
Intermediate
Logic

An Open Introduction

F21𝛼

Intermediate Logic

The Open Logic Project

Instigator

Richard Zach, University of Calgary

Editorial Board

Aldo Antonelli,† University of California, Davis
Andrew Arana, Université de Lorraine
Jeremy Avigad, Carnegie Mellon University
Tim Button, University College London
Walter Dean, University of Warwick
Gillian Russell, Dianoia Institute of Philosophy
Nicole Wyatt, University of Calgary
Audrey Yap, University of Victoria

Contributors

Samara Burns, Columbia University
Dana Hägg, University of Calgary
Zesen Qian, Carnegie Mellon University

Intermediate Logic
An Open Introduction

Remixed by Michael Hallett
Richard Zach

Fall 2021𝛼

The Open Logic Project would like to acknowledge the gener-
ous support of the Taylor Institute of Teaching and Learning of
the University of Calgary, and the Alberta Open Educational Re-
sources (ABOER) Initiative, which is made possible through an
investment from the Alberta government.

Cover illustrations by Matthew Leadbeater, used under a Cre-
ative Commons Attribution-NonCommercial 4.0 International Li-
cense.

Typeset in Baskervald X and Nimbus Sans by LATEX.

This version of Intermediate Logic is revision 405319a (2021-07-
11), with content generated from Open Logic Text revision ec6994c
(2022-08-13). Free download at:

https://builds.openlogicproject.org/courses/
intermediate-logic/

Intermediate Logic by Michael Hallett
Richard Zach is licensed under a Cre-
ative Commons Attribution 4.0 Interna-
tional License. It is based on The Open
Logic Text by the Open Logic Project,
used under a Creative Commons Attri-
bution 4.0 International License.

https://taylorinstitute.ucalgary.ca/
http://mattleadbeater.com
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://builds.openlogicproject.org/courses/intermediate-logic/
https://builds.openlogicproject.org/courses/intermediate-logic/
https://builds.openlogicproject.org/courses/intermediate-logic/
https://richardzach.org/
https://richardzach.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://openlogicproject.org/

Contents

About this Book xiv

I Sets, Relations, Functions 1

1 Sets 2
1.1 Extensionality . 2
1.2 Subsets and Power Sets 4
1.3 Some Important Sets 5
1.4 Unions and Intersections 6
1.5 Pairs, Tuples, Cartesian Products 10
1.6 Russell’s Paradox 12
Summary . 14
Problems . 14

2 Relations 16
2.1 Relations as Sets 16
2.2 Special Properties of Relations 18
2.3 Equivalence Relations 20
2.4 Orders . 21
2.5 Graphs . 24
2.6 Operations on Relations 26
Summary . 27
Problems . 28

v

CONTENTS vi

3 Functions 29
3.1 Basics . 29
3.2 Kinds of Functions 32
3.3 Functions as Relations 34
3.4 Inverses of Functions 36
3.5 Composition of Functions 39
3.6 Partial Functions 40
Summary . 41
Problems . 42

4 The Size of Sets 43
4.1 Introduction . 43
4.2 Enumerations and Countable Sets 43
4.3 Cantor’s Zig-Zag Method 48
4.4 Pairing Functions and Codes 50
4.5 An Alternative Pairing Function 52
4.6 Uncountable Sets 54
4.7 Reduction . 58
4.8 Equinumerosity 59
4.9 Sets of Different Sizes, and Cantor’s Theorem . . 61
4.10 The Notion of Size, and Schröder-Bernstein . . . 63
Summary . 64
Problems . 65

II First-order Logic 68

5 Introduction to First-Order Logic 69
5.1 First-Order Logic 69
5.2 Syntax . 71
5.3 Formulas . 72
5.4 Satisfaction . 74
5.5 Sentences . 76
5.6 Semantic Notions 77
5.7 Substitution . 78
5.8 Models and Theories 79
5.9 Soundness and Completeness 81

CONTENTS vii

6 Syntax of First-Order Logic 83
6.1 Introduction . 83
6.2 First-Order Languages 84
6.3 Terms and Formulas 86
6.4 Unique Readability 89
6.5 Main operator of a Formula 93
6.6 Subformulas . 94
6.7 Free Variables and Sentences 96
6.8 Substitution . 98
Summary . 100
Problems . 100

7 Semantics of First-Order Logic 101
7.1 Introduction . 101
7.2 Structures for First-order Languages 102
7.3 Covered Structures for First-order Languages . . 104
7.4 Satisfaction of a Formula in a Structure 105
7.5 Variable Assignments 112
7.6 Extensionality . 115
7.7 Semantic Notions 117
Summary . 120
Problems . 120

8 Theories and Their Models 123
8.1 Introduction . 123
8.2 Expressing Properties of Structures 125
8.3 Examples of First-Order Theories 127
8.4 Expressing Relations in a Structure 130
8.5 The Theory of Sets 131
8.6 Expressing the Size of Structures 135
Summary . 136
Problems . 137

9 Derivation Systems 139
9.1 Introduction . 139
9.2 The Sequent Calculus 141

CONTENTS viii

9.3 Natural Deduction 142
9.4 Tableaux . 144
9.5 Axiomatic Derivations 146

10 The Sequent Calculus 149
10.1 Rules and Derivations 149
10.2 Propositional Rules 150
10.3 Quantifier Rules 151
10.4 Structural Rules 153
10.5 Derivations . 154
10.6 Examples of Derivations 156
10.7 Derivations with Quantifiers 160
10.8 Proof-Theoretic Notions 162
10.9 Derivability and Consistency 165
10.10 Derivability and the Propositional Connectives . 166
10.11 Derivability and the Quantifiers 168
10.12 Soundness . 169
10.13 Derivations with Identity predicate 176
10.14 Soundness with Identity predicate 177
Summary . 178
Problems . 178

11 Natural Deduction 181
11.1 Rules and Derivations 181
11.2 Propositional Rules 182
11.3 Quantifier Rules 183
11.4 Derivations . 185
11.5 Examples of Derivations 187
11.6 Derivations with Quantifiers 192
11.7 Proof-Theoretic Notions 196
11.8 Derivability and Consistency 198
11.9 Derivability and the Propositional Connectives . 200
11.10 Derivability and the Quantifiers 202
11.11 Soundness . 203
11.12 Derivations with Identity predicate 208
11.13 Soundness with Identity predicate 210

CONTENTS ix

Summary . 211
Problems . 211

12 The Completeness Theorem 215
12.1 Introduction . 215
12.2 Outline of the Proof 217
12.3 Complete Consistent Sets of Sentences 220
12.4 Henkin Expansion 221
12.5 Lindenbaum’s Lemma 224
12.6 Construction of a Model 225
12.7 Identity . 228
12.8 The Completeness Theorem 232
12.9 The Compactness Theorem 233
12.10 A Direct Proof of the Compactness Theorem . . 235
12.11 The Löwenheim-Skolem Theorem 237
Summary . 238
Problems . 240

13 Beyond First-order Logic 242
13.1 Overview . 242
13.2 Many-Sorted Logic 243
13.3 Second-Order logic 245
13.4 Higher-Order logic 250
13.5 Intuitionistic Logic 253
13.6 Modal Logics . 259
13.7 Other Logics . 261

III Incompleteness 263

14 Introduction to Incompleteness 264
14.1 Historical Background 264
14.2 Definitions . 270
14.3 Overview of Incompleteness Results 276
14.4 Undecidability and Incompleteness 279
Summary . 281
Problems . 282

CONTENTS x

15 Recursive Functions 283
15.1 Introduction . 283
15.2 Primitive Recursion 284
15.3 Composition . 287
15.4 Primitive Recursion Functions 289
15.5 Primitive Recursion Notations 293
15.6 Primitive Recursive Functions are Computable . . 294
15.7 Examples of Primitive Recursive Functions 295
15.8 Primitive Recursive Relations 298
15.9 Bounded Minimization 301
15.10 Primes . 303
15.11 Sequences . 304
15.12 Trees . 308
15.13 Other Recursions 309
15.14 Non-Primitive Recursive Functions 310
15.15 Partial Recursive Functions 312
15.16 The Normal Form Theorem 315
15.17 The Halting Problem 316
15.18 General Recursive Functions 318
Summary . 318
Problems . 320

16 Arithmetization of Syntax 322
16.1 Introduction . 322
16.2 Coding Symbols 324
16.3 Coding Terms . 326
16.4 Coding Formulas 328
16.5 Substitution . 330
16.6 Derivations in LK 331
16.7 Derivations in Natural Deduction 336
Summary . 342
Problems . 343

17 Representability in Q 345
17.1 Introduction . 345
17.2 Functions Representable in Q are Computable . 348

CONTENTS xi

17.3 The Beta Function Lemma 350
17.4 Simulating Primitive Recursion 354
17.5 Basic Functions are Representable in Q 355
17.6 Composition is Representable in Q 359
17.7 Regular Minimization is Representable in Q . . 361
17.8 Computable Functions are Representable in Q . 365
17.9 Representing Relations 366
17.10 Undecidability . 367
Summary . 369
Problems . 369

18 Incompleteness and Provability 371
18.1 Introduction . 371
18.2 The Fixed-Point Lemma 373
18.3 The First Incompleteness Theorem 376
18.4 Rosser’s Theorem 378
18.5 Comparison with Gödel’s Original Paper 380
18.6 The Derivability Conditions for PA 381
18.7 The Second Incompleteness Theorem 382
18.8 Löb’s Theorem 385
18.9 The Undefinability of Truth 388
18.10 Tarski’s Theorem and Löb’s Theorem 390
Summary . 399
Problems . 400

19 Models of Arithmetic 402
19.1 Introduction . 402
19.2 Reducts and Expansions 403
19.3 Isomorphic Structures 404
19.4 The Theory of a Structure 407
19.5 Standard Models of Arithmetic 408
19.6 Non-Standard Models 411
19.7 Models of Q . 412
19.8 Models of PA . 415
19.9 Computable Models of Arithmetic 419
Summary . 421

CONTENTS xii

Problems . 423

A Derivations in Arithmetic Theories 425

B Proofs 433
B.1 Introduction . 433
B.2 Starting a Proof 435
B.3 Using Definitions 435
B.4 Inference Patterns 438
B.5 An Example . 446
B.6 Another Example 450
B.7 Proof by Contradiction 452
B.8 Reading Proofs 457
B.9 I Can’t Do It! . 459
B.10 Other Resources 461
Problems . 462

