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Abstract— This work contributes to the recently intensified
study of input-to-state stability for infinite-dimensional systems.
The focus is laid on the relation between input-to-state stability
and integral input-to-state stability for linear systems with a
possibly unbounded control operator. The main result is that
for parabolic diagonal systems both notions coincide, even in
the setting of inputs in L∞, and a simple criterion is derived.

I. INTRODUCTION

The concept of input-to-state stability, introduced by
E. Sontag in 1989 [Son89], is a well-studied stability notion
of control systems with respect to external inputs. For a sur-
vey on input-to-state stability for finite-dimensional systems
we refer the reader to [Son08]. A variant of classic input-to-
state stability is the notion of integral input-to-state stability,
see e.g., [Son98]. We note that for linear, finite-dimensional
systems input-to-state stability and integral input-to-state
stability are equivalent and hence, the interest in different
types of input-to-state stability lies in the study of nonlinear
systems then.

For infinite-dimensional systems, input-to-state stability
and integral input-to-state stability have been less stud-
ied, but more intensively in the recent past, see [DM13a],
[DM13b], [JLR08], [Log13], [Mir16], [MI14], [MI15],
[MW15], [KK16]. See also [MW16] for a study on the failure
of equivalences in infinite-dimensions, which are known to
hold true for finite-dimensional systems. In contrast to finite
dimensions, even the case of linear systems is still not fully
understood. This contribution aims to shed more light on the
latter situation. In most of the references mentioned above,
general nonlinear systems are studied, however, in such a
way that the special case of linear equations is only covered
when bounded control operators are considered. Concerning
applications, this is a major restriction, see e.g. [TW09].
Moreover, if the system is linear and the control operator
is bounded, then is easy to see that input-to-state stability
and integral input-to-state stability are equivalent. Therefore,
the focus of this paper is to allow for unbounded control
operators and to address the question how these stability
concepts are related. For linear, infinite-dimensional systems,
the notion of admissibility, [Wei89], [Sal84], has proved to be
very useful for the study of unbounded control operators. It
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is known that input-to-state stability is equivalent to admis-
sibility (together with exponential stability). We will show
that integral input-to-state stability in fact implies zero-class
admissibility [JPP09], [XLY08], which is slightly stronger
than admissibility.

In this paper we study systems Σ(A,B) of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (1)

where A generates a C0-semigroup on a Hilbert space X and
B is a linear, unbounded operator defined on the input space
U . This class of systems covers in particular linear partial
differential equations with boundary control. Furthermore,
will restrict our study to input-to-state stability and integral
input-to-state stability with respect to L∞. We remark that
the corresponding questions for Lp, p ∈ [1,∞), are less
interesting as the notions coincide then, see e.g. [JNPS16].

By the relation to admissibility, input-to-state stability
follows from integral input-to-state stability. We prove that
integral input-to-state stability moreover implies zero-class
admissibility, Proposition 2.9.

We then consider parabolic diagonal systems, that is, we
assume that A possesses a Riesz basis of eigenvectors with
eigenvalues lying in a sector in the open left half-plane and
that the input space U is one-dimensional. Our main result
states that, for such systems, integral input-to-state stability
is equivalent to input-to-state stability and equivalent to the
fact that B is a linear bounded operator from U to the
extrapolation space X−1, see Theorem 3.1.
Finally, we illustrate the obtained results by an example of
a heat equation with boundary control.

II. DEFINITIONS

We study systems Σ(A,B) of the form in (1) where B
is a linear and bounded operator from a Hilbert space U
to the extrapolation space X−1. Note that B is possibly
unbounded from U to X . Here X−1 is the completion of
X with respect to the norm ‖x‖X−1

= ‖(β − A)−1x‖X
for some β in the resolvent set ρ(A) of A. The semigroup
(T (t))t≥0 extends uniquely to a C0-semigroup (T−1(t))t≥0
on X−1 whose generator A−1 is an extension of A, see e.g.
[EN00]. Thus we may consider Equation (1) on the Hilbert
space X−1. For u ∈ L1

loc(0,∞;U) the mild solution of (1)
is given by the variation of parameters formula

x(t) = T (t)x0 +

∫ t

0

T−1(t− s)Bu(s)ds, t ≥ 0. (2)

The notion of admissibility of the system Σ(A,B) guarantees
that the state x(t) lies in X .



