120,
No. 4, pp. 359-362, 2013; see also https://arxiv.org/abs/1304.5839.
2where T* = (t4,i)i,; denotes the hermitian transpose of the matrix T' = (¢;,;)3,;-

1



Ex. 5.3:

Note that there is a gap here — it seems that this cannot be concluded from
part (a) without any further effort. I will comment on this in the coming lec-
tures/exercise classes. Assume we knew that part (a) implies the following stronger state-
ment

If zg € D is such that | f(z)| = max, 5| f(2)| then |f(-)| is constant on D,

then we could proceed as follows. Assume there exists z in Q such that |f(z)| > max_ g [f(2)].
By the above stronger statement, we conclude that |f(-)| has to be constant on this ball. This
argument can be extended to arbitrary points in Z € €. Since  is connected (which, as as
open subspaces of C, are path-connected) we find a (continuous) path v from z to Z which is
of finite length as €2 is bounded. For any point y on this path we can find a ball contained
in €, with center y and radius €, the latter being independent of y. By compactness of the
path, finitely many balls will already cover the path and on the union of these finite sets, f is
constant by the argument mentioned in the beginning. Thus, |f(z) = |f(Z)| and hence |f(-)|
is constant on 2 which shows the assertion. Alternatively, use the definition of connectedness
directly: In particular this means that the only clopen (open and closed) sets in  are € and
the empty set. Show that the set on which |f(-)| is constant is clopen (it’s open by the first
part of the proof and closed by continuity).

(for people familiar with basic complex analysis) Show above statements for functions f that
are analytic on D and continuous on D (or Q and § respectively). Note that if f is analytic
on D and continuous on the closure D, then the power series of f (centered at 0)
need not converge on 9D — but such examples are delicate to construct). However,
any such f can be approximated by polynomials uniformly on D. To see this, recall
first that the power series (centered at 0) of f converges uniformly to f on any smaller disc 7D,
r < 1. Hence, for every r < 1, f, = f(r-) has a uniformly converging power series on D. Let
rn /1 as n — oo and consider for each n the corresponding polynomial from the truncated
power series p,, corresponding to f,. such that ||p, — f, Hoo,ﬁ < 27", The statement that for
given € > 0, we find N € N such that ||f — p,|| 5 < € for all n > N now follows by triangle
inequality and continuity of f. 7

(Isoperimetric inequality in 2D) The goal of this exercise is to show the statement

(%)

For that

Cl-parametrization of T, see

(a)

(b)

For any closed, reqular, nonself-intersecting, positively orientated C'-curve I' in R?
3 of length L and with enclosing area A the inequality

ATA < L2

holds with equality if and only if the curve is a circle. Here, regular means that

Y (t) #0 for allt € T for any C'-parametrization v : T — R? of T.

consider the following steps, where 7 : [0,27] — R?, with components v; and s, denotes a
1

Show that the area A enclosed by I' equals
1 2
A= [ 60—l ds
0

Idea: By Green’s theorem (applied in the last identity)

e [ e | [ e 18 s [
2(t)

Using the parametrization (z,y) = (71(t),2(t)), this leads to the assertion.

(Poincaré—Wirtinger inequality in 1D)
Show that for f € C*(T) (or more generally, for f being absolutely continuous with f’ € L?)

Shere we mean that there exists a continuously differentiable =y : [0, 2] — R2 such that  is injective on [0, 27), 7/ (t) #
0 for all t € T, v(0) = v(27) and I" = «(T). The length (or perimeter) L of I" can be expressed as L = f 17/ (®)]|2 ds.



—

~—

it holds that
If = FO) 2y < I Nlz2m)

Proof: Since f and f’ are in L?, we know that the respective Fourier series converge (in L?)
and by f/(n) = —inf(n) and Parseval’s identity (twice) we obtain

1F132 = 27| F 113 ) > 20 D IF () = I = F(O)[3-.

k0

Show () in the case that [|7/(t)]|2 = (72(£)2 + 72(t)2)2 = 1 for all ¢ 6 T
(Hint Consider f(s) = y(s) + iv2(s), show that A = 1Im [, f’ Vf(s)ds and note that
Jp f'(s)ds =0)

Proof: with the suggested choice of f, we have

m(f'(s)f(s)) = %[(71(8) +iv5(5))(11(5) = i72(5)) = (71 (s) = iv3(5)) (N (s) + iv2(s))]
= 71(5)72(s) = Y1 (s)72(s).

A= %ImAf’(s)f(s)ds

=L [ G @

1
< §||f/||2L2(T) =

Hence, by (a) and (b)

where the last identity follows from the assumption that vi(t)? + v2(t)? = 1. Since L =
fOQTr IV (t)]|2(t) ds = 27, the assertion follows (7 = L*/4m).