C Induction 463
C.1 Introduction . 463
C.2 Induction on N 464
C.3 Strong Induction 467
C.4 Inductive Definitions 468
C.5 Structural Induction 471
C.6 Relations and Functions 473
Problems . 477

D Biographies 478
D.1 Georg Cantor . 478
D.2 Alonzo Church 479
D.3 Gerhard Gentzen 480
D.4 Kurt Gödel . 482
D.5 Emmy Noether 484
D.6 Rózsa Péter . 486
D.7 Julia Robinson . 488
D.8 Bertrand Russell 490
D.9 Alfred Tarski . 492
D.10 Alan Turing . 493

CONTENTS xiii

D.11 Ernst Zermelo . 495

Photo Credits 498

Bibliography 500

About the Open Logic Project 509

About this Book
This book is an introduction to metalogic, aimed especially at
students of computer science and philosophy. “Metalogic” is so-
called because it is the discipline that studies logic itself. Logic
proper is concerned with canons of valid inference, and its sym-
bolic or formal version presents these canons using formal lan-
guages, such as those of propositional and predicate, a.k.a., first-
order logic. Meta-logic investigates the properties of these lan-
guage, and of the canons of correct inference that use them. It
studies topics such as how to give precise meaning to the ex-
pressions of these formal languages, how to justify the canons of
valid inference, what the properties of various derivation systems
are, including their computational properties. These questions
are important and interesting in their own right, because the lan-
guages and proof systems investigated are applied in many differ-
ent areas—in mathematics, philosophy, computer science, and
linguistics, especially—but they also serve as examples of how
to study formal systems in general. The logical languages we
study here are not the only ones people are interested in. For
instance, linguists and philosophers are interested in languages
that are much more complicated than those of propositional and
first-order logic, and computer scientists are interested in other
kinds of languages altogether, such as programming languages.
And the methods we discuss here—how to give semantics for for-
mal languages, how to prove results about formal languages, how
to investigate the properties of formal languages—are applicable

xiv

ABOUT THIS BOOK xv

in those cases as well.
Like any discipline, metalogic both has a set of results or facts,

and a store of methods and techniques, and this text covers both.
Some students won’t need to know some of the results we discuss
outside of this course, but they will need and use the methods
we use to establish them. The Löwenheim-Skolem theorem, say,
does not often make an appearance in computer science, but the
methods we use to prove it do. On the other hand, many of the
results we discuss do have relevance for certain debates, say, in the
philosophy of science and in metaphysics. Philosophy students
may not need to be able to prove these results outside this course,
but they do need to understand what the results are—and you
really only understand these results if you have thought through
the definitions and proofs needed to establish them. These are, in
part, the reasons for why the results and the methods covered in
this text are recommended study—in some cases even required—
for students of computer science and philosophy.

The material is divided into three parts. Part I concerns it-
self with the theory of sets. Logic and metalogic is historically
connected very closely to what’s called the “foundations of math-
ematics.” Mathematical foundations deal with how ultimately
mathematical objects such as integers, rational, and real num-
bers, functions, spaces, etc., should be understood. Set theory
provides one answer (there are others), and so set theory and
logic have long been studied side-by-side. Sets, relations, and
functions are also ubiquitous in any sort of formal investigation,
not just in mathematics but also in computer science and in some
of the more technical corners of philosophy. Certainly for the
purposes of formulating and proving results about the semantics
and proof theory of logic and the foundation of computability it
is essential to have a language in which to do this. For instance,
we will talk about sets of expressions, relations of consequence
and provability, interpretations of predicate symbols (which turn
out to be relations), computable functions, and various relations
between and constructions using these. It will be good to have
shorthand symbols for these, and think through the general prop-

ABOUT THIS BOOK xvi

erties of sets, relations, and functions in order to do that. If you
are not used to thinking mathematically and to formulating math-
ematical proofs, then think of the first part on set theory as a
training ground: all the basic definitions will be given, and we’ll
give increasingly complicated proofs using them. Note that un-
derstanding these proofs—and being able to find and formulate
them yourself—is perhaps more important than understanding
the results, and especially in the first part, and especially if you
are new to mathematical thinking, it is important that you think
through the examples and problems.

In the first part we will establish one important result, how-
ever. This result—Cantor’s theorem—relies on one of the most
striking examples of conceptual analysis to be found anywhere
in the sciences, namely, Cantor’s analysis of infinity. Infinity has
puzzled mathematicians and philosophers alike for centuries. No-
one knew how to properly think about it. Many people even
thought it was a mistake to think about it at all, that the notion
of an infinite object or infinite collection itself was incoherent.
Cantor made infinity into a subject we can coherently work with,
and developed an entire theory of infinite collections—and in-
finite numbers with which we can measure the sizes of infinite
collections—and showed that there are different levels of infinity.
This theory of “transfinite” numbers is beautiful and intricate,
and we won’t get very far into it; but we will be able to show
that there are different levels of infinity, specifically, that there
are “countable” and “uncountable” levels of infinity. This result
has important applications, but it is also really the kind of re-
sult that any self-respecting mathematician, computer scientist,
or philosopher should know.

In part II we turn to first-order logic. We will define the lan-
guage of first-order logic and its semantics, i.e., what first-order
structures are and when a sentence of first-order logic is true in a
structure. This will enable us to do two important things: (1) We
can define, with mathematical precision, when a sentence is a
logical consequence of another. (2) We can also consider how
the relations that make up a first-order structure are described—

ABOUT THIS BOOK xvii

characterized—by the sentences that are true in them. This in
particular leads us to a discussion of the axiomatic method, in
which sentences of first-order languages are used to characterize
certain kinds of structures. Proof theory will occupy us next, and
we will consider the original version of the sequent calculus and
natural deduction as defined in the 1930s by Gerhard Gentzen.
(Your instructor may choose to cover only one, then any refer-
ence to “derivations” and “provability” will mean whatever sys-
tem they chose.) The semantic notion of consequence and the
syntactic notion of provability give us two completely different
ways to make precise the idea that a sentence may follow from
some others. The soundness and completeness theorems link
these two characterization. In particular, we will prove Gödel’s
completeness theorem, which states that whenever a sentence is
a semantic consequence of some others, there it is also provable
from them. An equivalent formulation is: if a collection of sen-
tences is consistent—in the sense that nothing contradictory can
be proved from them—then there is a structure that makes all of
them true.

The second formulation of the completeness theorem is per-
haps the more surprising. Around the time Gödel proved this
result (in 1929), the German mathematician David Hilbert fa-
mously held the view (which builds on a similar view of the lead-
ing French mathematician Henri Poincaré) that consistency (i.e.,
freedom from contradiction) is all that mathematical existence
requires. In other words, whenever a mathematician can coher-
ently describe a structure or class of structures, then they should
be be entitled to believe in the existence of such structures. At
the time, many found this idea preposterous: just because you
can describe a structure without contradicting yourself, it surely
does not follow that such a structure actually exists. But that
is exactly what Gödel’s completeness theorem says. In addition
to this paradoxical—and certainly philosophically intriguing—
aspect, the completeness theorem also has two important appli-
cations which allow us to prove further results about the exis-
tence of structures which make given sentences true. These are

ABOUT THIS BOOK xviii

the compactness and the Löwenheim-Skolem theorems.
In part III, we will present (in chapter 18) what have come to

be called the Gödel Incompleteness Theorems, two results which con-
stitute Gödel’s second great contribution to mathematical logic.1

We mentioned Hilbert above. Another of his extremely impor-
tant contributions (from the 1890s) was the insistence on the
axiomatic method, above all for studying independence proofs
and relative consistency, and through this a much more refined
notion of logical dependency than had been possible hitherto.2

Part of the idea behind this was that theories (like that for natural
number arithmetic or for sets) must be formulated by finitely pre-
sented axiom systems which are ‘self-standing’ in the sense that
all the major arithmetical or set-theoretical facts can be derived
in the axiom systems. This leads to two questions in particular:

1. How can we show that the axiom system we give are consis-
tent, i.e., do not lead to the proof of contradictions? (Logic
itself doesn’t, as we will show, but special axioms for num-
bers or sets added to the logical system might.)

2. Are there truths, about numbers say, which cannot be de-
rived from a natural axiom system for arithmetic? We can
derive some truths, for example

2 + 2 = 4

or
∀m,n (m + n = n +m),

but do we know that we have captured all of them?

Gödel’s work relates directly to these questions.

1Believe it or not, there was a third, the proof of the relative consistency
of the Axiom of Choice and the Generalised Continuum Hypothesis with the
standard axioms of set theory. Any one of these contributions would have made
Gödel a giant of the subject!

2Pursuit of the axiomatic method was what led to the “consistency ⇒ ex-
istence” thesis mentioned in the previous paragraph.

ABOUT THIS BOOK xix

The First Incompleteness Theorem addresses the second ques-
tion. What Gödel invented was a very powerful general method
for the construction of self-referential sentences within the lan-
guages concerned (provided they have certain mechanisms avail-
able), for instance, sentences of the restricted language of arith-
metic (see chapter 16). To be more specific, we will be able
to form sentences in the special first-order arithmetical language
which talk about themselves, and can describe fundamental prop-
erties that they possess. This is analogous to the following sen-
tence of English: ‘I am a sentence which contains four commas,
consists of 25 words, and, when written and set on Richard Zach’s
computer, appears in black type’. If we’ve counted the number
of commas and words correctly, this sentence is quite straight-
forwardly true. Gödel’s method allowed for the formulation of a
perfectly ordinary (logically fairly simple, but rather long) sen-
tence of arithmetic which says something like ‘I am not deducible
from the system of axioms for arithmetic’, and it is easy to show
that (given that the axiom system for arithmetic is consistent —
and we will be in rather serious trouble if that isn’t correct) this
sentence must be true, and that therefore what it says must be
correct, from which it follows that it is indeed not deducible.
Note this: true but not deducible! Hence, arithmetic is incomplete.
Gödel’s procedure gives us a general recipe for the production of
true but underivable sentences for a very wide range of theories
and their languages. For instance, suppose, out of frustration, we
add the particular, underivable sentence just described as a new
axiom to get a new theory of arithmetic, then we can use the very
same procedure to produce a new sentence which is true and can-
not be derived from that expanded axiom system. It is the general
nature of the procedure (what we now usually mean when we re-
fer to ‘Gödel’s First Incompleteness Theorem’) which gives the
Gödel result its enormous power, and ensures that it does not
present a mere curio, but a genuine philosophical dilemma.

