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Abstract. We prove a coarse version of Halin’s Grid Theorem: Every one-ended, locally finite graph

that contains the disjoint union of infinitely many rays as an asymptotic minor also contains the half-

grid as an asymptotic minor. More generally, we show that the same holds for arbitrary (not necessarily

one-ended or locally finite) graphs under additional, necessary assumptions on the minor-models of the

infinite rays. This resolves a conjecture of Georgakopoulos and Papasoglu.

As an application, we show that every one-ended, quasi-transitive, locally finite graph contains the

half-grid as an asymptotic minor and as a diverging minor. This in particular includes all locally fi-

nite Cayley graphs of one-ended finitely generated groups and solves a problem of Georgakopoulos and

Papasoglu.

1. Introduction

An end of a graph G is an equivalence class of rays in G where two rays are equivalent if there are
infinitely many pairwise disjoint paths between them in G. An end is thick if it contains infinitely many
pairwise disjoint rays. The half-grid (i.e. the grid1 on N × N), is an obvious example: it has infinitely
many disjoint rays, and they all belong to the same end, which hence must be thick.

One of the cornerstones of infinite graph theory is the following result of Halin [Hal65, Satz 4′], which
asserts that this observation has a converse, and thus the half-grid can be thought of as a prototype for
thick ends:

Halin’s Grid Theorem. Every graph with a thick end contains the half-grid as a minor.

However, the half-grid minor which Halin’s Grid Theorem provides can have arbitrary distortion com-
pared to the geometry of the ambient graph. Consider for example the infinite clique Kℵ0

. Its unique
end is thick, and it clearly contains the half-grid as a minor. However, Kℵ0 is quasi-isometric2 to a point,
so Kℵ0 inherits none of the geometric properties of the half-grid. In contexts where the geometry matters
it would be desirable to have a version of Halin’s Grid Theorem which preserves some of the geometry of
the half-grid.

Let us first consider Cayley graphs, a class of graphs for which this problem is particularly interesting.
In geometric group theory, where one is interested in the large-scale geometry of (the Cayley graph of) a
group Γ, one wants the analysis of Γ to be stable under quasi-isometries and, in particular, independent
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2Two graphs G,H are quasi-isometric if there exists a function f : V (H) → V (G) and M ≥ 1 and A ≥ 0 such that

M−1 · dH(u, v)−A ≤ dG(f(u), f(v)) ≤ M · dH(u, v) +A for all u, v ∈ V (H) and dG(f(V (H), w) ≤ A for all w ∈ V (G).
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of the choice of a finite generating system. Since having a thick end is a quasi-isometric invariant for
Cayley graphs, it is natural to ask whether Cayley graphs with a thick end contain a minor-model of the
half-grid that survives under quasi-isometries.

For this, we consider ‘fat’ and ‘asymptotic’ minors, a special kind of minors that play an important
role in the new area of ‘coarse graph theory’ (see [GP25] for an overview). A graph X is a K-fat minor
of a graph G, for some K ∈ N, if there is a minor-model of X in G whose branch sets and branch paths
are pairwise at least K apart, except that we do not require this for incident branch set-path pairs (cf.
Section 2.3). The graph X is an asymptotic minor of G if X is a K-fat minor of G for every K ∈ N.

In contrast to the usual minors, asymptotic minors are preserved under quasi-isometries [GP25]. In
particular, if a graph contains the half-grid as an asymptotic minor, then its large-scale geometry will
still resemble that of a graph with a thick end. Moreover, it does not depend on the choice of a finite
generating set whether a locally finite Cayley graph of a finitely generated group contains a fixed graph
as an asymptotic minor.

A natural question that arises is whether we can improve Halin’s Grid Theorem for Cayley graphs so
that it yields an asymptotic half-grid minor. This question was already posed by Georgakopoulos and
Papasoglu, who asked this for Cayley graphs of one-ended, finitely generated groups. For this, note that
by a result of Thomassen [Tho92, Proposition 5.6], the unique end of a one-ended, locally finite Cayley
graph must be thick.

Problem 1.1 ([GP25, Problem 7.3]). Let G be a locally finite Cayley graph of a one-ended, finitely
generated group. Must the half-grid be an asymptotic minor of G?

Our main result resolves Problem 1.1. In fact, instead of constructing a K-fat minor-model of the
half-grid for every K ∈ N, we find a single minor-model of the half-grid which is ultra-fat : for every
K ∈ N its ‘submodel’ corresponding to the subgraph of the half-grid on the vertex set N2 ∖ [K]2 is K-fat.

Theorem 1. Every one-ended, quasi-transitive, locally finite graph G contains the half-grid as an ultra-fat
minor. In particular, the half-grid is an asymptotic minor and a diverging minor of G.

A graph G is quasi-transitive if the automorphism group of G acts on V (G) with only finitely many orbits.
Note that every Cayley graph of a finitely generated group is quasi-transitive.

Theorem 1 is also related to problems posed by Georgakopoulos and the second author [GH24], who
asked for diverging minors of grids. A minor-model of a graph X in a graph G diverges, if for every two
sequences (xn)n∈N and (yn)n∈N of vertices and/or edges of X such that dX(xn, yn) → ∞, the distances
in G between their corresponding branch sets or paths tend to infinity. It is easy to see that every ultra-fat
minor-model of the half-grid diverges (see Proposition 2.2).

We remark that Theorem 1 lies at the frontier of what is still true: We cannot ask for coarse embeddings3

of the (hexagonal4) half-grid as e.g. the Cayley-graph of the lamplighter group, which is one-ended, does
not contain a coarsely embedded (hexagonal) half-grid (cf. [GH24, Discussion preceding Problem 4.2]).

What about quasi-transitive, locally finite graphs that have more than one end? A quasi-transitive
graph is accessible if there exists n ∈ N such that every two of its ends can be ‘separated’ by at most n

vertices. By a standard argument about accessible, quasi-transitive graphs, we obtain that we may relax

3See Section 5.1 for the definition.
4See Section 3 for the definition.
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the condition on G in Theorem 1 from ‘one-ended’ to ‘accessible with a thick end’ (see Corollary 6.2).
Since every connected, quasi-transitive graph without thick ends is quasi-isometric to a tree by Krön and
Möller [KM08, Theorem 5.5], this implies the following corollary:

Corollary 2. Every accessible, connected, quasi-transitive, locally finite graph is quasi-isometric to a tree
if and only if it does not contain the half-grid as an ultra-fat minor.

Theorem 1 has another application. Two rays S,R in a graph G diverge if for every K ∈ N there
exist tails S′, R′ of S,R, respectively, such that dG(S′, R′) ≥ K. As the half-grid contains infinitely many
pairwise disjoint rays, Theorem 1 implies the following:

Corollary 3. Every quasi-transitive, locally finite graph that contains infinitely many pairwise disjoint
rays also contains infinitely many pairwise diverging rays.

This solves [GH24, Conjecture 4.3] for quasi-transitive graphs.

Let us now leave the realm of Cayley graphs and quasi-transitive graphs and consider arbitrary infinite
graphs with thick ends. As mentioned earlier, not every graph with a thick end contains the half-grid as
an asymptotic minor, and hence we can in general not hope to replace ‘minor’ with ‘asymptotic minor’
in Halin’s Grid Theorem. Indeed, the already mentioned Kℵ0

is an obvious example, but there are also
locally finite graphs that have a thick end but that do not contain the half-grid as an asymptotic minor.5

However, there is another formulation of Halin’s Grid Theorem, which we will prove to have a coarse
counterpart. For this, consider the following equivalent way of stating Halin’s Grid Theorem for one-
ended graphs: Let G be a one-ended graph. If ω · R is a minor of G, then the half-grid is a minor of G.
Here, ω ·R denotes the disjoint union of countably many rays.

Since having ω · R as an asymptotic minor is a necessary condition for having the half-grid as an
asymptotic minor, but graphs with thick ends need in general not have ω · R as an asymptotic minor, a
more natural way to transfer Halin’s Grid Theorem into the coarse world is the following, as proposed by
Georgakopoulos and Papasoglu:

Problem 1.2 ([GP25, Problem 7.2]). Let G be a one-ended graph. If ω ·R is an asymptotic minor of G,
then the half-grid is an asymptotic minor of G.

The problem is false for general graphs, as we will show by presenting a counterexample in Section 4.
However, we prove that Problem 1.2 is true for locally finite graphs.

Theorem 4. Let G be a one-ended, locally finite graph. If ω · R is an asymptotic minor of G, then the
half-grid is an asymptotic minor of G.

