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Important information:

This last exercise class will be held in a slightly different format than what has been the case so far:
During the exercise class the participants should work (alone or in groups) on some given exercises and
I will assist with problems and difficulties. Some exercises on the topics that are currently discussed in
the lecture are already included below. Other exercises — dealing with topics that were already covered
by previous exercise sheets — will be provided on Monday.

Ex 7.1: Discuss whether the following objects are tempered distributions:
(a) the functionals
Lyiom [ o(s)1(s)ds
for the choices of functions f(x) =c for allx € R or f(z) = e’

(b) Ly for f € LP(R), p € [1, ).

(¢c) Ly for f € L, .(R)
(d) the functional 6, given by ¢ — ¢(t) for fized t € R

(e) L, for any finite Borel measure p, where L, is defined by
Lo = [ os)du(s)
R
(f) Llog|~|

(g9) the functional given by
¢ — lim @ ds
e—0t |s|> S
Solution: Yes, the functional, call it u is a tempered distribution. To see this, first observe that
for ¢ € S(R),
u(¢) = lim s) ds

e=0t Jisj>e S

1s well-defined as the limit exists by the following argument: Since

‘/Iszs @ | /s§|s§1 @ o /|s21 @ 1= /s§|s§1 M ot /|s|21 @ *

and |M| < || @'|| oo (m) for all s € (0,1) by Rolle’s theorem, we conclude by dominated
convergence that

(for the first term observe that the factor 2 comes from the integration), and where py, g(P) =
SUp,eg [7°0%¢(z)| are the seminorms that define the convergence on S(R). Then it is also clear

ds
s|>1 52 = 2p0,1(¢) +4p1,0(¢)
s|>1

< 2||¢/|| Lo~ (r) + sup [zg(x)]
z€R

that if ¢, 5 ¢ as n — oo — which means that pa g(dn) — pa,s(P) for all indices o, f € Ny
— we have that u(¢,) = u(P). Thus, u € S"(R).
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Ex 7.2:(Derivative and Fourier transform of tempered distribution)
Let n € N. We define the n-th derivative 0™u € S'(R) of a tempered distribution u € S’ (R) by

(0"u, ¢) = (u, (=1)"0"¢)

(recall that by definition (u, d) = u(¢@)). Also, define the Fourier transform Fu by

(Fu,d) = (u, F9)

and similarly the inverse Fourier transform by

(Fru, @) = (u, 7o)

Show the following

(a)

(b)

This definition of the Fourier transform is consistent with the definition we have seen for
functions w in LP for p =1 and p = 2 (note what we have shown in Ex. 7.1).

Sketch of solution: We have shown in the lecture that up to the identification of elements in
[ € L'(R) as elements in S'(R) via the functional Ly, see Ex.7.1., that

Lrs() = / F(f)(s)ils) ds = / F(8)F()(s)ds = (Ly, Fy)

Thus, (Lrg,v) = (Ly, F) for all v € S(R) which shows that the distributional Fourier
transform coincides with the definition on L*(R) and particularly on S(R). For f € L?, we
defined F by the unique bounded extension of the operator

Fls®y-sm) : SR) = S(R), f — F(f),

where boundedness refers to the inequality || F(f)||L2m) < (2#)%||f||Lz(R) for all f € S(R) and
hence all f € L?. Therefore, let (¢,,) be a sequence of functions in S(R) which converge (in

L?) to a given f € L. Then by the first part,
/R Flen) ) ds = (Lyg,),0) = (Lo, F) = / Ou(s)FW)(s)ds  ¥n € N.

By Cauchy-Schwarz and the fact that ¢, L—2> f as well as Fon, L—2> Ff, we conclude that
(Lrg ) = (Ly, Fap) for all ¢y € S(R) which shows the assertion.

Compute the Fourier transform of 00y where &g is defined as in Ex 7.2
Solution: By definition and basics on the Fourier transform for L'(R)-functions, we have for
¢ € S(R) that

(FOS0, 8) = — (60, OF(9)) = — (00, F(m_e0)) = —F(m_)(0) = / (it)6(t) dt = (Lis, &),

(c)

(d)

R

where we have used the notation t =t +—t and myf =t — g(t) f(t). Thus, the Fourier trans-
form of 9y is given by the function t — it (up to identification with a tempered distribution,).

1 |s| <1
0 |s|>1
Solution: By definition (Of, ¢) = —(f,d¢)an since f € L', this can be rewritten as

Compute the derivative of the function step function f(s) = {

(f.06) = / £(5)06(s) ds = / 00(s)ds = 6(1) ~ 6(-1) ' (51 = 5-1.0)
for all € S(R). Thus, f =d_1 — 01.