Closely related to Gödel’s First Incompleteness Theorem is
Tarski’s Theorem on the undefinability of truth for reasonable ax-
ioms systems for arithmetic using the usual language, and this

ABOUT THIS BOOK xx

we will also look at. We mentioned above the crucial impor-
tance of the assumption of the consistency of arithmetic. What
Tarski’s saw was that if truth were definable within the language
of arithmetic, then we could show that arithmetic would in fact
be inconsistent, since we could in effect produce in the language
of arithmetic a version of a so-called ‘Liar sentence’, a sentence
which is contradictory since it must be simultaneously both true
and false, just like the sentence of ordinary English ‘This sentence
is not true’. (The parallel with the standard Gödel sentence which
says something like ‘This sentence is not derivable’ is conscious
and deliberate on Gödel’s part. The Gödel sentence is a sentence
of the language of arithmetic, the Liar sentence is not.)

Gödel produced a fairly straightforward (but difficult to exe-
cute) modification of the proof for the First Theorem which he
used to show the following: the consistency of arithmetic can only
be shown by a theory which has stronger theoretical resources than
those available to arithmetic itself. This (expressed in the Second
Incompleteness Theorem) addresses the first question posed above,
for in a sense it says that we cannot really prove the consistency
of arithmetic at all, at least, not if we are doing so to guarantee
the ‘health and safety’ of formal arithmetic. (Of course, there
are other reasons for studying the inferential structure of theo-
ries, and thus consistency, and these have been widely pursued.)
Again, Gödel’s Second Incompleteness Theorem has extraordi-
nary range, and applies to a very wide swathe of ordinary, work-
ing theories, the theory of sets among them.

Closely related to the both the First and the Second The-
orems is a result called Löb’s Theorem, which we will also look
at briefly. We will also examine another result which in a way
presages Gödel’s First Incompleteness Theorem, often called
Skolem’s Theorem, which concerns the austere and strange world
of non-standard models of arithmetic. These contain the usual
natural numbers, which behave exactly as we expect them to be-
have, but much (very much!) more, namely a vast multiplicity
of what we call non-standard numbers with very odd structure (see
chapter 19.)

ABOUT THIS BOOK xxi

In sum, we will see that these results (some of the most im-
portant theorems of twentieth-century logic) tells us a good deal
about the power and also the limitations of first-order logic. (But
what’s the alternative to first-order logic? This is touched on in
chapter 13.) From these central results, highly technical in nature,
wider philosophical consequences start to flow, certainly important
consequences for the philosophy of mathematics, for instance
concerning the role of proof and provability, and the connections
between proof and truth, and for Hilbert’s programme, some of
which we touched on above, but also consequences for philoso-
phy more generally, for instance for the computational theory of
mind, for the theory of truth (and thus philosophy of language),
and consequences concerning the nature of mathematical and
scientific theories.

The material here is very much cumulative, and the results
emerge slowly. Hence, it’s important both to keep up, and to
be patient. Believe us, it’s worth it! And remember all the time,
that what we’re doing is really proving things in an informal way
about formal languages and derivation systems, even though it
helps to be familiar with doing formal proofs (following rules of
proof) and with the semantics of first-order languages.

Logic at this level is a difficult but very beautiful subject, and
is very different in nature and approach from the subject of logic
as presented in your first logic course. Being good at that does
not, by any means, ensure you will be good at this. What this
requires is, above all, not mathematical knowledge, or even math-
ematical ability, but rather something which we might, rather ob-
scurely, refer to as mathematical apitude.

Let us begin.

PART I

Sets,
Relations,
Functions

1

CHAPTER 1

Sets
1.1 Extensionality

A set is a collection of objects, considered as a single object. The
objects making up the set are called elements or members of the
set. If x is an element of a set a, we write x ∈ a; if not, we write
x ∉ a. The set which has no elements is called the empty set and
denoted “∅”.

It does not matter how we specify the set, or how we order
its elements, or indeed how many times we count its elements.
All that matters are what its elements are. We codify this in the
following principle.

Definition 1.1 (Extensionality). If A and B are sets, then A =

B iff every element of A is also an element of B , and vice versa.

Extensionality licenses some notation. In general, when we
have some objects a1, . . . , an , then {a1, . . . ,an} is the set whose
elements are a1, . . . ,an . We emphasise the word “the”, since ex-
tensionality tells us that there can be only one such set. Indeed,
extensionality also licenses the following:

{a,a,b} = {a,b} = {b ,a}.

2

CHAPTER 1. SETS 3

This delivers on the point that, when we consider sets, we don’t
care about the order of their elements, or how many times they
are specified.

Example 1.2. Whenever you have a bunch of objects, you can
collect them together in a set. The set of Richard’s siblings, for
instance, is a set that contains one person, and we could write it as
S = {Ruth}. The set of positive integers less than 4 is {1,2,3}, but
it can also be written as {3,2,1} or even as {1,2,1,2,3}. These are
all the same set, by extensionality. For every element of {1,2,3}
is also an element of {3,2,1} (and of {1,2,1,2,3}), and vice versa.

Frequently we’ll specify a set by some property that its ele-
ments share. We’ll use the following shorthand notation for that:
{x : 𝜑(x)}, where the 𝜑(x) stands for the property that x has to
have in order to be counted among the elements of the set.

Example 1.3. In our example, we could have specified S also as

S = {x : x is a sibling of Richard}.

Example 1.4. A number is called perfect iff it is equal to the sum
of its proper divisors (i.e., numbers that evenly divide it but aren’t
identical to the number). For instance, 6 is perfect because its
proper divisors are 1, 2, and 3, and 6 = 1 + 2 + 3. In fact, 6 is
the only positive integer less than 10 that is perfect. So, using
extensionality, we can say:

{6} = {x : x is perfect and 0 ≤ x ≤ 10}
We read the notation on the right as “the set of x ’s such that x
is perfect and 0 ≤ x ≤ 10”. The identity here confirms that,
when we consider sets, we don’t care about how they are spec-
ified. And, more generally, extensionality guarantees that there
is always only one set of x ’s such that 𝜑(x). So, extensionality
justifies calling {x : 𝜑(x)} the set of x ’s such that 𝜑(x).

Extensionality gives us a way for showing that sets are iden-
tical: to show that A = B , show that whenever x ∈ A then also
x ∈ B , and whenever y ∈ B then also y ∈ A.

CHAPTER 1. SETS 4

1.2 Subsets and Power Sets

We will often want to compare sets. And one obvious kind of
comparison one might make is as follows: everything in one set is
in the other too. This situation is sufficiently important for us to
introduce some new notation.

Definition 1.5 (Subset). If every element of a set A is also an el-
ement of B , then we say that A is a subset of B , and write A ⊆ B .
If A is not a subset of B we write A ⊈ B . If A ⊆ B but A ≠ B , we
write A ⊊ B and say that A is a proper subset of B .

Example 1.6. Every set is a subset of itself, and ∅ is a subset of
every set. The set of even numbers is a subset of the set of natural
numbers. Also, {a,b} ⊆ {a,b ,c }. But {a,b ,e } is not a subset of
{a,b ,c }.

Example 1.7. The number 2 is an element of the set of integers,
whereas the set of even numbers is a subset of the set of integers.
However, a set may happen to both be an element and a subset
of some other set, e.g., {0} ∈ {0, {0}} and also {0} ⊆ {0, {0}}.

Extensionality gives a criterion of identity for sets: A = B
iff every element of A is also an element of B and vice versa.
The definition of “subset” defines A ⊆ B precisely as the first
half of this criterion: every element of A is also an element of B .
Of course the definition also applies if we switch A and B : that
is, B ⊆ A iff every element of B is also an element of A. And
that, in turn, is exactly the “vice versa” part of extensionality. In
other words, extensionality entails that sets are equal iff they are
subsets of one another.

Proposition 1.8. A = B iff both A ⊆ B and B ⊆ A.

Now is also a good opportunity to introduce some further
bits of helpful notation. In defining when A is a subset of B
we said that “every element of A is . . . ,” and filled the “. . . ” with

CHAPTER 1. SETS 5

“an element of B”. But this is such a common shape of expression
that it will be helpful to introduce some formal notation for it.

Definition 1.9. (∀x ∈ A)𝜑 abbreviates ∀x (x ∈ A→𝜑). Similarly,
(∃x ∈ A)𝜑 abbreviates ∃x (x ∈ A ∧ 𝜑).

Using this notation, we can say that A ⊆ B iff (∀x ∈ A)x ∈ B .
Now we move on to considering a certain kind of set: the set

of all subsets of a given set.

Definition 1.10 (Power Set). The set consisting of all subsets
of a set A is called the power set of A, written ℘(A).

℘(A) = {B : B ⊆ A}

Example 1.11. What are all the possible subsets of {a,b ,c }?
They are: ∅, {a}, {b}, {c }, {a,b}, {a,c }, {b ,c }, {a,b ,c }. The
set of all these subsets is ℘({a,b ,c }):

℘({a,b ,c }) = {∅, {a}, {b}, {c }, {a,b}, {b ,c }, {a,c }, {a,b ,c }}

1.3 Some Important Sets

Example 1.12. We will mostly be dealing with sets whose ele-
ments are mathematical objects. Four such sets are important
enough to have specific names:

N = {0,1,2,3, . . .}
the set of natural numbers

Z = {. . . ,−2,−1,0,1,2, . . .}
the set of integers

Q = {m/n : m,n ∈ Z and n ≠ 0}
the set of rationals

R = (−∞,∞)

CHAPTER 1. SETS 6

the set of real numbers (the continuum)

These are all infinite sets, that is, they each have infinitely many
elements.

As we move through these sets, we are adding more numbers
to our stock. Indeed, it should be clear that N ⊆ Z ⊆ Q ⊆ R:
after all, every natural number is an integer; every integer is a
rational; and every rational is a real. Equally, it should be clear
that N ⊊ Z ⊊ Q, since −1 is an integer but not a natural number,
and 1/2 is rational but not integer. It is less obvious that Q ⊊ R,
i.e., that there are some real numbers which are not rational.

We’ll sometimes also use the set of positive integers Z+ =

{1,2,3, . . . } and the set containing just the first two natural num-
bers B = {0,1}.