We remark that we also prove a second version of Theorem 4 (see Theorem 3.1 (2)) where we impose a
stronger condition on the minor-model of ω · R, and in return obtain the half-grid as an ultra-fat minor.
This result will be an important tool for our proof of Theorem 1.

In fact, we will prove a more general version of Theorem 4 for arbitrary infinite (not necessarily one-
ended or locally finite) graphs (see Theorems 3.2 and 3.3), where we impose two further conditions on the

5Let G be the graph obtained from the ray r1r2 . . . by replacing each vertex ri with a clique Ki of size i and each edge

riri+1 by a complete bipartite graph between Ki and Ki+1. Then G is locally finite by definition, and it is easy to check

that G has a thick end, but the half-grid is not even a 2-fat minor of G.



4 SANDRA ALBRECHTSEN AND MATTHIAS HAMANN

rays in the fat minor-models of ω ·R. To cover graphs with more than one end, we assume that the rays
in the fat minor-models of ω · R are equivalent. Further, to cover graphs with vertices of infinite degree,
we assume that no two distinct rays of the fat minor-model of ω ·R can be separated by removing finitely
many balls of finite radius. While the first condition is clearly necessary, we will show in Example 4.1
that also the second condition is necessary.

1.1. More related work. Our work complements existing work about coarse graph theory on infinite
(quasi-transitive) graphs [AH24; EGG25; GP25; LMR23; Leh25; Mac25]. It is also related to existing
work on characterising quasi-transitive, locally finite graphs with thick ends, e.g. [AH24; Ant11; GH24;
KM08].

In [AH24] we showed that every quasi-transitive, locally finite graph with a thick end whose cycle
space is generated by cycles of bounded length6 contains the full-grid (i.e. the grid on Z × Z) as an
asymptotic minor and as a diverging minor. Since every such graph is accessible, Theorem 1 (more
precisely Corollary 2) covers a larger class of graphs, but only yields an asymptotic and diverging minor
of the half-grid. We remark that our proof techniques in this paper are mostly independent of [AH24].

Lee, Martínez-Pedroza and Rodríguez-Quinche [LMR23] introduced a coarse version of the classical
cops and robbers game. Using the above mentioned result in [AH24], Esperet, Gahlawat and Giocanti
[EGG25] proved for locally finite Cayley graphs of finitely presented groups that if one cop cannot catch
the robber in the coarse game, then infinitely many cops are needed. Replacing in their proof the result
in [AH24] by Theorem 1, this yields the same for the larger class of accessible, finitely generated groups,
a result that has directly been obtained by Lehner [Leh25].

Our proof of Theorem 4 relies on a strengthening of Halin’s Grid Theorem, which was proved by
Kurkofka, Melcher and Pitz in [KMP22].

1.2. How this paper is organised. This paper is structured as follows. In Section 2 we recall some
important definitions. We prove Theorem 4 in Section 3 and discuss some examples regarding coarse
versions of Halin’s Grid Theorem in Section 4. In Section 5 we deduce Theorem 1 from Theorem 3.1, our
second version of Theorem 4, and in Section 6 we prove Corollaries 2 and 3.

2. Preliminaries

Our notions mainly follow [Die24]; in particular, [n] := {1, . . . , n} for n ∈ N. In what follows, we recap
some definitions which we need later. We denote the half-grid by HG.

2.1. Paths, rays and ends. For two sets A,B of vertices of a graph G, an A–B path meets A precisely
in its first vertex and B precisely in its last vertex.

A ray is a one-way infinite path, and a double ray is a two-way infinite path. A tail of a (double) ray R

is any ray S ⊆ R. If R = r0r1 . . . is a ray, then we denote by riRrj for i, j ∈ N the subpath ri . . . rj

of R, and by riR or R≥i the tail riri+1 . . . of R. Further, we denote by Rri or R≤i the subpath r0 . . . ri

of R. We use these notions analogously for double rays; in particular, if R = . . . r−1r0r1 . . . is a double
ray, then Rri and R≤i denote the tail riri−1 . . . of R.

A (possibly infinite) set U ⊆ V (G) separates two rays R,S in G if U separates V (R) and V (S) in G,
i.e. if G− U does not contain an R–S path.

6See [AH24, Section 2.3] or [Die24, Section 1.9] for the definition. In particular, Cayley graphs of finitely presented

groups have this property.



A COARSE HALIN GRID THEOREM 5

An end ε of a graph G is an equivalence class of rays in G where two rays are equivalent if they are
joined by infinitely many disjoint paths in G or, equivalently, if for every finite set U ⊆ V (G) both rays
have tails in the same component of G− U . If a ray lies in ε, then we call it an ε-ray . An end ε is thick
if there are infinitely many pairwise disjoint ε-rays [Hal65].

2.2. Distance and balls. Let G be a graph. We write dG(v, u) for the distance of the two vertices v

and u in G. For two sets U and U ′ of vertices of G, we write dG(U,U
′) for the minimum distance of

two elements of U and U ′, respectively. If one of U or U ′ is just a singleton, then we omit the braces,
writing dG(v, U

′) := dG({v}, U ′) for v ∈ V (G). If X is a subgraph of G, then we abbreviate dG(U, V (X))

as dG(U,X).
Given a set U of vertices of G, the ball (in G) around U of radius r ∈ N, denoted by BG(U, r), is the

set of all vertices in G of distance at most r from U in G. If U = {v} for some v ∈ V (G), then we omit the
braces, writing BG(v, r) for the ball (in G) around v of radius r. Additionally, we abbreviate the induced
subgraph on BG(U, r) of G with G[U, r] := G[BG(U, r)]. If X is a subgraph of G, then we abbreviate
BG(V (X), r) and G[V (X), r] as BG(X, r) and G[X, r], respectively.

2.3. Fat, asymptotic and diverging minors. Let G,X be graphs. A (minor-)model (V, E) of X in G

is a collection V of disjoint sets Vx ⊆ V (G) for vertices x of X such that each G[Vx] is connected, and
a collection E of internally disjoint Vx0

–Vx1
paths Ee for edges e = x0x1 of X which are disjoint from

every Vx with x ̸= x0, x1. The Vx are its branch sets and the Ee are its branch paths.
Let K ∈ N. A model (V, E) of X in G is K-fat if dG(Y, Z) ≥ K for every two distinct Y, Z ∈ V ∪ E

unless Y = Ee and Z = Vx for some vertex x ∈ V (X) incident to e ∈ E(X), or vice versa. The graph X

is a K-fat minor of G, denoted by X ≺K G, if G contains a K-fat model of X. Moreover, X is an
asymptotic minor of G, denoted by X ≺∞ G, if X is a K-fat minor of G for all K ∈ N.

Let ε be an end of G. If X is a one-ended graph, and (V, E) is a model of X in G, then we say that all
rays of (V, E) are ε-rays if every ray in

⋃
x∈V (X) G[Vx] ∪

⋃
e∈E(X) Ee is an ε-ray. We write X ≺ε

K G if G
contains a K-fat model (V, E) of X whose rays are all ε-rays, and X ≺ε

∞ G if X ≺ε
K G for all K ∈ N.

Let (V, E) be a model of a graph X in a graph G. Then (V, E) diverges (in G) if for every two sequences
(xn)n∈N and (yn)n∈N of vertices and/or edges of X such that dX(xn, yn) → ∞, we have dG(Un,Wn) → ∞
where Un := Vxn

if xn ∈ V (X) and Un := V (Exn
) if xn ∈ E(X) and analogously Wn := Vyn

or
Wn := V (Eyn

).

2.4. Ultra-fat half-grid minors. Let (V, E) be a model of the half-grid in a graph G. Denote by
(VK , EK) the submodel of (V, E) that consists precisely of all branch sets in V which correspond to vertices
(n,m) of the half-grid with n ≥ K or m ≥ K and of precisely all branch paths in E which correspond
to edges (n,m)(n′,m′) of the half-grid with n, n′ ≥ K or m,m′ ≥ K, ie. (VK , EK) corresponds to the
induced subgraph of the half-grid with vertex set N2 ∖ [K]2. We say that (V, E) is ultra-fat if for every
K ∈ N the model (VK , EK) is K-fat. The half-grid is an ultra-fat minor of G, denoted by HG ≺UF G,
if G contains an ultra-fat model of the half-grid. For an end ε of G, we write HG ≺ε

UF G if G contains
an ultra-fat model (V, E) of HG whose rays are all ε-rays.

The following observation is immediate from the definitions:

Observation 2.1. Let ε be an end of a graph G. If HG ≺ε
UF G, then HG ≺ε

∞ G. □

Moreover, we have the following proposition:
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Proposition 2.2. Let G be a graph, and let (V, E) be an ultra-fat model of the half-grid in G. If all its
branch sets are finite, then (V, E) diverges.