Definition 2.1: System Σ(A,B) is called admissible if

∀t > 0, u ∈ L∞(0, t;U) :

∫ t

0

T−1(s)Bu(s) ds ∈ X. (3)

It follows that if Σ(A,B) is admissible, then all mild
solutions (2) are in X and by the Closed Graph Theorem
there exists a constant c(t) (take the infimum over all possible
constants) such that∥∥∥∥∫ t

0

T−1(s)Bu(s) ds

∥∥∥∥ ≤ c(t)‖u‖L∞(0,t;U).

If (3) holds for t = ∞, then Σ(A,B) is called infinite-time
admissible.

If the semigroup (T (t))t≥0 is exponentially stable, that is,
there exist constants M,ω > 0 such that

‖T (t)‖ ≤Me−ωt, t ≥ 0, (4)

then c = supt≥0 c(t) <∞, and it is easy to see that infinite-
time admissibility is equivalent to admissibility. Beside clas-
sic admissibility, we are also interested in the following
refinement.

Definition 2.2: We call the system Σ(A,B) zero-class
admissible if the system is admissible and limt→0 c(t) = 0.

Remark 2.3: If Σ(A,B) is zero-class admissible, then for
every x0 ∈ X and every u ∈ L∞(0,∞;U) the mild solution
of (1), given by (2), satisfies x ∈ C([0,∞);X). This is
proved similarly to Proposition 2.3 in [Wei89], see [JNPS16].
We will need the following well-known function classes from
Lyapunov theory.

K = {µ : R+
0 → R+

0 | µ(0) = 0, µ continuous,
strictly increasing},

K∞ = {θ ∈ K | lim
x→∞

θ(x) =∞},

L = {γ : R+
0 → R+

0 | γ continuous,
strictly decreasing, lim

t→∞
γ(t) = 0},

KL = {β : (R+
0 )2 → R+

0 | β(·, t) ∈ K ∀t ∧ β(s, ·) ∈ L ∀s}.

Definition 2.4: 1) A system Σ(A,B) is called input-
to-state stable if the mild solution x(t) lies in X for
every t ≥ 0 and there exist functions β ∈ KL and
µ ∈ K∞ such that

‖x(t)‖ ≤ β(‖x0‖, t) + µ(‖u‖∞) (5)

for every t ≥ 0, x0 ∈ X and u ∈ L∞(0,∞;U).
2) A system Σ(A,B) is called integral input-to-state

stable if the mild solution x(t) lies in X for every
t ≥ 0 and there exist functions β ∈ KL, θ ∈ K∞ and
µ ∈ K such that

‖x(t)‖ ≤ β(‖x0‖, t) + θ

(∫ t

0

µ(‖u(s)‖)ds
)

(6)

for every t ≥ 0, x0 ∈ X and u ∈ L∞(0,∞;U).
It follows immediately that A generates an exponentially

stable C0-semigroup if the system Σ(A,B) is (integral)
input-to-state stable. The following results are easily seen

from the definition of admissibility and input-to-state sta-
bility. Proofs and related results can be found in [MW15,
Thm. 4, Thm. 6 and Prop. 7] and [JNPS16].

Proposition 2.5: Suppose B is a bounded operator from U
to X and A generates an exponentially stable C0-semigroup.
Then the system Σ(A,B) is input-to-state stable, integral
input-to-state stable, infinite-time admissible and zero-class
admissible.

Remark 2.6: Let Σ(A,B) as in Proposition 2.5. Then the
system Σ(A,B) is input-to-state stable with the following
choices for the functions β and µ

β(s, t) := Me−ωts and µ(s) :=
M

ω
‖B‖s,

and integral input-to-state stable with

β(s, t) := Me−ωts, µ(s) := s, and θ(s) := sM‖B‖.

Here the constants M and ω are given by (4).
For unbounded B, we still have the following result.

Proposition 2.7: Suppose A generates an exponentially
stable C0-semigroup. Then the following statements are
equivalent.