Example 1.13 (Strings). Another interesting example is the set
A∗ of finite strings over an alphabet A: any finite sequence of
elements of A is a string over A. We include the empty string 𝛬

among the strings over A, for every alphabet A. For instance,

B∗ = {𝛬,0,1,00,01,10,11,

000,001,010,011,100,101,110,111,0000, . . .}.

If x = x1 . . . xn ∈ A∗is a string consisting of n “letters” from A,
then we say length of the string is n and write len(x) = n.

Example 1.14 (Infinite sequences). For any set A we may also
consider the set A𝜔 of infinite sequences of elements of A. An
infinite sequence a1a2a3a4 . . . consists of a one-way infinite list of
objects, each one of which is an element of A.

1.4 Unions and Intersections

In section 1.1, we introduced definitions of sets by abstraction,
i.e., definitions of the form {x : 𝜑(x)}. Here, we invoke some
property 𝜑, and this property can mention sets we’ve already

CHAPTER 1. SETS 7

Figure 1.1: The union A ∪ B of two sets is set of elements of A together with
those of B .

defined. So for instance, if A and B are sets, the set {x : x ∈
A∨x ∈ B } consists of all those objects which are elements of either
A or B , i.e., it’s the set that combines the elements of A and B .
We can visualize this as in Figure 1.1, where the highlighted area
indicates the elements of the two sets A and B together.

This operation on sets—combining them—is very useful and
common, and so we give it a formal name and a symbol.

Definition 1.15 (Union). The union of two sets A and B , writ-
ten A ∪ B , is the set of all things which are elements of A, B , or
both.

A ∪ B = {x : x ∈ A ∨ x ∈ B }

Example 1.16. Since the multiplicity of elements doesn’t mat-
ter, the union of two sets which have an element in common con-
tains that element only once, e.g., {a,b ,c }∪{a,0,1} = {a,b ,c ,0,1}.

The union of a set and one of its subsets is just the bigger set:
{a,b ,c } ∪ {a} = {a,b ,c }.

The union of a set with the empty set is identical to the set:
{a,b ,c } ∪ ∅ = {a,b ,c }.

We can also consider a “dual” operation to union. This is the
operation that forms the set of all elements that are elements of A

CHAPTER 1. SETS 8

Figure 1.2: The intersection A ∩B of two sets is the set of elements they have in
common.

and are also elements of B . This operation is called intersection,
and can be depicted as in Figure 1.2.

Definition 1.17 (Intersection). The intersection of two sets A
and B , written A ∩ B , is the set of all things which are elements
of both A and B .

A ∩ B = {x : x ∈ A ∧ x ∈ B }

Two sets are called disjoint if their intersection is empty. This
means they have no elements in common.

Example 1.18. If two sets have no elements in common, their
intersection is empty: {a,b ,c } ∩ {0,1} = ∅.

If two sets do have elements in common, their intersection is
the set of all those: {a,b ,c } ∩ {a,b ,d } = {a,b}.

The intersection of a set with one of its subsets is just the
smaller set: {a,b ,c } ∩ {a,b} = {a,b}.

The intersection of any set with the empty set is empty:
{a,b ,c } ∩ ∅ = ∅.

We can also form the union or intersection of more than two
sets. An elegant way of dealing with this in general is the follow-
ing: suppose you collect all the sets you want to form the union

CHAPTER 1. SETS 9

(or intersection) of into a single set. Then we can define the union
of all our original sets as the set of all objects which belong to at
least one element of the set, and the intersection as the set of all
objects which belong to every element of the set.

Definition 1.19. If A is a set of sets, then
⋃︁
A is the set of ele-

ments of elements of A:⋃︂
A = {x : x belongs to an element of A}, i.e.,

= {x : there is a B ∈ A so that x ∈ B }

Definition 1.20. If A is a set of sets, then
⋂︁
A is the set of objects

which all elements of A have in common:⋂︂
A = {x : x belongs to every element of A}, i.e.,

= {x : for all B ∈ A,x ∈ B }

Example 1.21. Suppose A = {{a,b}, {a,d ,e }, {a,d }}. Then⋃︁
A = {a,b ,d ,e } and

⋂︁
A = {a}.

We could also do the same for a sequence of sets A1, A2, . . .⋃︂
i

Ai = {x : x belongs to one of the Ai }⋂︂
i

Ai = {x : x belongs to every Ai }.

When we have an index of sets, i.e., some set I such that
we are considering Ai for each i ∈ I , we may also use these
abbreviations: ⋃︂

i ∈I
Ai =

⋃︂
{Ai : i ∈ I }⋂︂

i ∈I
Ai =

⋂︂
{Ai : i ∈ I }

Finally, we may want to think about the set of all elements
in A which are not in B . We can depict this as in Figure 1.3.

CHAPTER 1. SETS 10

Figure 1.3: The difference A \ B of two sets is the set of those elements of A
which are not also elements of B .

Definition 1.22 (Difference). The set difference A \ B is the set
of all elements of A which are not also elements of B , i.e.,

A \ B = {x : x ∈ A and x ∉ B }.

1.5 Pairs, Tuples, Cartesian Products

It follows from extensionality that sets have no order to their
elements. So if we want to represent order, we use ordered pairs
⟨x ,y⟩. In an unordered pair {x ,y}, the order does not matter:
{x ,y} = {y ,x}. In an ordered pair, it does: if x ≠ y , then ⟨x ,y⟩ ≠
⟨y ,x⟩.

How should we think about ordered pairs in set theory? Cru-
cially, we want to preserve the idea that ordered pairs are iden-
tical iff they share the same first element and share the same
second element, i.e.:

⟨a,b⟩ = ⟨c ,d ⟩ iff both a = c and b = d .

We can define ordered pairs in set theory using the Wiener-
Kuratowski definition.

CHAPTER 1. SETS 11

Definition 1.23 (Ordered pair). ⟨a,b⟩ = {{a}, {a,b}}.

Having fixed a definition of an ordered pair, we can use it
to define further sets. For example, sometimes we also want or-
dered sequences of more than two objects, e.g., triples ⟨x ,y ,z ⟩,
quadruples ⟨x ,y ,z ,u⟩, and so on. We can think of triples as spe-
cial ordered pairs, where the first element is itself an ordered pair:
⟨x ,y ,z ⟩ is ⟨⟨x ,y⟩,z ⟩. The same is true for quadruples: ⟨x ,y ,z ,u⟩
is ⟨⟨⟨x ,y⟩,z ⟩,u⟩, and so on. In general, we talk of ordered n-tuples
⟨x1, . . . ,xn⟩.

Certain sets of ordered pairs, or other ordered n-tuples, will
be useful.

Definition 1.24 (Cartesian product). Given sets A and B ,
their Cartesian product A × B is defined by

A × B = {⟨x ,y⟩ : x ∈ A and y ∈ B }.

Example 1.25. If A = {0,1}, and B = {1,a,b}, then their prod-
uct is

A × B = {⟨0,1⟩, ⟨0,a⟩, ⟨0,b⟩, ⟨1,1⟩, ⟨1,a⟩, ⟨1,b⟩}.

Example 1.26. If A is a set, the product of A with itself, A × A,
is also written A2. It is the set of all pairs ⟨x ,y⟩ with x ,y ∈ A. The
set of all triples ⟨x ,y ,z ⟩ is A3, and so on. We can give a recursive
definition:

A1 = A

Ak+1 = Ak × A

Proposition 1.27. If A has n elements and B has m elements, then
A × B has n · m elements.

CHAPTER 1. SETS 12

Proof. For every element x in A, there are m elements of the form
⟨x ,y⟩ ∈ A × B . Let Bx = {⟨x ,y⟩ : y ∈ B }. Since whenever x1 ≠ x2,
⟨x1,y⟩ ≠ ⟨x2,y⟩, Bx1 ∩ Bx2 = ∅. But if A = {x1, . . . ,xn}, then
A × B = Bx1 ∪ · · · ∪ Bxn , and so has n · m elements.

To visualize this, arrange the elements of A × B in a grid:

Bx1 = {⟨x1,y1⟩ ⟨x1,y2⟩ . . . ⟨x1,ym⟩}
Bx2 = {⟨x2,y1⟩ ⟨x2,y2⟩ . . . ⟨x2,ym⟩}

...
...

Bxn = {⟨xn ,y1⟩ ⟨xn ,y2⟩ . . . ⟨xn ,ym⟩}

Since the xi are all different, and the y j are all different, no two of
the pairs in this grid are the same, and there are n ·m of them.□

Example 1.28. If A is a set, a word over A is any sequence of
elements of A. A sequence can be thought of as an n-tuple of ele-
ments of A. For instance, if A = {a,b ,c }, then the sequence “bac”
can be thought of as the triple ⟨b ,a,c⟩. Words, i.e., sequences of
symbols, are of crucial importance in computer science. By con-
vention, we count elements of A as sequences of length 1, and ∅
as the sequence of length 0. The set of all words over A then is

A∗ = {∅} ∪ A ∪ A2 ∪ A3 ∪ . . .

1.6 Russell’s Paradox

Extensionality licenses the notation {x : 𝜑(x)}, for the set of x ’s
such that 𝜑(x). However, all that extensionality really licenses is
the following thought. If there is a set whose members are all
and only the 𝜑’s, then there is only one such set. Otherwise put:
having fixed some 𝜑, the set {x : 𝜑(x)} is unique, if it exists.

But this conditional is important! Crucially, not every prop-
erty lends itself to comprehension. That is, some properties do not
define sets. If they all did, then we would run into outright contra-
dictions. The most famous example of this is Russell’s Paradox.

CHAPTER 1. SETS 13

Sets may be elements of other sets—for instance, the power
set of a set A is made up of sets. And so it makes sense to ask or
investigate whether a set is an element of another set. Can a set
be a member of itself? Nothing about the idea of a set seems to
rule this out. For instance, if all sets form a collection of objects,
one might think that they can be collected into a single set—the
set of all sets. And it, being a set, would be an element of the set
of all sets.

Russell’s Paradox arises when we consider the property of not
having itself as an element, of being non-self-membered. What if we
suppose that there is a set of all sets that do not have themselves
as an element? Does

R = {x : x ∉ x}

exist? It turns out that we can prove that it does not.

Theorem 1.29 (Russell’s Paradox). There is no set R = {x : x ∉

x}.