Proof. The proof is analogous to [AH24, Proposition 3.2], we repeat the details here for clarity.
Let (xn)n∈N and (yn)n∈N with xn, yn ∈ V (HG) ∪ E(HG) for all n ∈ N such that dHG(xn, yn) → ∞.

Let Un,Wn be the branch sets or paths of (V, E) corresponding to xn, yn, respectively. Now suppose
for a contradiction that dG(Un,Wn) does not tend to infinity. Then we may assume, by restricting to
subsequences, that dG(Un,Wn) = K for some K ∈ N and all n ∈ N. Since (V, E) is ultra-fat, this
implies that, for all n ∈ N, at least one of xn, yn is contained in HG[[K]2]. Hence, one of (xn)n∈N and
(yn)n∈N, say (xn)n∈N, is eventually constant, so we may assume that xn = z for all n ∈ N and some
z ∈ V (HG) ∪ E(HG). Since dG(xn, yn) → ∞, it follows (after possibly restricting to a subsequence
of (yn)n∈N) that the yn are pairwise distinct. Set Uz := Vz if z ∈ V (HG) or Uz := V (Ez) if z ∈ E(HG).
As Uz is finite and dG(Uz,Wn) = K for all n ∈ N, there is some v ∈ Uz and an infinite index set I ⊆ N
such that dG(v,Wn) = K for all n ∈ I. Hence, dG(Wn,Wm) ≤ 2K for all n,m ∈ N. But since I is infinite
and the Wn are pairwise distinct, this contradicts that (V, E) is ultra-fat. □

3. Proof of Coarse Halin Grid Theorem

In this section we prove two coarse versions of Halin’s Grid Theorem. Let us first state them for locally
finite graphs.

Theorem 3.1. Let ε be an end of a locally finite graph G.

(1) If ω ·R ≺ε
2K−1 G for some K ∈ N, then HG ≺ε

K G. In particular, if ω ·R ≺ε
∞ G, then HG ≺ε

∞ G.
(2) If G contains ε-rays R0, R1, . . . such that dG(Ri, Rj) ≥ max{i, j} for all i ̸= j, then HG ≺ε

UF G.

We remark that we show in Example 4.2 that the 2K − 1 in (1) is necessary.
The first part of Theorem 3.1 immediately implies Theorem 4.

Proof of Theorem 4 given Theorem 3.1. Since G is one-ended, ω · R ≺∞ G implies ω · R ≺ε
∞ G for the

unique end ε of G. The assertion now follows from Theorem 3.1 (1). □

In fact, we prove a more general version of Theorem 3.1 (see Theorems 3.2 and 3.3 below) for not
necessarily locally finite graphs, where we impose a further condition on the rays in the fat model of ω ·G.

Since a K-fat model of the half-grid contains between any two of its rays infinitely many paths that
are pairwise at least K apart, a necessary condition for containing a K-fat model of the half-grid whose
rays are all ε-rays is that there are infinitely many ε-rays which cannot be separated by removing finitely
many sets of vertices that all have diameter at most K − 1. We will present in Example 4.1 a graph that
verifies this statement, showing that Theorem 3.1 is false for arbitrary (not locally finite) graphs without
this additional assumption. Conversely, we will prove that a slightly stronger condition already suffices
to guarantee a K-fat half-grid minor.

Before we can state our two coarse versions of Halin’s Grid Theorem for arbitrary graphs, we need
another definition. We say that a ray R = r0r1 . . . in a graph G is K-fat for some K ∈ N if for every
n ∈ N there exists some N ∈ N such that dG(Rrn, rNR) ≥ K. It is easy to see that this is the case if and
only if there exist (finite) sets Bi ⊆ V (R) such that

⋃
i∈N Bi = V (R) and such that the Bi with even i

form the branch sets and the Bi with odd i form the branch paths of a K-fat model of the ray (cf. [GP25,
Lemma 6.2]). Moreover, every ray in a locally finite graph is K-fat for every K ∈ N.
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Theorem 3.2. Let ε be an end of a graph G, and let K ∈ N. Suppose that there is an infinite collection R
of (2K − 1)-fat ε-rays in G that are pairwise at least 2K − 1 apart and such that no two rays in R can be
separated in G by removing finitely many balls of radius at most 4K − 4 in G. Then HG ≺ε

K G.

Theorem 3.3. Let ε be an end of a graph G, and suppose that there are ε-rays R0, R1, . . . in G that are
K-fat for all K ∈ N and such that dG(Ri, Rj) ≥ max{i, j} for all i ̸= j ∈ N and such that no two rays
Ri, Rj can be separated in G by removing finitely many balls of finite radius. Then HG ≺ε

UF G.

Let us first show that Theorems 3.2 and 3.3 imply Theorem 3.1.

Proof of Theorem 3.1 given Theorems 3.2 and 3.3. (1): Take any model (V, E) of ω · R that witnesses
ω ·R ≺ε

2K−1 G. Since every vertex of ω · R has degree at most 2, we may assume that the branch sets
in V are finite paths. Then (V, E) yields an infinite collection R of (2K−1)-fat ε-rays that are pairwise at
least 2K − 1 apart. Since all rays in R are ε-rays, no two of them can be separated by removing finitely
many vertices. Hence, as G is locally finite, they can neither be separated by removing finitely many balls
of radius at most 4K − 4. Thus, R satisfies the premise of Theorem 3.2, and so HG ≺ε

K G as desired.
(2): Since G is locally finite, every ray Ri is K-fat for every K ∈ N. Moreover, since all rays Ri are

ε-rays, no two of them can be separated by removing finitely many vertices. As G is locally finite, they
can neither be separated by removing finitely many balls of finite radius. Thus, the Ri satisfy the premise
of Theorem 3.3, and so HG ≺ε

UF G as desired. □

The remainder of this section is devoted to the proofs of Theorems 3.2 and 3.3. The hexagonal half-grid
is obtained from the half-grid by deleting every other rung, as shown in Figure 3.1. We call the rays Si

of the (hexagonal) half-grid its vertical rays and the edges ei its horizontal edges (see Figure 3.1).
A subdivision of a graph H is a graph which arises from H by replacing every edge in H by a new path

between its endvertices such that no new path has an inner vertex in V (H) or on any other new path. The
original vertices of H are the branch vertices of the subdivision and the new paths are its branch paths.
If H is a subdivision of the (hexagonal) half-grid, we call its branch paths corresponding to horizontal
edges horizontal paths.

. . .

S0 S1 S2 S3 S4 S5 S6

e0
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Figure 3.1. The hexagonal half-grid with vertical rays Si and horizontal edges ei.

For the proofs of Theorems 3.2 and 3.3, it will be more convenient to first construct a subdivision of
the hexagonal half-grid and then contract it into a model of the half-grid. Since Theorems 3.2 and 3.3
yield fat models of the half-grid, we want to find a subdivision of the hexagonal half-grid whose vertical
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rays Si are fat and pairwise far apart and whose horizontal paths are far apart from all other horizontal
paths and from all vertical rays except those two rays that contain its endvertices.

For this, consider the following strengthening of Halin’s Grid Theorem by Kurkofka, Melcher and Pitz.

Theorem 3.4 ([KMP22, Theorem 1]). For every infinite collection R of disjoint equivalent rays in a
graph G there is a subdivision of the hexagonal half-grid in G such that all its vertical rays belong to R.

Theorem 3.4 comes somewhat close to what we want: If we apply Theorem 3.4 to the collection R of
ε-rays provided by the premise of Theorem 3.2 or 3.3, then we obtain a subdivision H of the hexagonal
half-grid in G whose vertical rays belong to R, and which are thus fat and pairwise far apart.

However, we also need that the horizontal paths Pi of H are pairwise far apart and that they are far
apart from all vertical rays Si (except those two containing their endvertices). While the former property
is easily achievable by restricting to a subset of the Pi at least for locally finite graphs, the latter property
cannot be achieved by post-processing the given subdivision H. Indeed, it might even happen that for all
i < j ∈ N all Si–Si+1 paths Pk in H have distance 1 from Sj , so we cannot obtain a hexagonal half-grid
with the desired distance constraints by removing some of the paths and rays from H.