1) System Σ(A,B) is input-to-state stable,
2) System Σ(A,B) is infinite-time admissible,
3) System Σ(A,B) is admissible.
Remark 2.8: If one of the equivalent conditions of Propo-

sition 2.7 hold, then the system Σ(A,B) is input-to-state
stable with the following choices for the functions β and µ

β(s, t) := Me−ωts and µ(s) := cs,

where M and ω are given by (4) and c = supt≥0 c(t).
Proposition 2.9: If the system Σ(A,B) is integral input-

to-state stable, then Σ(A,B) is zero-class admissible.
Proof: There exist θ ∈ K∞ and µ ∈ K such that

1

‖u‖∞

∥∥∥∥∫ t

0

T−1(s)Bu(s) ds

∥∥∥∥ ≤ θ [∫ t

0

µ
[
‖u(s)‖U
‖u‖∞

]
ds

]
(7)

for all t > 0, u ∈ L∞(0, t;U), u 6= 0. Since the function µ
is monotonically increasing and ‖u(s)‖U ≤ ‖u‖∞ a.e., the
right-hand side of (7) is bounded above by θ(tµ(1)) which
converges to zero as t↘ 0.

By the above results, it is clear that integral input-to-state
stability implies input-to-state stability.

The relations of the different stability notions discussed
above are illustrated in the diagram depicted in Figure 1.

III. DIAGONAL SYSTEMS

In this section we assume that U = C and that the operator
A possesses a Riesz basis of eigenvectors (en)n∈N with
eigenvalues (λn)n∈N lying in a sector in the open left half-
plane C−. More precisely, let (en)n∈N be a Riesz basis of
X , that is, a basis such that, for some constants c1, c2 > 0
we have

c1
∑
k

|ak|2 ≤

∥∥∥∥∥∑
k

akek

∥∥∥∥∥
2

≤ c2
∑
k

|ak|2



ISS

iISS

zero class

admissible

??

Fig. 1. Relation between the different stability notions for a system
Σ(A,B) (where we assume that the semigroup is exponentially stable).
ISS refers to input-to-state stability, iISS to integral input-to-state stability,
“zero-class” to zero-class admissibility and “admissible” to admissibility.

for all sequences (ak) in `2. Thus without loss of generality
we can assume that X = `2 and that (en)n∈N is the canonical
basis of `2. We further assume that the sequence (λn)n∈N lies
in C with supn Re(λn) < 0 and that there exists a constant
k > 0 such that |Imλn| ≤ k|Reλn|, n ∈ N. Then the linear
operator A : D(A) ⊂ `2 → `2 is given by

Aen = λnen, n ∈ N,

and D(A) = {(xn) ∈ `2 |
∑
|xnλn|2 < ∞}. A generates

an analytic, exponentially stable C0-semigroup (T (t))t≥0 on
`2, which is given by T (t)en = etλnen. The extrapolation
space (`2)−1 is given by

(`2)−1 =

{
x = (xn)n∈N |

∑
n

|xn|2

|λn|2
<∞

}
,

‖x‖X−1 = ‖A−1x‖`2 .

Thus any linear bounded operator B from C to (`2)−1 can
be identified with a sequence (bn)n∈N in C satisfying∑

n∈N

|bn|2

|λn|2
<∞.

Thanks to the sectoriality condition for (λn)n∈N this is
equivalent to ∑

n∈N

|bn|2

|Reλn|2
<∞.

The following result shows that, under these assumptions,
the system Σ(A,B) is integral input-to-state stable. Thus
for this class of systems all stability notions introduced in
the previous section are equivalent to B ∈ (`2)−1, that is, to∑
n
|bn|2
|λn|2 <∞.

Theorem 3.1: Let U = C, and assume that the operator
A possesses a Riesz basis of X consisting of eigenvectors
(en)n∈N with eigenvalues (λn)n∈N lying in a sector in the
open left half-plane C− and B ∈ L(U,X−1). Then the
system Σ(A,B) is integral input-to-state stable, and hence
also input-to-state stable and zero-class admissible.

Lemma 3.2: Let Σ(A,B) be as in Theorem 3.1. Then
there exists M > 0 and µ ∈ K∞ such that∥∥∥∥∫ t

0

T−1(s)Bu(s) ds

∥∥∥∥2 ≤M +

∫ t

0

µ(|u(s)|) ds, (8)

for all t > 0 and all u ∈ L1(0, t) with
∫ t
0
µ(|u(s)|) ds <∞.

Proof: We may assume that X = `2 with the canonical
basis (en)n∈N. Let f : (0,∞)→ [0,∞) be defined by

f(s) =
∑
n∈N

|bn|2

|Reλn|
eReλns.