Proof. If R = {x : x ∉ x} exists, then R ∈ R iff R ∉ R, which is a
contradiction. □

Let’s run through this proof more slowly. If R exists, it makes
sense to ask whether R ∈ R or not. Suppose that indeed R ∈ R.
Now, R was defined as the set of all sets that are not elements of
themselves. So, if R ∈ R, then R does not itself have R’s defining
property. But only sets that have this property are in R, hence, R
cannot be an element of R, i.e., R ∉ R. But R can’t both be and
not be an element of R, so we have a contradiction.

Since the assumption that R ∈ R leads to a contradiction, we
have R ∉ R. But this also leads to a contradiction! For if R ∉ R,
then R itself does have R’s defining property, and so R would be
an element of R just like all the other non-self-membered sets.
And again, it can’t both not be and be an element of R.

How do we set up a set theory which avoids falling into Rus-
sell’s Paradox, i.e., which avoids making the inconsistent claim that

CHAPTER 1. SETS 14

R = {x : x ∉ x} exists? Well, we would need to lay down axioms
which give us very precise conditions for stating when sets exist
(and when they don’t).

The set theory sketched in this chapter doesn’t do this. It’s
genuinely naïve. It tells you only that sets obey extensionality and
that, if you have some sets, you can form their union, intersection,
etc. It is possible to develop set theory more rigorously than
this.

Summary

A set is a collection of objects, the elements of the set. We write
x ∈ A if x is an element of A. Sets are extensional—they are
completely determined by their elements. Sets are specified by
listing the elements explicitly or by giving a property the ele-
ments share (abstraction). Extensionality means that the order
or way of listing or specifying the elements of a set doesn’t mat-
ter. To prove that A and B are the same set (A = B) one has to
prove that every element of X is an element ofY and vice versa.

Important sets include the natural (N), integer (Z), rational
(Q), and real (R) numbers, but also strings (X ∗) and infinite
sequences (X 𝜔) of objects. A is a subset of B , A ⊆ B , if every
element of A is also one of B . The collection of all subsets of
a set B is itself a set, the power set ℘(B) of B . We can form
the union A ∪ B and intersection A ∩ B of sets. An ordered
pair ⟨x ,y⟩ consists of two objects x and y , but in that specific
order. The pairs ⟨x ,y⟩ and ⟨y ,x⟩ are different pairs (unless x = y).
The set of all pairs ⟨x ,y⟩ where x ∈ A and y ∈ B is called the
Cartesian product A × B of A and B . We write A2 for A ×A; so
for instance N2 is the set of pairs of natural numbers.

Problems

Problem 1.1. Prove that there is at most one empty set, i.e.,
show that if A and B are sets without elements, then A = B .

CHAPTER 1. SETS 15

Problem 1.2. List all subsets of {a,b ,c ,d }.

Problem 1.3. Show that if A has n elements, then ℘(A) has 2n

elements.

Problem 1.4. Prove that if A ⊆ B , then A ∪ B = B .

Problem 1.5. Prove rigorously that if A ⊆ B , then A ∩ B = A.

Problem 1.6. Show that if A is a set and A ∈ B , then A ⊆ ⋃︁
B .

Problem 1.7. Prove that if A ⊊ B , then B \ A ≠ ∅.

Problem 1.8. Using Definition 1.23, prove that ⟨a,b⟩ = ⟨c ,d ⟩ iff
both a = c and b = d .

Problem 1.9. List all elements of {1,2,3}3.

Problem 1.10. Show, by induction on k , that for all k ≥ 1, if A
has n elements, then Ak has nk elements.

CHAPTER 2

Relations
2.1 Relations as Sets

In section 1.3, we mentioned some important sets: N, Z, Q, R.
You will no doubt remember some interesting relations between
the elements of some of these sets. For instance, each of these sets
has a completely standard order relation on it. There is also the
relation is identical with that every object bears to itself and to no
other thing. There are many more interesting relations that we’ll
encounter, and even more possible relations. Before we review
them, though, we will start by pointing out that we can look at
relations as a special sort of set.

For this, recall two things from section 1.5. First, recall the
notion of a ordered pair : given a and b , we can form ⟨a,b⟩. Im-
portantly, the order of elements does matter here. So if a ≠ b
then ⟨a,b⟩ ≠ ⟨b ,a⟩. (Contrast this with unordered pairs, i.e., 2-
element sets, where {a,b} = {b ,a}.) Second, recall the notion of
a Cartesian product: if A and B are sets, then we can form A × B ,
the set of all pairs ⟨x ,y⟩ with x ∈ A and y ∈ B . In particular,
A2 = A × A is the set of all ordered pairs from A.

Now we will consider a particular relation on a set: the <-
relation on the set N of natural numbers. Consider the set of all
pairs of numbers ⟨n,m⟩ where n < m, i.e.,

R = {⟨n,m⟩ : n,m ∈ N and n < m}.

16

CHAPTER 2. RELATIONS 17

There is a close connection between n being less than m, and the
pair ⟨n,m⟩ being a member of R, namely:

n < m iff ⟨n,m⟩ ∈ R .

Indeed, without any loss of information, we can consider the set
R to be the <-relation on N.

In the same way we can construct a subset of N2 for any rela-
tion between numbers. Conversely, given any set of pairs of num-
bers S ⊆ N2, there is a corresponding relation between numbers,
namely, the relationship n bears to m if and only if ⟨n,m⟩ ∈ S .
This justifies the following definition:

Definition 2.1 (Binary relation). A binary relation on a set A is
a subset of A2. If R ⊆ A2 is a binary relation on A and x ,y ∈ A,
we sometimes write Rxy (or xRy) for ⟨x ,y⟩ ∈ R.

Example 2.2. The set N2 of pairs of natural numbers can be
listed in a 2-dimensional matrix like this:

⟨0,0⟩ ⟨0,1⟩ ⟨0,2⟩ ⟨0,3⟩ . . .

⟨1,0⟩ ⟨1,1⟩ ⟨1,2⟩ ⟨1,3⟩ . . .

⟨2,0⟩ ⟨2,1⟩ ⟨2,2⟩ ⟨2,3⟩ . . .

⟨3,0⟩ ⟨3,1⟩ ⟨3,2⟩ ⟨3,3⟩ . . .
...

...
...

...
. . .

We have put the diagonal, here, in bold, since the subset of N2

consisting of the pairs lying on the diagonal, i.e.,

{⟨0,0⟩, ⟨1,1⟩, ⟨2,2⟩, . . . },

is the identity relation on N. (Since the identity relation is popular,
let’s define IdA = {⟨x ,x⟩ : x ∈ A} for any set A.) The subset of all
pairs lying above the diagonal, i.e.,

L = {⟨0,1⟩, ⟨0,2⟩, . . . , ⟨1,2⟩, ⟨1,3⟩, . . . , ⟨2,3⟩, ⟨2,4⟩, . . .},

CHAPTER 2. RELATIONS 18

is the less than relation, i.e., Lnm iff n < m. The subset of pairs
below the diagonal, i.e.,

G = {⟨1,0⟩, ⟨2,0⟩, ⟨2,1⟩, ⟨3,0⟩, ⟨3,1⟩, ⟨3,2⟩, . . . },

is the greater than relation, i.e., Gnm iff n > m. The union of L
with I , which we might call K = L ∪ I , is the less than or equal to
relation: Knm iff n ≤ m. Similarly, H = G ∪ I is the greater than
or equal to relation. These relations L, G , K , and H are special
kinds of relations called orders. L and G have the property that
no number bears L or G to itself (i.e., for all n, neither Lnn nor
Gnn). Relations with this property are called irreflexive, and, if
they also happen to be orders, they are called strict orders.

Although orders and identity are important and natural re-
lations, it should be emphasized that according to our defini-
tion any subset of A2 is a relation on A, regardless of how un-
natural or contrived it seems. In particular, ∅ is a relation on
any set (the empty relation, which no pair of elements bears),
and A2 itself is a relation on A as well (one which every pair
bears), called the universal relation. But also something like
E = {⟨n,m⟩ : n > 5 or m × n ≥ 34} counts as a relation.

2.2 Special Properties of Relations

Some kinds of relations turn out to be so common that they have
been given special names. For instance, ≤ and ⊆ both relate their
respective domains (say, N in the case of ≤ and ℘(A) in the case
of ⊆) in similar ways. To get at exactly how these relations are
similar, and how they differ, we categorize them according to
some special properties that relations can have. It turns out that
(combinations of) some of these special properties are especially
important: orders and equivalence relations.

CHAPTER 2. RELATIONS 19

Definition 2.3 (Reflexivity). A relation R ⊆ A2 is reflexive iff,
for every x ∈ A, Rxx .

Definition 2.4 (Transitivity). A relation R ⊆ A2 is transitive iff,
whenever Rxy and Ryz , then also Rxz .

Definition 2.5 (Symmetry). A relation R ⊆ A2 is symmetric iff,
whenever Rxy , then also Ryx .

Definition 2.6 (Anti-symmetry). A relationR ⊆ A2 is anti-sym-
metric iff, whenever both Rxy and Ryx , then x = y (or, in other
words: if x ≠ y then either ¬Rxy or ¬Ryx).

In a symmetric relation, Rxy and Ryx always hold together,
or neither holds. In an anti-symmetric relation, the only way for
Rxy and Ryx to hold together is if x = y . Note that this does not
require that Rxy and Ryx holds when x = y , only that it isn’t ruled
out. So an anti-symmetric relation can be reflexive, but it is not
the case that every anti-symmetric relation is reflexive. Also note
that being anti-symmetric and merely not being symmetric are
different conditions. In fact, a relation can be both symmetric
and anti-symmetric at the same time (e.g., the identity relation
is).

Definition 2.7 (Connectivity). A relation R ⊆ A2 is connected
if for all x ,y ∈ A, if x ≠ y , then either Rxy or Ryx .

Definition 2.8 (Irreflexivity). A relation R ⊆ A2 is called ir-
reflexive if, for all x ∈ A, not Rxx .

CHAPTER 2. RELATIONS 20

Definition 2.9 (Asymmetry). A relation R ⊆ A2 is called asym-
metric if for no pair x ,y ∈ A we have both Rxy and Ryx .

Note that if A ≠ ∅, then no irreflexive relation on A is reflex-
ive and every asymmetric relation on A is also anti-symmetric.
However, there are R ⊆ A2 that are not reflexive and also not
irreflexive, and there are anti-symmetric relations that are not
asymmetric.

2.3 Equivalence Relations

The identity relation on a set is reflexive, symmetric, and transi-
tive. Relations R that have all three of these properties are very
common.