To solve this problem, we apply Theorem 3.4 to a suitable auxiliary graph G′. Let us briefly sketch the
idea for locally finite graphs. In that case, we may take as G′ the graph obtained from G by ‘contracting’
large-radius balls around the rays R ∈ R onto the rays R. We then apply Theorem 3.4 to R in G′, which
yields a subdivision H ′ of the hexagonal half-grid in G′. By the definition of G′, each horizontal path
of H ′ ‘lifts’ to a path in G that is far apart from all vertical rays of H ′ except for the two which it links.
To obtain the desired subdivision H of the hexagonal half-grid in G, we then only need to choose the
horizontal paths for H among the ‘lifts’ of the horizontal paths of H ′ so that they are pairwise far apart,
which we can easily do recursively in locally finite graphs. To obtain Theorems 3.2 and 3.3 also for graphs
that are not locally finite, we still follow this approach, but we need to define G′ more carefully.

We will find the subdivisions of the hexagonal half-grid for Theorems 3.2 and 3.3 simultaneously, by
showing the following lemma (Lemma 3.5). For the proofs of Theorems 3.2 and 3.3, it then suffices to
apply Lemma 3.5 with Ki := K for all i ∈ N or with Ki := i for all i ∈ N, and then contract the given
subdivision of the hexagonal half-grid appropriately into a half-grid.

Lemma 3.5. Let K0 ≤ K1 ≤ . . . ∈ N, and let R0, R1, . . . be rays in a graph G that are (2Ki − 1)-fat for
all i ∈ N such that dG(Ri, Rj) ≥ Ki + Kj − 1 for all i ̸= j ∈ N and such that no two rays Ri, Rj can
be separated in G by deleting finitely many balls of radius 4Kk − 4 for any k ∈ N. Then there exists a
subdivision H of the hexagonal half-grid in G such that

(i) the set S = {S0, S1, . . . } of vertical rays in H is a subset of {R0, R1, . . . },
(ii) every horizontal path P in H with endvertices in Si, Si+1 has distance at least Kk from Sk in G

for all rays Sk ∈ S ∖ {Si, Si+1},
(iii) for every horizontal path P in H with an endvertex in Si, the subgraph P ∩G[Si,Ki− 1] is a path

of length Ki − 1, and
(iv) every two distinct horizontal paths in H with endvertices in Si, Si+1 and Sj , Sj+1, respectively,

are at least Kn apart in G where n := min{Ki,Kj}.
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Proof. We first construct an auxiliary graph G′, to which we will apply Theorem 3.4. For this, we
recursively choose Rki–Rℓi paths Pi in G, where ((ki, ℓi))i∈N is some sequence in N2 containing every
(n,m) ∈ N2 with n ̸= m infinitely often, such that for all i < j ∈ N

(1) dG(Pi, Pj) ≥ 4Kj − 3,
(2) if dG(Pi, r), dG(Pj , s) < Kk for some k ∈ N and r, s ∈ V (Rk), then s appears on Rk after r.

Let j ∈ N and assume that we have already chosen Pi for all i < j. Since dG(Rk, Rℓ) ≥ Kk +Kℓ − 1 for
all k ̸= ℓ ∈ N, there exists some M ∈ N such that no ray Rk with k > M has distance less than Kk to
any Pi with i < j. As the rays Rk are (2Kk − 1)-fat, there is for every k ≤ M some vertex rk such that
rkRk has distance at least Kk from all Pi with i < j. Since deleting finitely many balls of radius 4Kn − 4

does not separate Rkj and Rℓj in G for any n ∈ N by assumption, there is an Rkj–Rℓj path Pj in G which
avoids

⋃
i<j BG(Pi, 4Kj − 4) and

⋃
k≤M BG(Rkrk,Kk − 1). Clearly, Pj satisfies (1) and (2).

We now define an auxiliary graph G′. Its vertex set is V (G′) :=
⋃

i∈N(V (Ri) ∪ V (P ′
i )) where P ′

i :=

Pi −
⋃

k∈N BG(Rk,Kk − 1) for all i ∈ N. We put an edge uv between u, v ∈ V (G′) in the following three
cases: 1) if uv ∈ E(G), 2) if u ∈ V (Rk) and v ∈ V (P ′

i ) for some k, i ∈ N and dG(u, v) = Kk, and 3) if
u ∈ V (Rk) and v ∈ V (Rℓ) for some k ̸= ℓ ∈ N and some BG(Rk,Kk−1)–BG(Rℓ,Kℓ−1) edge is contained
in Pi for some i ∈ N.

By definition, Ri ⊆ G′ for all i ∈ N. We claim that the Ri are still equivalent in G′. Indeed, let Rk, Rℓ

be given, and let Pi, Pj , with i < j, be Rk–Rℓ paths. Let I := {n ∈ N : dG(Rn, Pi) < Kn}. Since Pi

is connected, it follows by the definition of G′ that G′
i := G′[V (P ′

i ) ∪
⋃

n∈I V (Rn)] is connected. Let Qi

be an Rk–Rℓ path in G′
i, and let Qj be defined analogously for Pj . Then Qi, Qj are disjoint. Indeed, P ′

i

and P ′
j are disjoint by (1), and any subpath of Qi in some Rn is disjoint from any subpath of Qj in Rn

since the endvertices of edges of G′
j incident with Rn appear on Rn after the endvertices of edges of G′

i

incident with Rn by (2). Since infinitely many Pi are Rk–Rℓ paths, Rk, Rℓ are equivalent in G′.
We now apply Theorem 3.4 in G′ to R := {R0, R1, . . . }, which yields a subdivision H ′ of the hexagonal

half-grid in G′. By Theorem 3.4, the vertical rays of H ′ are a subset R′ of R. We first choose rays
Ri0 , Ri1 , . . . ∈ R′ such that i0 < i1 < . . . and such that, for all j < k ∈ N, the ray Rik appears in H ′ as a
vertical ray after Rij . Set Sj := Rij for all j ∈ N, and let S := {S0, S1, . . . }. Further, set K ′

j := Kij for
all j ∈ N, and note that K ′

j ≥ Kj . It is now straightforward to find a subdivision H ′′ ⊆ H ′(⊆ G′) of the
hexagonal half-grid whose i-th vertical is Si for every i ∈ N.

We now turn H ′′ into a subdivision H of the hexagonal half-grid in G. Its vertical rays will be precisely
the rays in S (in that order), and hence H will satisfy (i). Before we choose suitable horizontal paths
for H, we first turn every horizontal path in H ′′ into a path in G. For this, let W ′

i = w′
0 . . . w

′
n be a

horizontal path of H ′′ with endvertices in Ski
, Ski+1 ∈ S. By the definition of G′, every edge f of W ′

i

which is not an edge of G is either of the form uv for some vertex v in some Rj ∈ R and a vertex
u ∈ BG(v,Kj) ∖ BG(v,Kj − 1) or of the form uv for vertices u, v on distinct rays Rj , Rk ∈ R such that
BG(u,Kj−1) and BG(v,Kk−1) are joined by an edge e in some Pℓ. In the former case we replace uv by a
u–v path in G of length Kj , and in the latter case we replace uv by a u–v path in G of length Kj +Kk−1

containing e. We then let Wi be some w′
0–w′

n path in the resulting w′
0–w′

n walk in G.
Since W ′

i is a horizontal path of H ′′, it avoids all rays Sm ∈ S except for Ski
, Ski+1. By the definition

of G′, it follows that V (W ′
i ) has distance at least K ′

m in G from all Sm ∈ S with Sm ̸= Ski
, Ski+1. As

dG(Rj , Rk) ≥ Kj +Kk − 1 for all Rj ̸= Rk ∈ R, and every vertex of Wi − V (W ′
i ) has distance at most
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K ′
ki
− 1 or K ′

ki+1 − 1 from Ski , Ski+1, respectively, or distance at most Kj − 1 from some ray Rj ∈ R∖S,
the path Wi in G has distance at least K ′

j from Sj for every Sj ∈ S ∖ {Ski
, Ski+1}.

We now choose for H for every horizontal edge ei of the hexagonal half-grid a branch path Ei, in
the order e0, e1, e2, . . . indicated in Figure 3.1. In fact, we will choose Ei among the paths Wj joining
the respective vertical rays of H. By the construction above and because K ′

i ≥ Ki for all i ∈ N, this
immediately implies that H will satisfy (ii) and (iii).