Compute the Fourier transform of the distributions defined by the functions sin and cos.
Use that sin(t) = 5: (' — ™) and show first that F(¢'**) = 6, for all k € R. Then, by
linearity if follows that F(sin) = %(51 —0_1). For cos one can proceed analogously or use

the following argument. Since cos(t) = sin(t + 7) Ref Tz sin we have by basics of the Fourier

transform (of L*(R)-functions) that

*

<]:Lcosa¢> = <Lc057]:¢> = <LT% sina}—¢> = <Lsina —§f¢> = <Lsina}-(mei%t¢)>



where (x) follows from [, f(t)[Tsg](t) dt = [;[7—sf](t)g(t) dt. By what we have shown for sin,

we get
(L Fm500)) = (€ F6(1) = 7 F9(=1)) = 2 (6(1) + 6(~1)) = (561 1), 6),

Hence, F(cos) = 1(81 +6_1).

Solutions to the additional exercises discussed in the Exercise class

Ex 7.3: Prove that Hf||Loo(R) L2 flle@) lf | Lawy for all f € S(R), p,q € [1,00] with Il] + é =1.
Hint: Use the identity f(t) = fi 9 (f(s)?)ds, and apply the chain rule, as well Holder inequality.

oo Os

Ex 7.4:(Show that the Fourier transform is not surjective as mapping from L*(R) to Co(R) = {f : R —
C| f continuous and lims—, 1o f(t) =0})
To do so prove the following steps

1) Forall0<e<T < o0, TS“—‘tdt <4
€ t

Solution: Since sint < ¢ for all ¢ > 0, we have that 0 < foﬂ Si?t dt < m. It is also

(geometrically) clear that —2 < f: % dt <0 for all T > m. This directly gives the assertion
as ™ < 4.
(2) For all0 < € < T < oo and f € LY(R) with f(t) = —f(—t) for a.e. t € R, it holds that

T
JE 2D at| < )12y

€

Solution: By definition of the Fourier transform and the property that f is odd, it follows
that F(f)(t) =2 fo sin(ts) f(s) ds. Inserting this in ’fﬁT @ dt‘ and applying Fubini, as well

as noting that bln(t)% is invariant under scaling ¢ ~ «t, readily leads to the assertion (also

note that 2 [ [f(s)|ds = || f||1(r) since f is odd).
(3) Conclude that there exists no function f € L*(R) such that F(f)(s) = g(s) for all s € R where
g 1s a continuous, odd function such that g(s) = log( for all s > 2.

Solution: This follows by contraction. If such f exists, then consider the odd function f
defined by f(t) = $(f(t) = f(—t)). Since RF = FR, where R denotes the reflection operator
Rh = h(—-), we have by linearity of F that F(f)(s) = 3(g(s) — g(—s)) = g(s) since g was
assumed to be odd. Now apply part (2) for € = 2 and conclude that for all T > 2,

T || [T FEHO
[0 | [ 200

for ¢ > 2 by assumption which implies that limp_, f2 tlog(t) oo (the

< 4[| fllLr(w)

But, g(t) = 10g(t)
latter follows for instance by the fact that ¢ — ¢log(t) is strictly increasing on (2, 00) and hence
f2 “Og(t > o #g(n) = 0o where the last identity holds by Cauchy’s condensation test)

Ex 7.5: Show that the sequence (™™ ),en converges to 0 in S'(R).

Solution: We have to show that for any ¢ € S(R), (Leint,d) = [ e ¢(t) dt converge to 0 as n — oo.
This, however, follows since [, e ¢(t) dt = F(¢)(—n) and F(¢) € Co(R) — the latter being a basic on
the Fourier transform (in fact, it even holds that F(¢) € S(R) since ¢ € S(R)).

Note that the sequence does not converge with respect to any LP-norm and hence also not in the topology

of S(R).

Ex 7.6:(Uncertainty principle) Let f € S(R). Show that the following inequality holds
1172y < Cing (- = 2) fO)llLem) ylfelﬂg G =)F) e

where C is an absolute constant.



Solution: Fix z € R and write |f(¢)|? = f(t)f(t)0:(t — ) and use integration by parts to obtain

112 =~ [ 2RU@ATONe ) d
R
Estimating the real part by the modulus and using Cauchy-Schwarz gives

1172 <20 = 2) FC) 22115 ]| 2 -
By Parseval’s identity, Lem. I1.2.9, we have that

10:f 1l 2 () = \/;Hf(@tf)llm = \/;Ils = isF(f)(s)lle = \/;Ils = sF(f)(s)llz2

where the latter identity follows by basics of the Fourier transform. Altogether this gives

1f1Z2e) < 2\/;“(' =) fOlle2lls = sF(f)(s)lz2-

Now let y € R and apply this inequality to the function t — f(t)e~*! instead of f. This only chances
the last term on the right-hand side: By basics of the Fourier transform we have that F(e=% f)(s) =
F(f)(s+y) and hence _

Is = sF (e f)(s)ll2 = I =) F(F))llz2,

which yields the assertion.