Definition 2.10 (Equivalence relation). A relation R ⊆ A2

that is reflexive, symmetric, and transitive is called an equivalence
relation. Elements x and y of A are said to be R-equivalent if Rxy .

Equivalence relations give rise to the notion of an equivalence
class. An equivalence relation “chunks up” the domain into differ-
ent partitions. Within each partition, all the objects are related
to one another; and no objects from different partitions relate
to one another. Sometimes, it’s helpful just to talk about these
partitions directly. To that end, we introduce a definition:

Definition 2.11. Let R ⊆ A2 be an equivalence relation. For
each x ∈ A, the equivalence class of x in A is the set [x]R = {y ∈
A : Rxy}. The quotient of A under R is A/R= {[x]R : x ∈ A}, i.e.,
the set of these equivalence classes.

The next result vindicates the definition of an equivalence
class, in proving that the equivalence classes are indeed the par-
titions of A:

CHAPTER 2. RELATIONS 21

Proposition 2.12. If R ⊆ A2 is an equivalence relation, then Rxy
iff [x]R = [y]R .

Proof. For the left-to-right direction, suppose Rxy , and let z ∈
[x]R . By definition, then, Rxz . SinceR is an equivalence relation,
Ryz . (Spelling this out: as Rxy and R is symmetric we have
Ryx , and as Rxz and R is transitive we have Ryz .) So z ∈ [y]R .
Generalising, [x]R ⊆ [y]R . But exactly similarly, [y]R ⊆ [x]R . So
[x]R = [y]R , by extensionality.

For the right-to-left direction, suppose [x]R = [y]R . Since R is
reflexive, Ryy , so y ∈ [y]R . Thus also y ∈ [x]R by the assumption
that [x]R = [y]R . So Rxy . □

Example 2.13. A nice example of equivalence relations comes
from modular arithmetic. For any a, b , and n ∈ N, say that a ≡n b
iff dividing a by n gives the same remainder as dividing b by n.
(Somewhat more symbolically: a ≡n b iff, for some k ∈ Z, a − b =

kn.) Now, ≡n is an equivalence relation, for any n. And there
are exactly n distinct equivalence classes generated by ≡n ; that
is, N/≡n has n elements. These are: the set of numbers divisible
by n without remainder, i.e., [0]≡n ; the set of numbers divisible
by n with remainder 1, i.e., [1]≡n ; . . . ; and the set of numbers
divisible by n with remainder n − 1, i.e., [n − 1]≡n .

2.4 Orders

Many of our comparisons involve describing some objects as be-
ing “less than”, “equal to”, or “greater than” other objects, in a
certain respect. These involve order relations. But there are differ-
ent kinds of order relations. For instance, some require that any
two objects be comparable, others don’t. Some include identity
(like ≤) and some exclude it (like <). It will help us to have a
taxonomy here.

CHAPTER 2. RELATIONS 22

Definition 2.14 (Preorder). A relation which is both reflexive
and transitive is called a preorder.

Definition 2.15 (Partial order). A preorder which is also anti-
symmetric is called a partial order.

Definition 2.16 (Linear order). A partial order which is also
connected is called a total order or linear order.

Example 2.17. Every linear order is also a partial order, and
every partial order is also a preorder, but the converses don’t
hold. The universal relation onA is a preorder, since it is reflexive
and transitive. But, if A has more than one element, the universal
relation is not anti-symmetric, and so not a partial order.

Example 2.18. Consider the no longer than relation ≼ on B∗: x ≼
y iff len(x) ≤ len(y). This is a preorder (reflexive and transitive),
and even connected, but not a partial order, since it is not anti-
symmetric. For instance, 01 ≼ 10 and 10 ≼ 01, but 01 ≠ 10.

Example 2.19. An important partial order is the relation ⊆ on a
set of sets. This is not in general a linear order, since if a ≠ b and
we consider ℘({a,b}) = {∅, {a}, {b}, {a,b}}, we see that {a} ⊈ {b}
and {a} ≠ {b} and {b} ⊈ {a}.

Example 2.20. The relation of divisibility without remainder gives
us a partial order which isn’t a linear order. For integers n, m, we
write n | m to mean n (evenly) divides m, i.e., iff there is some
integer k so that m = kn. On N, this is a partial order, but not
a linear order: for instance, 2 ∤ 3 and also 3 ∤ 2. Considered
as a relation on Z, divisibility is only a preorder since it is not
anti-symmetric: 1 | −1 and −1 | 1 but 1 ≠ −1.

CHAPTER 2. RELATIONS 23

Definition 2.21 (Strict order). A strict order is a relation which
is irreflexive, asymmetric, and transitive.

Definition 2.22 (Strict linear order). A strict order which is
also connected is called a strict linear order.

Example 2.23. ≤ is the linear order corresponding to the strict
linear order <. ⊆ is the partial order corresponding to the strict
order ⊊.

Definition 2.24 (Total order). A strict order which is also con-
nected is called a total order. This is also sometimes called a strict
linear order.

Any strict order R on A can be turned into a partial order by
adding the diagonal IdA, i.e., adding all the pairs ⟨x ,x⟩. (This
is called the reflexive closure of R.) Conversely, starting from a
partial order, one can get a strict order by removing IdA. These
next two results make this precise.

Proposition 2.25. If R is a strict order on A, then R+ = R ∪ IdA is
a partial order. Moreover, if R is total, then R+ is a linear order.

Proof. SupposeR is a strict order, i.e., R ⊆ A2 andR is irreflexive,
asymmetric, and transitive. Let R+ = R ∪ IdA. We have to show
that R+ is reflexive, antisymmetric, and transitive.

R+ is clearly reflexive, since ⟨x ,x⟩ ∈ IdA ⊆ R+ for all x ∈ A.
To show R+ is antisymmetric, suppose for reductio that R+xy

and R+yx but x ≠ y . Since ⟨x ,y⟩ ∈ R ∪ IdX , but ⟨x ,y⟩ ∉ IdX , we
must have ⟨x ,y⟩ ∈ R, i.e., Rxy . Similarly, Ryx . But this contra-
dicts the assumption that R is asymmetric.

To establish transitivity, suppose that R+xy and R+yz . If both
⟨x ,y⟩ ∈ R and ⟨y ,z ⟩ ∈ R, then ⟨x ,z ⟩ ∈ R since R is transitive.
Otherwise, either ⟨x ,y⟩ ∈ IdX , i.e., x = y , or ⟨y ,z ⟩ ∈ IdX , i.e.,

CHAPTER 2. RELATIONS 24

y = z . In the first case, we have that R+yz by assumption, x = y ,
hence R+xz . Similarly in the second case. In either case, R+xz ,
thus, R+ is also transitive.

Concerning the “moreover” clause, supposeR is a total order,
i.e., that R is connected. So for all x ≠ y , either Rxy or Ryx , i.e.,
either ⟨x ,y⟩ ∈ R or ⟨y ,x⟩ ∈ R. Since R ⊆ R+, this remains true of
R+, so R+ is connected as well. □

Proposition 2.26. If R is a partial order on X , then R− = R \ IdX
is a strict order. Moreover, if R is linear, then R− is total.

Proof. This is left as an exercise. □

Example 2.27. ≤ is the linear order corresponding to the total
order <. ⊆ is the partial order corresponding to the strict order ⊊.

The following simple result which establishes that total orders
satisfy an extensionality-like property:

Proposition 2.28. If < totally orders A, then:

(∀a,b ∈ A) ((∀x ∈ A) (x < a↔ x < b) → a = b)

Proof. Suppose (∀x ∈ A) (x < a ↔ x < b). If a < b , then a < a,
contradicting the fact that < is irreflexive; so a ≮ b . Exactly
similarly, b ≮ a. So a = b , as < is connected. □

2.5 Graphs

A graph is a diagram in which points—called “nodes” or “ver-
tices” (plural of “vertex”)—are connected by edges. Graphs are
a ubiquitous tool in discrete mathematics and in computer sci-
ence. They are incredibly useful for representing, and visualizing,
relationships and structures, from concrete things like networks
of various kinds to abstract structures such as the possible out-
comes of decisions. There are many different kinds of graphs in

CHAPTER 2. RELATIONS 25

the literature which differ, e.g., according to whether the edges
are directed or not, have labels or not, whether there can be edges
from a node to the same node, multiple edges between the same
nodes, etc. Directed graphs have a special connection to relations.

Definition 2.29 (Directed graph). A directed graph G = ⟨V,E⟩
is a set of vertices V and a set of edges E ⊆ V 2.

According to our definition, a graph just is a set together with
a relation on that set. Of course, when talking about graphs, it’s
only natural to expect that they are graphically represented: we
can draw a graph by connecting two vertices v1 and v2 by an
arrow iff ⟨v1,v2⟩ ∈ E . The only difference between a relation by
itself and a graph is that a graph specifies the set of vertices, i.e., a
graph may have isolated vertices. The important point, however,
is that every relation R on a set X can be seen as a directed graph
⟨X ,R⟩, and conversely, a directed graph ⟨V,E⟩ can be seen as a
relation E ⊆ V 2 with the set V explicitly specified.

Example 2.30. The graph ⟨V,E⟩ with V = {1,2,3,4} and E =

{⟨1,1⟩, ⟨1,2⟩, ⟨1,3⟩, ⟨2,3⟩} looks like this:

1 2

3

4

CHAPTER 2. RELATIONS 26

This is a different graph than ⟨V ′,E⟩ with V ′ = {1,2,3}, which
looks like this:

1 2

3

2.6 Operations on Relations

It is often useful to modify or combine relations. In Proposi-
tion 2.25, we considered the union of relations, which is just the
union of two relations considered as sets of pairs. Similarly, in
Proposition 2.26, we considered the relative difference of rela-
tions. Here are some other operations we can perform on rela-
tions.

Definition 2.31. Let R, S be relations, and A be any set.
The inverse of R is R−1 = {⟨y ,x⟩ : ⟨x ,y⟩ ∈ R}.
The relative product of R and S is (R | S) = {⟨x ,z ⟩ : ∃y (Rxy ∧

S yz)}.
The restriction of R to A is R↾A = R ∩ A2.
The application of R to A is R [A] = {y : (∃x ∈ A)Rxy}

Example 2.32. Let S ⊆ Z2 be the successor relation on Z, i.e.,
S = {⟨x ,y⟩ ∈ Z2 : x + 1 = y}, so that Sxy iff x + 1 = y .