So let j ≥ 0 be given, and assume that for every i < j, we have already chosen some Wℓi to be the
branch path Ei corresponding to the edge ei of the hexagonal half-grid. Let kj ∈ N such that Skj

, Skj+1

correspond to the vertical rays of the hexagonal half-grid that are joined by ej . Since dG(Pi, Pk) ≥ 4Kkj−3

for all i, k ≥ kj by (1), every vertex of some Ei has distance less than 2Kkj − 1 to at most one path Pk

with k ≥ kj . As
⋃

i<j V (Ei) is finite, it follows that at most finitely many Pk have distance less than
2Kkj

− 1 from some Ei with i < j. Since the paths W ′
ℓ are disjoint, all but finitely many of them avoid

these finitely many Pk. Hence, by the definition of the Wℓ, all but finitely many of the paths Wℓ that link
Skj and Skj+1 in H ′′ satisfy the following condition:

(a) For every k ∈ N, if Pk ∩Wℓ ̸= ∅, then dG(Pk, Ei) ≥ 2Kkj
− 1 for all i < j.

As dG(Ri, Rk) ≥ Ki + Kk − 1 for all i ̸= k ∈ N, and because the Ei are finite, there is some L ∈ N
such that dG(Rk, Ei) ≥ Kkj

for all k > L. Since the Rk are (2Kkj
− 1)-fat, at most finitely many vertices

of Rk have distance less than Kkj from some Ei. Hence, and again because the Rk are (2Kk − 1)-fat,
there exists for every k ∈ N some rk ∈ V (Rk) such that, for every i < j, the tail rkRk has distance at
least Kkj

from Ei, and distance at least 2Kk − 1 from all vertices of Rk that have distance less than Kk

from Ei. Then
⋃

k<L Rkrk is finite, and hence, as the paths W ′
ℓ are disjoint, all but finitely many of them

avoid
⋃

k<L Rkrk. Thus, by the definition of the Wℓ, all but finitely many of the paths Wℓ that link Skj

and Skj+1 in H ′′ satisfy the following conditions:

(b) For every k ∈ N, if Rk ∩Wℓ ̸= ∅, then dG(Rk ∩Wℓ, Ei) ≥ Kkj
for all i < j.

(c) For every i, k ∈ N with i < j, and every r, s ∈ V (Rk), if BG(r,Kk − 1) ∩ V (Wℓ) ̸= ∅ and
BG(s,Kk − 1) ∩ V (Ei) ̸= ∅, then dG(r, s) ≥ 2Kk − 1.

Since, for all three conditions (a) to (c) separately, all but finitely many of the paths Wℓ that link Skj

and Skj+1 in H ′′ satisfy the respective condition, there is some such Wℓ that satisfies (a) to (c) simul-
taneously, and whose endvertices in Skj

, Skj+1 appear on Skj
, Skj+1, respectively, after all endvertices of

branch paths Ei with i < j. We set ℓj := ℓ and Ej := Wℓ.
In this way, we construct a subdivision H of the hexagonal half-grid in G that satisfies (i) to (iii). We

claim that H also satisfies (iv). Indeed, let i < j be given, and let vj ∈ V (Ej). If vj ∈ BG(Pk,Kkj − 1)

for some k ∈ N, then dG(vj , Ei) ≥ Kkj
follows by (a). Hence, as Ej = Wℓj and by the definition of Wℓj ,

every other vertex vj ∈ V (Ej) is contained in BG(Rk,Kk − Kkj
) for some k ∈ N. If vj ∈ V (Rk), then

dG(vj , Ei) ≥ Kkj follows by (b). Hence, we may assume vj ∈ BG(Rk,Kk − Kkj ) ∖ V (Rk), which in
particular implies that Kkj < Kk. Let also vi ∈ V (Ei). If vi /∈ BG(Rk,Kk − 1), then dG(vi, vj) ≥ Kkj

follows since vj ∈ BG(Rk,Kk −Kkj
) and Kk > Kkj

. Hence, we may assume that vi ∈ BG(Rk,Kk − 1).
Let r, s ∈ V (Rk) such that vi ∈ BG(r,Kk−1) and vj ∈ BG(s,Kk−Kkj

). Then dG(r, s) ≥ 2Kk−1 by (c),
and thus dG(vi, vj) ≥ dG(r, s)− dG(vi, r)− dG(vj , s) ≥ (2Kk − 1)− (Kk − 1)− (Kk −Kkj ) = Kkj . This
completes the proof that H satisfies (iv), and hence concludes the proof. □

We can now prove Theorems 3.2 and 3.3.
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Proof of Theorem 3.2. Without loss of generality assume that the collection R is countably infinite and
enumerated as R := {R0, R1, . . . }. By the assumptions on R, the rays Ri satisfy the premise of Lemma 3.5
with Ki := K for all i ∈ N. Hence, applying Lemma 3.5 yields a subdivision H of the hexagonal half-
grid in G that satisfies (i) to (iv). It is now straight forward to check that H can be contracted into a
K-fat model (V, E) of the half-grid (where the branch paths in E corresponding to horizontal edges of
the half-grid are a subset of the horizontal paths of H, and the branch sets and paths corresponding to
vertices and edges of the i-th vertical ray {i} × N of the half-grid are suitable subpaths of Si). Indeed,
(i) combined with dG(Ri, Rj) ≥ 2K − 1 ≥ K for all Ri ̸= Rj ∈ R ensures that branch sets and paths
of vertices and edges of the half-grid on distinct vertical rays have distance at least K in G. Moreover,
(iv) ensures that every two distinct horizontal branch paths have distance at least K, and (ii) yields that
horizontal branch paths have distance at least K from branch sets and paths on vertical rays that are
not joined by that branch path. Finally, (i) together with the rays in R being (2K − 1)-fat ensures that
we may choose (V, E) so that branch sets and paths on the same ray Si have distance at least K from
each other, and by (iii) we can also choose them so that they have distance at least K from branch paths
corresponding to non-incident horizontal edges that have an endvertex on the same vertical ray. □

Proof of Theorem 3.3. By restricting the sequence (Ri)i∈N to those rays Ri whose index is even and
renumbering them (i.e. ‘Ri := R2i’), we may assume that dG(Ri, Rj) ≥ max{2i, 2j} ≥ i + j − 1. Then
the Ri satisfy the premise of Lemma 3.5 with Ki := i for all i ∈ N. Hence, applying Lemma 3.5 yields
a subdivision H in G of the hexagonal half-grid that satisfies (i) to (iv). Analogously to the previous
proof (of Theorem 3.2), it is straightforward to check that H can be contracted into a model (V, E) of the
half-grid where the fact that Ki = i instead of Ki = K and that the rays Ri are Ki-fat for all i ∈ N yields
that for every i ∈ N, the submodel of (V, E) corresponding to N≥i × N is i-fat.

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(4, 0)

(6, 0)

(7, 0)

(0, 1)

(1, 1)

(2, 1)

(3, 1)

(4, 1)

(5, 1)

(6, 1)

(7, 1)

(0, 2) (0, 3)

7-fat

Figure 3.2. The model (V ′, E ′) of the hexagonal half-grid in the proof of Theorem 3.3.

We now use (V, E) to find an ultra-fat model of the half-grid. For this, we first define a model (V ′, E ′)

of the hexagonal half-grid as indicated in Figure 3.2. For every vertex (n,m) ∈ N2, its branch set V ′
(n,m)

is equal to V(j,n) for some suitable j ∈ N, every horizontal branch path E′
(n,m)(n+1,m) is equal to some
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‘vertical’ branch path of the form E(i,j)(i,j+1), and every ‘vertical’ branch path E′
(n,m)(n,m+1) is contained

in
⋃

j∈N(G[V(j,n)] ∪ E(j,n)(j+1,n)) (see Figure 3.2). As the submodel of (V, E) corresponding to N≥K × N
is K-fat for all K, the submodel of (V ′, E ′) corresponding to N2 ∖ [K]2 is K-fat for all K ∈ N. It is now
easy to check that (V ′, E ′) can be contracted into a model of the half-grid which still has this property,
and which is hence ultra-fat. □

4. Counterexamples regarding coarse versions of Halin’s Grid Theorem

In this section, we present two examples regarding coarse versions of Halin’s Grid Theorem. The first
example shows that Problem 1.2 is false in general for graphs that are not locally finite. The second
example shows that the number 2K − 1 in Theorem 3.1 is best possible.

Example 4.1. There is a one-ended graph G such that ω ·R ≺∞ G but HG ̸≺2 G.

Proof. Let G be the graph obtained from the disjoint union of infinitely many rays R0, R1, R2, . . . and
a Kℵ0

by joining the i-th vertices of the Rj with the i-th vertex of Kℵ0
by paths Pi,j of length j for all

i, j ∈ N. Then for all K ∈ N the rays RK , RK+1, . . . are 2K-fat and pairwise 2K apart, and thus can be
contracted into a 2K-fat model of ω · R. In particular, as G is one-ended, we have ω · R ≺ε

∞ G for the
unique end ε of G.