Show why the assumption in ( ) on 7, can always be made by reparametrizing.
(Hint: v ~» o h~! where h(t :Lfo 17 (s)|l2 ds.)

Proof: Since the curve is regular, h is bijective (and C*) on [0,1]. Using the chain rule on
deduces that (yo h™1)'(t) =1 for allt € T. Thus yo h~" is a suitable parametrization of T.

Show the statement on the equality by investigating when equality holds in (b) and the in-
equalities in the proof of (c).
To have equality in (b) we have to have that f(m) =0 for all |m| > 2. Thus f has the form

Ft) = f(=1)e™" + f(0) + f(1)e"

By our assumption in (c), that ||7/(¢)|] = 1 — which is equivalent to | f'(t)] =1 —for all t € T,
we have that for allt € T

L= f(=DP + |f Q)P - 2RF(-1) f(1)e*,

and similarly by || /|2, = [ |7/ (t)]|2dt = 27 and Parseval, 2 = 27 (|f(~1)[2 + | f(1)[?). This
yields that

2Rf(~1)f(1)e" = 0.

Finally using the choices t = 0 and t = /4, we conclude that both the real part and the

imaginary part of f(—1)f(1) equal zero. Thus either f(1) or f(—1) is zero, which, by the form
of f(t), implies that the curve I" has to be a circle.



Ex. 5.4: (Young’s inequality for convolutions) Prove Theorem 2.3 from the lecture for 2 = T.

Let % + % =1+ % forp,q,r € [1,00] and f € LP(Q2), g € LY(). Then f+g € L"(Q)
and

If*gllr < \fllzellgllze-
Proof: Use Riesz—Thorin’s theorem (and also Minkowski’s inequality, Fx. 2.4).
Let us first discuss some special cases: If ¢ = 1, then p = r and the statement follows directly from
Minkowski’s inequality, Ex. 2.4. Obuviously, not both p and q can equal to oo simultaneously, so that by
symmetry we can always assume that ¢ < co. Thus in the following let ¢ € (1,00). For fixred g € L1
consider the operator T defined by Tf = f x g. By Minkowski’s inequality,

T:L'— L*
is well-defined and bounded with |T||p1—pe < ||q|lza. Therefore, also the dual operator T' : L9 — L™

is bounded by the same constant (where ¢’ denotes the Hoelder conjugate, %—i— % =1, and where we used
the identification of the dual LP spaces). We claim that — with a similar argument than in Ez. 3.4, see
below — the latter implies that

T:LY — L™
is well-defined the operator norm can again be estimated by ||g||L«. Assume we have this, then, by
Riesz—Thorin theorem,

T:LP — L1
is also well-defined and bounded for all (p,q) such that

1 1-6 0 1 1-90

1-46

0
p 1 ¢ q q 00 q

or some 0 € (0,1). Let us express 6 in terms of p and q. Since L —=1—-1L we get by the first equation
g Y

q q’
that 6 = q — %. Inserting this in the second equation yields
1 1-(-% 1 1
Z = # =14 =
q q q b

Since the right-hand side equals % by assumption, we conclude that T is a bounded operator from LP to
L". Moreover, still by Riesz—Thorin theorem, we have that the following estimate for the operator norm
(recall that 6 = q — 1)

6 0 1-(q=%)  a—%
ITfllea = ITfller < NTUZ o TN poo 1 llzs < llgllza ™ 7 llgliza” Ifllze = llglze [ £llze.

Since T f = f x g, this proves the assertion.
It remains to arque why T is bounded from LT to L is bounded. For that, one shows analogously to
Ex. 8.4 that for f € L*,g € L and h € LY that

(1) / (f * 9)(s)h(s) ds = / F(5)(g * R(R) ds,

(note that the difference to Ex. 3.4 only was that there g,h € L'.) where R(h) = h(—-) is the reflection
of h. With this, we get from the definition of T’ (and identifying duals of LP-spaces by the usual
isomorphism,)

/T(T’h)(s)f(s) ds = / h(s)(Tf)(s)ds VfelL'helLd.

T
By (1), we conclude that T'h = g R(h). Since g * Rh. Since T'h = TR(h) for h € L' N LY, we
conclude since R is an isometric isomorphism, i.e. |R-|| o = ||/ o and R invertible, that T = T'R~1
is bounded from LY to L™ with norm

1Tl o poe = I TR por oo = 1T o g = T 2220 < llgllze.

The statement also holds for Q@ = R as the Riesz—Thorin theorem remains valid and Minkowski’s in-
equality can be proved analogously in this case.