S −1 is the predecessor relation on Z, i.e., {⟨x ,y⟩ ∈ Z2 : x −1 =

y}.
S | S is {⟨x ,y⟩ ∈ Z2 : x + 2 = y}
S↾N is the successor relation on N.
S [{1,2,3}] is {2,3,4}.

CHAPTER 2. RELATIONS 27

Definition 2.33 (Transitive closure). Let R ⊆ A2 be a binary
relation.

The transitive closure of R is R+ =
⋃︁

0<n∈NR
n , where we recur-

sively define R1 = R and Rn+1 = Rn | R.
The reflexive transitive closure of R is R∗ = R+ ∪ IdA.

Example 2.34. Take the successor relation S ⊆ Z2. S 2xy iff x +
2 = y , S 3xy iff x + 3 = y , etc. So S +xy iff x + n = y for some n ≥ 1.
In other words, S +xy iff x < y , and S ∗xy iff x ≤ y .

Summary

A relation R on a set A is a way of relating elements of A. We
write Rxy if the relation holds between x and y . Formally, we can
consider R as the sets of pairs ⟨x ,y⟩ ∈ A2 such that Rxy . Being
less than, greater than, equal to, evenly dividing, being the same
length as, a subset of, and the same size as are all important
examples of relations (on sets of numbers, strings, or of sets).
Graphs are a general way of visually representing relations. But
a graph can also be seen as a binary relation (the edge relation)
together with the underlying set of vertices.

Some relations share certain features which makes them espe-
cially interesting or useful. A relation R is reflexive if everything
is R-related to itself; symmetric, if with Rxy also Ryx holds for
any x and y ; and transitive if Rxy and Ryz guarantees Rxz . Re-
lations that have all three of these properties are equivalence
relations. A relation is anti-symmetric if Rxy and Ryx guaran-
tees x = y . Partial orders are those relations that are reflexive,
anti-symmetric, and transitive. A linear order is any partial or-
der which satisfies that for any x and y , either Rxy or x = y or
Ryx . (Generally, a relation with this property is connected).

Since relations are sets (of pairs), they can be operated on as
sets (e.g., we can form the union and intersection of relations).
We can also chain them together (relative product R | S). If we

CHAPTER 2. RELATIONS 28

form the relative product of R with itself arbitrarily many times
we get the transitive closure R+ of R.

Problems

Problem 2.1. List the elements of the relation ⊆ on the set
℘({a,b ,c }).

Problem 2.2. Give examples of relations that are (a) reflex-
ive and symmetric but not transitive, (b) reflexive and anti-
symmetric, (c) anti-symmetric, transitive, but not reflexive, and
(d) reflexive, symmetric, and transitive. Do not use relations on
numbers or sets.

Problem 2.3. Show that ≡n is an equivalence relation, for any
n ∈ N, and that N/≡n has exactly n members.

Problem 2.4. Give a proof of Proposition 2.26.

Problem 2.5. Consider the less-than-or-equal-to relation ≤ on
the set {1,2,3,4} as a graph and draw the corresponding dia-
gram.

Problem 2.6. Show that the transitive closure ofR is in fact tran-
sitive.

CHAPTER 3

Functions
3.1 Basics

A function is a map which sends each element of a given set to a
specific element in some (other) given set. For instance, the op-
eration of adding 1 defines a function: each number n is mapped
to a unique number n + 1.

More generally, functions may take pairs, triples, etc., as in-
puts and return some kind of output. Many functions are familiar
to us from basic arithmetic. For instance, addition and multipli-
cation are functions. They take in two numbers and return a
third.

In this mathematical, abstract sense, a function is a black box:
what matters is only what output is paired with what input, not
the method for calculating the output.

Definition 3.1 (Function). A function f : A → B is a mapping
of each element of A to an element of B .

We call A the domain of f and B the codomain of f . The
elements of A are called inputs or arguments of f , and the element
of B that is paired with an argument x by f is called the value
of f for argument x , written f (x).

The range ran(f) of f is the subset of the codomain consisting
of the values of f for some argument; ran(f) = { f (x) : x ∈ A}.

29

CHAPTER 3. FUNCTIONS 30

Figure 3.1: A function is a mapping of each element of one set to an element of
another. An arrow points from an argument in the domain to the corresponding
value in the codomain.

The diagram in Figure 3.1 may help to think about functions.
The ellipse on the left represents the function’s domain; the el-
lipse on the right represents the function’s codomain; and an ar-
row points from an argument in the domain to the corresponding
value in the codomain.

Example 3.2. Multiplication takes pairs of natural numbers as
inputs and maps them to natural numbers as outputs, so goes
from N × N (the domain) to N (the codomain). As it turns out,
the range is also N, since every n ∈ N is n × 1.

Example 3.3. Multiplication is a function because it pairs each
input—each pair of natural numbers—with a single output:
× : N2 → N. By contrast, the square root operation applied to
the domain N is not functional, since each positive integer n has
two square roots:

√
n and −

√
n. We can make it functional by

only returning the positive square root:
√

: N→ R.

Example 3.4. The relation that pairs each student in a class with
their final grade is a function—no student can get two different
final grades in the same class. The relation that pairs each student
in a class with their parents is not a function: students can have
zero, or two, or more parents.

We can define functions by specifying in some precise way
what the value of the function is for every possible argument.

CHAPTER 3. FUNCTIONS 31

Different ways of doing this are by giving a formula, describing
a method for computing the value, or listing the values for each
argument. However functions are defined, we must make sure
that for each argument we specify one, and only one, value.

Example 3.5. Let f : N→ N be defined such that f (x) = x + 1.
This is a definition that specifies f as a function which takes in
natural numbers and outputs natural numbers. It tells us that,
given a natural number x , f will output its successor x + 1. In
this case, the codomain N is not the range of f , since the natural
number 0 is not the successor of any natural number. The range
of f is the set of all positive integers, Z+.

Example 3.6. Let g : N→ N be defined such that g (x) = x+2−1.
This tells us that g is a function which takes in natural numbers
and outputs natural numbers. Given a natural number n, g will
output the predecessor of the successor of the successor of x , i.e.,
x + 1.

We just considered two functions, f and g , with different def-
initions. However, these are the same function. After all, for any
natural number n, we have that f (n) = n + 1 = n + 2 − 1 = g (n).
Otherwise put: our definitions for f and g specify the same map-
ping by means of different equations. Implicitly, then, we are
relying upon a principle of extensionality for functions,

if ∀x f (x) = g (x), then f = g

provided that f and g share the same domain and codomain.

Example 3.7. We can also define functions by cases. For in-
stance, we could define h : N→ N by

h (x) =
{︄
x
2 if x is even
x+1
2 if x is odd.

Since every natural number is either even or odd, the output of
this function will always be a natural number. Just remember that

CHAPTER 3. FUNCTIONS 32

Figure 3.2: A surjective function has every element of the codomain as a value.

if you define a function by cases, every possible input must fall
into exactly one case. In some cases, this will require a proof that
the cases are exhaustive and exclusive.

3.2 Kinds of Functions

It will be useful to introduce a kind of taxonomy for some of the
kinds of functions which we encounter most frequently.

To start, we might want to consider functions which have the
property that every member of the codomain is a value of the
function. Such functions are called surjective, and can be pic-
tured as in Figure 3.2.

Definition 3.8 (Surjective function). A function f : A → B is
surjective iff B is also the range of f , i.e., for every y ∈ B there is
at least one x ∈ A such that f (x) = y , or in symbols:

(∀y ∈ B) (∃x ∈ A) f (x) = y .

We call such a function a surjection from A to B .

If you want to show that f is a surjection, then you need to
show that every object in f ’s codomain is the value of f (x) for
some input x .

Note that any function induces a surjection. After all, given a
function f : A → B , let f ′ : A → ran(f) be defined by f ′(x) =

CHAPTER 3. FUNCTIONS 33

Figure 3.3: An injective function never maps two different arguments to the
same value.

f (x). Since ran(f) is defined as { f (x) ∈ B : x ∈ A}, this function
f ′ is guaranteed to be a surjection

Now, any function maps each possible input to a unique out-
put. But there are also functions which never map different inputs
to the same outputs. Such functions are called injective, and can
be pictured as in Figure 3.3.

Definition 3.9 (Injective function). A function f : A → B is
injective iff for each y ∈ B there is at most one x ∈ A such
that f (x) = y . We call such a function an injection from A to B .

If you want to show that f is an injection, you need to show
that for any elements x and y of f ’s domain, if f (x) = f (y), then
x = y .

Example 3.10. The constant function f : N → N given by
f (x) = 1 is neither injective, nor surjective.

The identity function f : N → N given by f (x) = x is both
injective and surjective.

The successor function f : N → N given by f (x) = x + 1 is
injective but not surjective.

The function f : N→ N defined by:

f (x) =
{︄
x
2 if x is even
x+1
2 if x is odd.

is surjective, but not injective.

CHAPTER 3. FUNCTIONS 34

Figure 3.4: A bijective function uniquely pairs the elements of the codomain
with those of the domain.

Often enough, we want to consider functions which are both
injective and surjective. We call such functions bijective. They
look like the function pictured in Figure 3.4. Bijections are also
sometimes called one-to-one correspondences, since they uniquely
pair elements of the codomain with elements of the domain.

Definition 3.11 (Bijection). A function f : A → B is bijective
iff it is both surjective and injective. We call such a function
a bijection from A to B (or between A and B).

3.3 Functions as Relations

A function which maps elements of A to elements of B obviously
defines a relation between A and B , namely the relation which
holds between x and y iff f (x) = y . In fact, we might even—if we
are interested in reducing the building blocks of mathematics for
instance—identify the function f with this relation, i.e., with a
set of pairs. This then raises the question: which relations define
functions in this way?

Definition 3.12 (Graph of a function). Let f : A → B be a
function. The graph of f is the relation R f ⊆ A × B defined
by

R f = {⟨x ,y⟩ : f (x) = y}.

CHAPTER 3. FUNCTIONS 35

The graph of a function is uniquely determined, by extension-
ality. Moreover, extensionality (on sets) will immediately vindi-
cate the implicit principle of extensionality for functions, whereby
if f and g share a domain and codomain then they are identical
if they agree on all values.

Similarly, if a relation is “functional”, then it is the graph of
a function.

Proposition 3.13. Let R ⊆ A × B be such that:

1. If Rxy and Rxz then y = z ; and

2. for every x ∈ A there is some y ∈ B such that ⟨x ,y⟩ ∈ R.