Then it is easy to see that f is smooth, strictly decreasing,
belongs to L1(0,∞), and satisfies lims↘0 f(s) = ∞ and
lims→∞ f(s) = 0.
We remark that boundedness of (Reλn)n∈N implies bound-
edness of (λn)n∈N. Thus if the sequence (Reλn)n∈N is
bounded or bn = 0 for all but finitely many n ∈ N, then B is
a bounded operator from C to `2 and therefore Σ(A,B) is
integral input-to-state stable by Proposition 2.5. Moreover,
the series defining the function f is absolutely convergent
and

|bn|2

|Reλn|
eReλns +

|bm|2

|Reλm|
eReλms =

|bn|2 + |bm|2

|Reλn|
eReλns

if Reλn = Reλm. Thus without loss of generality we may
assume that Reλn < Reλm for m < n, bn 6= 0 for n ∈ N
and B is unbounded. By Remark 178 in [Kno28] there is a
strictly increasing unbounded sequence (hn)n∈N of positive
numbers such that the series∑

n∈N

hn|bn|2

|Reλn|2

converges. We define the smooth, strictly decreasing function
g : (0,∞)→ [0,∞) by

g(s) =
∑
n∈N

hn|bn|2

|Reλn|
eReλns,

for s > 0. Clearly, g ∈ L1(0,∞). The function η : [0,∞)→
(0,∞), η(s) = g′(s)/f ′(s), is strictly decreasing, see
[JNPS16]. In particular the following limit exists

a := lim
s→∞

g′(s)

f ′(s)
≥ 0.

We define the smooth function Φ: [0,∞) → [0,∞) by
Φ(0) = 0 and Φ(f(s)) = g(s) − af(s). Φ is a Young
function, that is, Φ′(0) = 0, lims→∞Φ′(s) = ∞ and Φ
is strictly increasing and strictly convex, see [JNPS16].

Define Φ∗ : [0,∞)→ [0,∞) by

Φ∗(s) =

∫ s

0

(Φ′)−1(t) dt

and µ : [0,∞) → [0,∞) by µ(s) := Φ∗(s2). The function
Φ∗ is continuous, strictly increasing and unbounded. Thus
µ ∈ K∞.



Let u ∈ L1(0, t) such that
∫ t
0
µ(|u(s)|) ds < ∞. We have

that∥∥∥∥∫ t

0

T−1(s)Bu(s) ds

∥∥∥∥2 =
∑
n∈N
|bn|2

∣∣∣∣∫ t

0

eλnsu(s) ds

∣∣∣∣2

≤
∑
n∈N
|bn|2

(∫ t

0

eReλns|u(s)| ds
)2

=
∑
n∈N

|bn|2

(Reλn)2

(∫ t

0

|Reλn|eReλns|u(s)| ds
)2

≤
∑
n∈N

|bn|2

(Reλn)2

(∫ t

0

|Reλn|eReλns|u(s)|2 ds
)

(∫ t

0

|Reλn|eReλns ds

)
≤
∑
n∈N

|bn|2

(Reλn)2

(∫ t

0

|Reλn|eReλns|u(s)|2 ds
)

=

∫ t

0

∑
n∈N

|bn|2

|Reλn|
eReλns|u(s)|2 ds

=

∫ t

0

f(s)|u(s)|2 ds,

where we have used Cauchy-Schwarz with respect to the
measure given by |Reλn|eReλns ds. By Young’s inequality
(see e.g. [Ada75, Page 264]), we can further conclude that∥∥∥∥∫ t

0

T−1(s)Bu(s) ds

∥∥∥∥2 ≤ ∫ t

0

f(s)|u(s)|2 ds

≤
∫ t

0

(∫ f(s)

0

Φ′(r) dr +

∫ |u(s)|2
0

(Φ′)−1(r) dr

)
ds

=

∫ t

0

Φ(f(s)) ds+

∫ t

0

µ(|u(s)|) ds.

This shows (8) with M := ‖g − af‖L1(0,∞).
Remark 3.3: Lemma 3.2 shows that Σ(A,B) is uniformly

bounded energy bounded state (UBEBS), a weakened form
of integral input-to-state stability introduced in [ASW99].
Proof-sketch of Theorem 3.1: By Lemma 3.2, the following
choice for θ : [0,∞) → [0,∞) seems to be a suitable
candidate to show (6).

θ(α)2 = sup

{∥∥∥∥∫ t

0

T−1(s)Bu(s) ds

∥∥∥∥2 : u ∈ L∞(0,∞),

t ≥ 0,

∫ t

0

µ(|u(s)|) ds ≤ α
}
.