We claim that the half-grid is not a 2-fat minor of G. Indeed, suppose for a contradiction that G

contains a 2-fat model (V, E) of the half-grid. As the Kℵ0
has diameter 1, at most one branch set in V

and at most one branch path in E can contain a vertex from Kℵ0 . But since the half-grid still contains a
half-grid after removing an arbitrary vertex and an arbitrary edge, and because removing the Kℵ0 from G

leaves only combs Cj = Rj ∪
⋃

i∈N Pi,j as components, one of the combs Cj would contain a K-fat model
of the half-grid. But as combs are trees, they not even contain a 0-fat model of the half-grid. This yields
the desired contradiction. □

Example 4.2. For all K ∈ N, there is a one-ended, locally finite graph G such that ω · R ≺2K−2 G but
HG ̸≺K G.

Proof. Let G be the graph obtained from the disjoint union of infinitely many rays T,R0, R1, R2, . . . by
joining the vertex rji of Rj = rj0r

j
1 . . . and the vertex ti+j of T = t0t1 . . . by a path Pij of length K− 1 for

all i, j ∈ N. Then T and all rays Rj are equivalent, and G is one-ended. Note that G is locally finite since
degG(r

j
i ) ≤ 3 for all i, j ∈ N, since all internal vertices of the paths Pij have degree 2 in G, and since

degG(ti) ≤ |{(j, k) ∈ N2 | j + k = i}|+ 2 ≤ |{(j, k) ∈ N2 | j, k ≤ i}|+ 2 = (i+ 1)2 + 2

for all i ∈ N. Since dG(R
i, Rj) = 2K − 2 by construction, and since the rays Ri are (2K − 2)-fat as G is

locally finite, the rays Ri can be contracted into a (2K − 2)-fat model of ω ·R.
We claim that the half-grid is not a K-fat minor of G. For this, suppose towards a contradiction that

there is a K-fat model (V, E) of the half-grid in G. Let S′
i be the induced subgraph of G on those vertices

that lie in some branch set or branch path in V ∪ E belonging to the vertical ray Si of the half-grid. Let
further Un := {tn} ∪ {rji : i, j ∈ N, i + j = n}, for n ∈ N, be the n-th ‘level’ of G, and note that G − Un

has precisely one infinite component Cn, and that Cn+1 ⊆ Cn for all n ∈ N. As the S′
i are connected

and
⋂

n∈N Cn = ∅, there exists for every S′
i some n ∈ N such that S′

i meets all ‘levels’ Um with m ≥ n.
Hence, there is some n ∈ N such that at least three distinct S′

i meet every Um for m ≥ n. Then for every
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m ≥ n the vertex tm in T cannot be in any S′
i since it has distance less than K to all the other vertices

in Um. But similarly, tm cannot lie in a branch path in E representing a horizontal edge of the half-grid
since tm has distance less than K from at least three S′

i. So (V, E) avoids the ray T≥n, and hence at most n
branch sets and paths of (V, E) contain a vertex of T . Since the half-grid still contains the half-grid as
a minor after deleting finitely many vertices and edges, and because the half-grid is connected, there is
some component C of G−T which contains the half-grid as a minor. But the components of G−T are all
combs of the form Ri ∪

⋃
j∈N Pij , and hence not even contain a 0-fat model of the half-grid. This yields

the desired contradiction. □

5. Half-grid minors in one-ended quasi-transitive graphs

In this section we apply one of our coarse versions of Halin’s Grid Theorem to prove Theorem 1, which
we restate here for convenience:

Theorem 1. Every one-ended, quasi-transitive, locally finite graph G contains the half-grid as an ultra-fat
minor. In particular, the half-grid is an asymptotic minor and a diverging minor of G.

A graph G is quasi-transitive if the automorphism group of G acts on V (G) with only finitely many
orbits, that is, if V (G) can be partitioned into finitely many sets U0, . . . , Un such that for all i ∈ {0, . . . , n}
and u, v ∈ Ui there exists an automorphism φ of G such that φ(u) = v.

Given an automorphism φ of a graph G, a set U ⊆ V (G) is φ-invariant if φ(U) = U . A subgraph X

of G is φ-invariant if V (X) is φ-invariant. An automorphism φ of a graph G is elliptic if G contains
a finite φ-invariant set of vertices and non-elliptic otherwise. If R is a φ-invariant double ray and φ is
non-elliptic, then we say that φ acts as a translation on R.

The main effort of this section goes into showing that every graph G as in Theorem 1 contains infinitely
many rays R0, R1, . . . such that dG(Ri, Rj) ≥ max{i, j} for all i ̸= j ∈ N. Theorem 1 then follows from
Theorem 3.1 (2). For this, we distinguish two cases. In the first case, in Section 5.1 below, we assume that
some automorphism of G is non-elliptic. The second case, in Section 5.2 below, deals with the remaining
case that all automorphisms of G are elliptic. The formal proof of Theorem 1, which collects the results
from Sections 5.1 and 5.2, can be found in Section 5.3

5.1. Some automorphism of G is non-elliptic. We now show that every one-ended, connected, locally
finite graph G with a non-elliptic automorphism contains infinitely many rays that are pairwise far apart.
For this, we need the following result of Halin:

Lemma 5.1 ([Hal73, Theorem 7]). For every non-elliptic automorphism φ of a connected graph G there
exists a φ-invariant double ray.

Let G and H be graphs. A map f : V (H) → V (G) is a coarse embedding , if there exist functions
ρ− : [0,∞) → [0,∞) and ρ+ : [0,∞) → [0,∞) such that ρ−(a) → ∞ for a → ∞ and

ρ−(dH(u, v)) ≤ dG(f(u), f(v)) ≤ ρ+(dH(u, v))

for all u, v ∈ V (H). If H is a subgraph of G, then H is coarsely embedded in G if the inclusion map
ι : V (H) → V (G) is a coarse embedding.

The next lemma guarantees that the double ray from Lemma 5.1 is coarsely embedded in G.
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Lemma 5.2. Let G be a locally finite graph. Let φ be a non-elliptic automorphism of G, and let R be a
φ-invariant double ray. Then R is coarsely embedded in G.

Proof. For L ≥ 0, we set KL := min{dG(x, y) | x, y ∈ V (R), dR(x, y) = L}, and ρ : N → N, L 7→ KL.
Then

ρ(dR(x, y)) = KdR(x,y) ≤ dG(x, y) ≤ dR(x, y).

Hence, it remains to show that KL tends to infinity for L → ∞. For this, let n ∈ N be given, and let
x1, . . . , xm be representatives of the ⟨φ⟩-orbits on R. Since G is locally finite, the balls BG(xi, n) are
finite. As there are only finitely many ⟨φ⟩-orbits on R, this implies that there exists some Nn such that
dR(xi, r) ≤ Nn for all i ≤ m and r ∈ BG(xi, n) ∩ V (R). In particular, as x1, . . . , xm are representatives
of the ⟨φ⟩-orbits on R, we have dR(r, s) ≤ Nn for all r, s ∈ V (R) with dG(r, s) ≤ n. This implies that
KNn+1 > n, and thus KL tends to infinity for L → ∞, as desired. □

Combining Lemmas 5.1 and 5.2 we obtain that every locally finite, connected graph with a non-elliptic
automorphism contains a φ-invariant double ray R, and R is coarsely embedded in G. The next two
lemmas show that if G is one-ended, and hence all tails of R lie in the same end, then we can find
infinitely many rays Ri in G in ‘thickened cylinders’ around R of the form G[R,Li+1]−BG(R,Li + i+1)

for suitable integers L0 < L1 < . . . ∈ N with Li+1−Li ≥ i+1. Hence, dG(Ri, Rj) ≥ |Lj −Li| ≥ max{i, j}
for all i ̸= j ∈ N as desired.

Let G be a graph, and let R be a double ray in G. For K ∈ N, let C be a component of G−BG(R,K).
We say that C is half-long if there are infinitely many r ∈ V (R) such that C has a neighbour in BG(r,K).
Further, C is half-thick if, for every L ≥ K, some half-long component of G−BG(R,L) is contained in C.

Lemma 5.3. Let G be a one-ended, locally finite graph. Let φ be a non-elliptic automorphism of G, and
let R be a φ-invariant double ray. Then G − BG(R,L) has at least one half-thick component for every
L ∈ N.