In fact, θ(α) <∞ for all α ≥ 0 and θ is non-decreasing. It is
easy to see that there exists a continuous, strictly increasing
function θ̃ such that θ ≤ θ̃ pointwise. Then the definition of
θ yields that∥∥∥∥∫ t

0

T−1(s)Bu(s) ds

∥∥∥∥ ≤ θ̃(∫ t

0

µ(|u(s)|) ds
)

for all t ≥ 0, u ∈ L∞(0,∞). To conclude that Σ(A,B) is
integral input-to-state stable, we need that limt↘0 θ̃(t) = 0.

ISS

iISS

zero class

admissible

Fig. 2. Relations between the different stability notions for parabolic
diagonal system (assuming that the semigroup is exponentially stable).

As it is not clear whether limt↘0 θ(t) = 0, the choice of µ
and θ has to be revisited. In fact, the issue can be resolved
by a slight adaption in the choice of µ and incorporating the
theory of Orlicz spaces. We refer to [JNPS16] for details. �

The relations of the different stability notions for parabolic
diagonal systems are summarized in the diagram shown in
Figure 2.

IV. AN EXAMPLE

Let us consider the following boundary control system
given by the one-dimensional heat equation on the spatial
domain [0, 1] with Neumann boundary control at the point
1,

∂

∂t
x(ξ, t) =

∂2

∂ξ2
x(ξ, t), ξ ∈ (0, 1), t > 0,

∂

∂ξ
x(0, t) = 0,

∂

∂ξ
x(1, t) = u(t), t > 0,

x(ξ, 0) = x0(ξ),

see e.g., [JPP14, Example 3.6]. It can be shown that this
system can be written in the form Σ(A,B) in (1). Here X =
L2(0, 1) and

Af =
∂2

∂ξ2
f, f ∈ D(A),

D(A) =

{
f ∈ L2(0, 1) : f,

∂

∂ξ
f are absolutely continuous,

∂2

∂ξ2
f ∈ L2(0, 1),

∂

∂ξ
f(0) =

∂

∂ξ
f(1) = 0

}
.

Moreover, with λn = −π2n2,

Aen = λnen, n ∈ N,

where the functions e0 = 1 and en =
√

2 cos(nπ·), n ≥ 1,
form an orthonormal basis of X . With respect to this basis,
the operator B = b can be identified with (bn)n∈N for bn =
1, n ∈ N. Therefore, ∑

n∈N

|bn|2

|λn|2
<∞,



which shows that b ∈ X−1. By Theorem 3.1, we conclude
that the system is integral input-to-state stable.
ERRATA: Note that the above A does not generate an
exponentially stable semigroup. Thus Σ(A,B) can not be
integral input-to-state stable. However, the example can be
repaired by considering

∂

∂t
x(ξ, t) =

∂2

∂ξ2
x(ξ, t)− x(ξ, t), ξ ∈ (0, 1), t > 0,

∂

∂ξ
x(0, t) = 0,

∂

∂ξ
x(1, t) = u(t), t > 0,

x(ξ, 0) = x0(ξ),

instead, which results in A = ∂2

∂ξ2 − π2I . Thus, we have
the same eigenvalues λn as before, for n > 1. In fact, A
generates an analytic, exponentially stable semigroup and,
by the same reasoning as above, Σ(A,B) is integral input-
to-state stable.
A choice of functions β, µ, θ satisfying (6) is given by

β(s, t) := e−π
2ts, µ(s) := sp, and θ(s) := c · s

1
p ,

for p ≥ 4
3 and some constant c = c(p) > 0. This follows

from the fact that Σ(A,B) is even Lp-admissible for p ≥ 4
3 ,

see [JPP14, Example 3.6]. However, we remark that there
exists examples of parabolic diagonal systems satisfying the
assumptions of Theorem 3.1, but such that they are not Lp-
admissible for any p <∞.

V. CONCLUSIONS AND OUTLOOK

In this paper we have studied the relation between input-
to-state stability and integral input-to-state stability for linear
infinite-dimensional systems with an unbounded control op-
erator and inputs in L∞. We have shown that for parabolic
diagonal systems and scalar input, both notions coincide and
are equivalent to admissibility.

Among possible directions for future research are the
investigation of the non-analytic case and the relation of zero-
class admissibility, input-to-state stability and admissibility
with respect to Orlicz spaces. Some of these topics are
addressed in the [JNPS16].
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semigroups. Birkhäuser Advanced Texts: Basler Lehrbücher.
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