Proof. Set R =: . . . r−1r0r1 . . ., and let L ∈ N. Let us first show that G[R,K] ̸= G for all K ∈ N. As R

is coarsely embedded in G by Lemma 5.2, there is some K ′ such that R≤0 and R≥K′ have distance at
least 2K +2 from each other, which implies that the sets BG(R≤0,K) and BG(R≥K′ ,K) are disjoint and
not joined by an edge. Hence, every BG(R≤0,K)–BG(R≥K′ ,K) path meets either BG(r1RrK′−1,K) or
G−G[R,K]. But since both R≤0 and R≥K′ lie in the unique end of G, there are infinitely many disjoint
such paths, of which at most finitely many can meet the set BG(r1RrK′−1,K), which is finite since G is
locally finite. Hence, G−G[R,K] is non-empty for all K ∈ N.

Thus, there exist vertices x1, x2, . . . such that d(xi, R) ≥ i for all i ∈ N. Let yi ∈ V (R) such that
d(xi, R) = d(xi, yi). Since φ acts on R as a translation, there are only finitely many ⟨φ⟩-orbits on R.
Hence, there is an infinite subset I ⊆ N such that all yi for i ∈ I lie in the same ⟨φ⟩-orbit. We may assume
1 ∈ I. For every i ∈ I, let Pi be a shortest yi–xi path and let φi ∈ ⟨φ⟩ such that φi(yi) = y1. Then,
since G is locally finite, there exists an infinite index set I1 ⊆ I such that φi(Pi)∩G[y1, 1] coincides for all
i ∈ I1, amongst which we again find an infinite index set I2 ⊆ I1 such that φi(Pi) ∩G[y1, 2] coincides for
all i ∈ I2 and so on. This results in a geodesic ray S that starts at y1 and satisfies dG(u,R) = dS(u, y1)

for all u ∈ V (S). In particular, S has a tail in G − BG(R,K) for all K ∈ N. Since G is one-ended,
there are infinitely many pairwise disjoint S–R paths. This shows that the components of G−BG(R,K)
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that contain a tail of S are half-long, and hence the component of G−BG(R,L) containing a tail of S is
half-thick. □

Lemma 5.4. Let G be a one-ended, connected, locally finite graph with a non-elliptic automorphism.
Then there are infinitely many rays R0, R1, . . . such that dG(Ri, Rj) ≥ max{i, j} for all i ̸= j ∈ N.

Proof. Let φ be a non-elliptic automorphism of G. By Lemma 5.1, there exists a φ-invariant double ray R

in G. By Lemma 5.3, some component C of G − BG(R, 0) is half-thick. Hence, there exists for every
i ∈ N a half-long component Ci ⊆ C of G−BG(R, i). We will construct an increasing sequence (Ki)i∈N of
integers Ki ∈ N and a sequence (Ri)i∈N of rays such that Ri lies in G[R,Ki]−BG(R,Ki−1+ i). Then the
rays R0, R1, . . . clearly satisfy dG(Ri, Rj) ≥ max{i, j} for all i ̸= j ∈ N and hence the assertion follows.

Let j ∈ N and assume that we have constructed all Ki and Ri for i < j. Since CKj−1+j is half-long,
there are infinitely many distinct vertices x1, x2, . . . in R with d(xi, CKj−1+j) = Kj−1+ j+1. As ⟨φ⟩ acts
as a translation on R, infinitely many of the xi lie in the same ⟨φ⟩-orbit. Hence, we may assume that all xi

lie in the same ⟨φ⟩-orbit. For every i ∈ N, let φi ∈ ⟨φ⟩ such that φi(xi) = x1 and let yi ∈ V (CKj−1+j)

with dG(xi, yi) = dG(xi, CKj−1+j). Since G is locally finite, the ball BG(x1,Kj−1 + j + 1) is finite, and
hence there are distinct i, ℓ such that φi(yi) = φℓ(yℓ). As φi(R) = R = φℓ(R) since φi, φℓ ∈ ⟨φ⟩, and
because φi(yi) = φℓ(yℓ) and yi, yℓ ∈ V (CKj−1+j), it follows that φi(CKj−1+j) = φℓ(CKj−1+j).

Again because φi, φℓ ∈ ⟨φ⟩, there is n ∈ Z ∖ {0} such that φ−1
i φℓ = φn. Then, φn(CKj−1+j) =

φ−1
i (φℓ(CKj−1+j)) = CKj−1+j ; in particular, φkn(y1) ∈ CKj−1+j for all k ∈ Z. Thus, φkn(x1) has

distance Kj−1 + j + 1 to CKj−1+j for every k ∈ Z. Let P be a y1–φn(y1) path in CKj−1+j . Then⋃
k∈Z φ

kn(P ) is connected and contained in G[R,Kj ]−BG(R,Kj−1 + j) where Kj is equal to the length
of P plus Kj−1 + j + 1. Moreover,

⋃
k∈Z φ

kn(P ) is connected, and it is infinite since φ is not elliptic.
Hence, as G is locally finite,

⋃
k∈Z φ

kn(P ) contains a ray Rj (see e.g. [Die24, Proposition 8.2.1]), which
thus lies in G[R,Kj ]−BG(R,Kj−1 + j) ⊇

⋃
k∈Z φ

kn(P ). □

5.2. All automorphisms of G are elliptic. We show that every one-ended, quasi-transitive, locally
finite graph G whose automorphisms are all elliptic contains infinitely many rays that are pairwise far
apart. For this, we first show in Lemma 5.5 below that if an elliptic automorphism φ maps the first
vertex r0 of a ‘geodesic’ ray R to another vertex of R far enough away from r0, then φ(R) has a tail that
is far apart from R. We then apply this result infinitely often to find infinitely many rays in G such that,
for every n ∈ N, the n-th ray has a tail with distance at least n from all previously chosen rays.

A subgraph X of G is geodesic (in G) if for every two vertices u, v ∈ V (X) we have dX(u, v) = dG(u, v).

Lemma 5.5. Let K ∈ N, let G be a locally finite graph, and let R = r0r1 . . . be a geodesic ray in G. Let φ
be an elliptic automorphism of G such that φ(r0) = rd for some d ≥ 4K. Then there exists j ∈ N such
that dG(R≥j , φ(R)) ≥ K.

Proof. Let us suppose for a contradiction that dG(R≥j , φ(R)) < K for all j ∈ N. We show that
dG(r0, φ

n(r0)) tends to infinity for n → ∞. This then yields a contradiction as φ is elliptic, and hence
the φ-orbit of r0 is finite.

Set i0 := 0. Since dG(R≥j , φ(R)) < K for all j ∈ N, there exist d := i1 < i2 < . . . ∈ N such that
dG(rij , φ(R)) < K for all j ∈ N≥1. Set ℓj := ij+1 − ij for all j ∈ N. By restricting to a subsequence
of (ij)j∈N if necessary, we may assume that ℓj ≥ d+ 2K for all j ∈ N≥1. For j ∈ N≥1, let yj be in φ(R)
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with dG(rij , φ(R)) = dG(rij , yj), and set ℓ′j := dG(φ(rij ), yj+1) for all j ≥ 1. Then

(5.1)
ℓ′j + dG(yj , φ(rij )) = dG(φ(rij ), yj+1) + dG(yj , φ(rij )) = dG(yj , yj+1)

≤ dG(yj , rij ) + dG(rij , rij+1) + dG(rij+1 , yj+1) < K + ℓj +K = ℓj + 2K,

where we used for the second equality that R is geodesic. Since φ(r0) = ri1 = rd, we have

ij = dG(r0, rij ) = dG(φ(r0), φ(rij )) = dG(ri1 , φ(rij ))

≤ dG(ri1 , rij ) + dG(rij , yj) + dG(yj , φ(rij )) < (ij − d) +K + dG(yj , φ(rij )),

where we again used that R is geodesic. Hence, dG(yj , φ(rij )) > d−K. Combining this with (5.1) yields

ℓ′j < ℓj + 2K − dG(yj , φ(rij )) < ℓj + 3K − d,

and hence

(5.2) dG(φ(rij ), rij+1
) ≤ dG(φ(rij ), yj+1) + dG(yj+1, rij+1

) < ℓ′j +K < (ℓj + 3K − d) +K ≤ ℓj

as d ≥ 4K. For the next sequence of inequalities, we recall that φ0 = id; in particular φ0(rin) = rin .
Since dG(r0, φ

n(r0)) + dG(φ
n(r0), rin) ≥ dG(r0, rin) = in, we conclude

dG(r0, φ
n(r0)) ≥ in − dG(φ

n(r0), rin) ≥ in −
n−1∑
j=0

dG(φ
j+1(rin−j−1), φ

j(rin−j ))

(where we used the generalised triangle inequality for the second inequality)

= in −
n−1∑
j=0

dG(φ(rin−j−1
), rin−j

) ≥ in −
n−1∑
j=0

(ℓn−j−1 − 1)

(where we used for the first (in)equality that automorphisms preserve distances and (5.2) for the second)

= in −
n−1∑
j=0

(in−j − in−j−1 − 1) = in − (in − i0 − n) = n.

Since this last expression tends to infinity for n → ∞, this contradicts φ being elliptic. □

Lemma 5.6. Let K ∈ N and let G be an infinite, connected, quasi-transitive, locally finite graph all
of whose automorphisms are elliptic. Then there are infinitely many geodesic rays R0, R1, . . . such that
dG(Ri, Rj) ≥ max{i, j} for all i ̸= j ∈ N.

Proof. Since G is infinite, connected, and locally finite, a standard compactness argument yields a geodesic
ray R = r0r1 . . . in G. Since G is quasi-transitive, some orbit under the automorphism group of G contains
infinitely many vertices of R. We may assume that r0 lies in this orbit. Then there is an automorphism φ1

of G such that φ1(r0) = ri1 for some i1 ≥ 4. For general j, we choose φj such that φj(rij−1) = rij for
some ij ∈ N with ij − ij−1 ≥ 4j. Set R′

0 := R, and R′
j := φ−1

1 ◦ . . . ◦ φ−1
j (R≥ij ) for all j ≥ 1. We claim

that for every k < j the ray R′
j has a tail Rk

j that has distance at least j from R′
k. The assertion then

follows by setting Rj :=
⋂

k<j R
k
j , which is still a ray as j is finite.

So let k < j be given. Since all automorphisms of G are elliptic, also φ := φj ◦ . . . ◦ φk+1 is elliptic.
As also φ(rik) = rij and ij − ik ≥ ij − ij−1 ≥ 4j, applying Lemma 5.5 to R≥ik , φ and K := j shows
that there is some n ≥ ij such that dG(R≥n, φ(R≥ik)) ≥ j. Set Rk

j := φ−1
1 ◦ . . . ◦ φ−1

j (R≥n). As
R′

k = φ−1
1 ◦ . . . ◦φ−1

k (R≥ik) = φ−1
1 ◦ . . . ◦φ−1

j (φ(R≥ik)) and because automorphisms preserve distances, it
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follows that dG(R
k
j , R

′
k) = dG(R≥n, φ(R≥ik)) ≥ j. Since R′

j = φ−1
1 ◦ . . . ◦ φ−1

j (R≥ij ) and n ≥ ij , we have
Rk

j ⊆ R′
j , and hence Rk

j is as desired. □

5.3. Proof of Theorem 1. We can now prove Theorem 1, by combining Lemmas 5.4 and 5.6 with
Theorem 3.3.

Proof of Theorem 1. If some automorphism of G is non-elliptic, then Lemma 5.4 implies that G contains
infinitely many rays R0, R1, . . . such that dG(Ri, Rj) ≥ max{i, j} for all i ̸= j ∈ N. If all automorphisms
of G are elliptic, then we obtain the same by Lemma 5.6. Thus, Theorem 3.1 (2) implies that G contains
an ultra-fat model of the half-grid.

The ‘in particular’-part follows by Observation 2.1 and Proposition 2.2. □

6. Applications of Theorem 1

In this section we present some applications of Theorem 1; in particular, we show Corollaries 2 and 3.

6.1. Half-grid minors in multi-ended, quasi-transitive graphs. As a corollary of Theorem 1, we
obtain two results on quasi-transitive, locally finite graphs that need not be one-ended.

A finite set U ⊆ V (G) distinguishes two ends ε, ε′ of G if no component of G − U contains rays from
both ε and ε′. An end ε of G is accessible if there exists some n ∈ N such that every other end of G can
be distinguished from ε by a set of at most n vertices of G. A graph G is accessible if there exists some
n ∈ N such that every two distinct ends of G can be distinguished by a set of at most n vertices of G.

Corollary 6.1. Let ε be an accessible, thick end of a quasi-transitive, locally finite graph G. Then G

contains an ultra-fat model of the half-grid all of whose rays are ε-rays.

Proof. By the same argument as in [AH24, Lemma 4.6], there exists a connected, one-ended, quasi-geode-
sic,7 quasi-transitive subgraph X of G such that every ray in X is an ε-ray in G. By Theorem 1, there is
an ultra-fat model (V, E) of the half-grid in X. Since X is c-quasi-geodesic for some c ∈ N, the submodel
of (V, E) corresponding to N2 ∖ [cK]2 is K-fat in G for all K ∈ N. It is now straightforward to turn
(V, E) into an ultra-fat model of the half-grid in G. In fact, as every ray in X is an ε-ray in G, we find
HG ≺ε

UF G. □

Corollary 6.2. Let G be an accessible, quasi-transitive, locally finite graph with a thick end. Then the
half-grid is an ultra-fat minor of G.

Proof. Since all ends in an accessible, quasi-transitive, locally finite graph are accessible, the claim follows
directly from Corollary 6.1. □

For two graphs G and H, a map f : V (H) → V (G) is a quasi-isometry if there exist M ≥ 1 and A ≥ 0

such that

• M−1 · dH(u, v)−A ≤ dG(f(u), f(v)) ≤ M · dH(u, v) +A for all u, v ∈ V (H), and
• dG(f(V (H)), w) ≤ A for all w ∈ V (G).

Two graphs are quasi-isometric if there exists a quasi-isometry between them.
Finally, we can prove Corollary 2. In fact, we prove the following more detailed version:

7A subgraph X of G is quasi-geodesic in G if there exists some c ∈ N such that dX(u, v) ≤ c ·dG(u, v) for all u, v ∈ V (X).
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Corollary 2′. Let G be an accessible, connected, quasi-transitive, locally finite graph. Then the following
are equivalent:

(i) G has a thick end.
(ii) The half-grid is an ultra-fat minor of G.
(iii) The half-grid is an asymptotic minor of G.
(iv) The half-grid is a diverging minor of G.
(v) G is not quasi-isometric to a tree.

Proof. (i) ⇔ (v) is a result by Krön and Möller [KM08, Theorem 5.5]. (i) ⇒ (ii) is Corollary 6.2. (ii) ⇒
(iii) is Observation 2.1, and (ii) ⇒ (iv) is Proposition 2.2. Finally, (iii) ⇒ (i) and (iv) ⇒ (i) hold because
the rays in a model of the half-grid are all equivalent, and thus the end of G that contains them must be
thick. □

We conjecture that Corollary 2′ holds for all connected, quasi-transitive, locally finite graphs (even for
those that are not accessible). To prove this, it would suffice to show the following:

Conjecture 6.3. Every connected, quasi-transitive, locally finite graph with a thick end contains an
ultra-fat model of the half-grid.

By Corollary 2′ and because every inaccessible, quasi-transitive, locally finite graph has a thick end, it
remains to show for a proof of Conjecture 6.3 that every inaccessible, quasi-transitive, locally finite graph
contains an ultra-fat model of the half-grid.

6.2. Diverging rays in quasi-transitive graphs. In this section we apply Theorem 1 to prove Corol-
lary 3, which we restate here for convenience:

Corollary 3. Every quasi-transitive, locally finite graph that contains infinitely many pairwise disjoint
rays also contains infinitely many pairwise diverging rays.

Recall that two rays R,S in a graph G diverge if for every K ∈ N they have tails R′ ⊆ R, S′ ⊆ S

satisfying dG(R
′, S′) > K.

Proof. Let G be a quasi-transitive, locally finite graph with infinitely many pairwise disjoint rays. If G
has infinitely many ends, then we may take an infinite set of rays no two of which lie in the same end.
Indeed, let R1 and R2 be rays from distinct ends and let S be a finite vertex set such that R1 and R2

have tails in distinct components C1 and C2 of G− S, respectively. Since G is locally finite, each Ri has
a tail in Ci −BG(S, n) for every n ∈ N. Thus, R1 and R2 diverge.

So, we may assume that G has only finitely many ends. Then infinitely many of the pairwise disjoint
rays lie in the same end, which hence must be thick. As every graph with only finitely many ends is
accessible, Corollary 6.2 yields that G contains an ultra-fat model (V, E) of the half-grid. Without loss of
generality we may assume that the branch sets are finite. For every i ∈ N, there exists a ray Ri in G that
is contained in the union of the branch sets and paths of (V, E) corresponding to the i-th vertical ray Si

of the half-grid. Since all branch sets and paths are finite, Ri has a tail outside of the branch sets and
paths corresponding to the first K vertices and edges of Si. Since (V, E) is ultra-fat, it follows that the
rays Ri diverge pairwise. □
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