Then R is the graph of the function f : A → B defined by f (x) = y iff
Rxy.

Proof. Suppose there is a y such that Rxy . If there were another
z ≠ y such that Rxz , the condition on R would be violated.
Hence, if there is a y such that Rxy , this y is unique, and so
f is well-defined. Obviously, R f = R. □

Every function f : A → B has a graph, i.e., a relation on A×B
defined by f (x) = y . On the other hand, every relation R ⊆ A×B
with the properties given in Proposition 3.13 is the graph of a
function f : A → B . Because of this close connection between
functions and their graphs, we can think of a function simply as
its graph. In other words, functions can be identified with certain
relations, i.e., with certain sets of tuples. We can now consider
performing similar operations on functions as we performed on
relations (see section 2.6). In particular:

Definition 3.14. Let f : A → B be a function with C ⊆ A.
The restriction of f to C is the function f ↾C : C → B defined

by (f ↾C) (x) = f (x) for all x ∈ C . In other words, f ↾C = {⟨x ,y⟩ ∈
R f : x ∈ C }.

The application of f to C is f [C] = { f (x) : x ∈ C }. We also

CHAPTER 3. FUNCTIONS 36

call this the image of C under f .

It follows from these definitions that ran(f) = f [dom(f)],
for any function f . These notions are exactly as one would ex-
pect, given the definitions in section 2.6 and our identification of
functions with relations. But two other operations—inverses and
relative products—require a little more detail. We will provide
that in section 3.4 and section 3.5.

3.4 Inverses of Functions

We think of functions as maps. An obvious question to ask about
functions, then, is whether the mapping can be “reversed.” For
instance, the successor function f (x) = x + 1 can be reversed, in
the sense that the function g (y) = y − 1 “undoes” what f does.

But we must be careful. Although the definition of g defines
a function Z → Z, it does not define a function N → N, since
g (0) ∉ N. So even in simple cases, it is not quite obvious whether
a function can be reversed; it may depend on the domain and
codomain.

This is made more precise by the notion of an inverse of a
function.

Definition 3.15. A function g : B → A is an inverse of a function
f : A → B if f (g (y)) = y and g (f (x)) = x for all x ∈ A and y ∈ B .

If f has an inverse g , we often write f −1 instead of g .
Now we will determine when functions have inverses. A good

candidate for an inverse of f : A → B is g : B → A “defined by”

g (y) = “the” x such that f (x) = y .

But the scare quotes around “defined by” (and “the”) suggest
that this is not a definition. At least, it will not always work, with
complete generality. For, in order for this definition to specify a

CHAPTER 3. FUNCTIONS 37

function, there has to be one and only one x such that f (x) = y—
the output of g has to be uniquely specified. Moreover, it has to
be specified for every y ∈ B . If there are x1 and x2 ∈ A with
x1 ≠ x2 but f (x1) = f (x2), then g (y) would not be uniquely
specified for y = f (x1) = f (x2). And if there is no x at all such
that f (x) = y , then g (y) is not specified at all. In other words,
for g to be defined, f must be both injective and surjective.

Let’s go slowly. We’ll divide the question into two: Given a
function f : A → B , when is there a function g : B → A so that
g (f (x)) = x? Such a g “undoes” what f does, and is called a left
inverse of f . Secondly, when is there a function h : B → A so that
f (h (y)) = y? Such an h is called a right inverse of f —f “undoes”
what h does.

Proposition 3.16. If f : A → B is injective, then there is a left
inverse g : B → A of f so that g (f (x)) = x for all x ∈ A.

Proof. Suppose that f : A → B is injective. Consider a y ∈ B .
If y ∈ ran(f), there is an x ∈ A so that f (x) = y . Because f
is injective, there is only one such x ∈ A. Then we can define:
g (y) = x , i.e., g (y) is “the” x ∈ A such that f (x) = y . If y ∉ ran(f),
we can map it to any a ∈ A. So, we can pick an a ∈ A and define
g : B → A by:

g (y) =
{︄
x if f (x) = y
a if y ∉ ran(f).

It is defined for all y ∈ B , since for each such y ∈ ran(f) there is
exactly one x ∈ A such that f (x) = y . By definition, if y = f (x),
then g (y) = x , i.e., g (f (x)) = x . □

Proposition 3.17. If f : A → B is surjective, then there is a right
inverse h : B → A of f so that f (h (y)) = y for all y ∈ B.

Proof. Suppose that f : A → B is surjective. Consider a y ∈ B .
Since f is surjective, there is an xy ∈ A with f (xy) = y . Then we
can define: h (y) = xy , i.e., for each y ∈ B we choose some x ∈ A

CHAPTER 3. FUNCTIONS 38

so that f (x) = y ; since f is surjective there is always at least one
to choose from.1 By definition, if x = h (y), then f (x) = y , i.e., for
any y ∈ B , f (h (y)) = y . □

By combining the ideas in the previous proof, we now get
that every bijection has an inverse, i.e., there is a single function
which is both a left and right inverse of f .

Proposition 3.18. If f : A → B is bijective, there is a func-
tion f −1 : B → A so that for all x ∈ A, f −1(f (x)) = x and for
all y ∈ B, f (f −1(y)) = y .

Proof. Exercise. □

There is a slightly more general way to extract inverses. We
saw in section 3.2 that every function f induces a surjection
f ′ : A → ran(f) by letting f ′(x) = f (x) for all x ∈ A. Clearly,
if f is injective, then f ′ is bijective, so that it has a unique in-
verse by Proposition 3.18. By a very minor abuse of notation, we
sometimes call the inverse of f ′ simply “the inverse of f .”

Proposition 3.19. Show that if f : A → B has a left inverse g and
a right inverse h, then h = g .

Proof. Exercise. □

1Since f is surjective, for every y ∈ B the set {x : f (x) = y} is nonempty.
Our definition of h requires that we choose a single x from each of these sets.
That this is always possible is actually not obvious—the possibility of making
these choices is simply assumed as an axiom. In other words, this proposition
assumes the so-called Axiom of Choice, an issue we will gloss over. However,
in many specific cases, e.g., when A = N or is finite, or when f is bijective, the
Axiom of Choice is not required. (In the particular case when f is bijective,
for each y ∈ B the set {x : f (x) = y} has exactly one element, so that there is
no choice to make.)

CHAPTER 3. FUNCTIONS 39

Proposition 3.20. Every function f has at most one inverse.

Proof. Suppose g and h are both inverses of f . Then in particular
g is a left inverse of f and h is a right inverse. By Proposition 3.19,
g = h. □

3.5 Composition of Functions

We saw in section 3.4 that the inverse f −1 of a bijection f is itself
a function. Another operation on functions is composition: we
can define a new function by composing two functions, f and g ,
i.e., by first applying f and then g . Of course, this is only possible
if the ranges and domains match, i.e., the range of f must be a
subset of the domain of g . This operation on functions is the
analogue of the operation of relative product on relations from
section 2.6.

A diagram might help to explain the idea of composition. In
Figure 3.5, we depict two functions f : A → B and g : B → C
and their composition (g ◦ f). The function (g ◦ f) : A → C
pairs each element of A with an element of C . We specify which
element of C an element of A is paired with as follows: given an
input x ∈ A, first apply the function f to x , which will output
some f (x) = y ∈ B , then apply the function g to y , which will
output some g (f (x)) = g (y) = z ∈ C .

Definition 3.21 (Composition). Let f : A → B and g : B → C
be functions. The composition of f with g is g ◦ f : A → C , where
(g ◦ f) (x) = g (f (x)).

Example 3.22. Consider the functions f (x) = x + 1, and g (x) =
2x . Since (g ◦ f) (x) = g (f (x)), for each input x you must first
take its successor, then multiply the result by two. So their com-
position is given by (g ◦ f) (x) = 2(x + 1).

CHAPTER 3. FUNCTIONS 40

Figure 3.5: The composition g ◦ f of two functions f and g .

3.6 Partial Functions

It is sometimes useful to relax the definition of function so that
it is not required that the output of the function is defined for all
possible inputs. Such mappings are called partial functions.

Definition 3.23. A partial function f : A ↦→ B is a mapping
which assigns to every element of A at most one element of B . If
f assigns an element of B to x ∈ A, we say f (x) is defined, and
otherwise undefined. If f (x) is defined, we write f (x) ↓, other-
wise f (x) ↑. The domain of a partial function f is the subset of A
where it is defined, i.e., dom(f) = {x ∈ A : f (x) ↓}.

Example 3.24. Every function f : A → B is also a partial func-
tion. Partial functions that are defined everywhere on A—i.e.,
what we so far have simply called a function—are also called
total functions.

Example 3.25. The partial function f : R ↦→ R given by f (x) =
1/x is undefined for x = 0, and defined everywhere else.

CHAPTER 3. FUNCTIONS 41

Definition 3.26 (Graph of a partial function). Let f : A ↦→ B
be a partial function. The graph of f is the relation R f ⊆ A × B
defined by

R f = {⟨x ,y⟩ : f (x) = y}.

Proposition 3.27. Suppose R ⊆ A×B has the property that whenever
Rxy and Rxy ′ then y = y ′. Then R is the graph of the partial function
f : X ↦→ Y defined by: if there is a y such that Rxy, then f (x) = y ,
otherwise f (x) ↑. If R is also serial, i.e., for each x ∈ X there is a
y ∈Y such that Rxy, then f is total.

Proof. Suppose there is a y such that Rxy . If there were another
y ′ ≠ y such that Rxy ′, the condition on R would be violated.
Hence, if there is a y such that Rxy , that y is unique, and so f is
well-defined. Obviously, R f = R and f is total if R is serial. □

Summary

A function f : A → B maps every element of the domain A to a
unique element of the codomain B . If x ∈ A, we call the y that f
maps x to the value f (x) of f for argument x . If A is a set of
pairs, we can think of the function f as taking two arguments.
The range ran(f) of f is the subset of B that consists of all the
values of f .

If ran(f) = B then f is called surjective. The value f (x) is
unique in that f maps x to only one f (x), never more than one.
If f (x) is also unique in the sense that no two different arguments
are mapped to the same value, f is called injective. Functions
which are both injective and surjective are called bijective.

Bijective functions have a unique inverse function f −1. Func-
tions can also be chained together: the function (g ◦ f) is the
composition of f with g . Compositions of injective functions are
injective, and of surjective functions are surjective, and (f −1 ◦ f)
is the identity function.

CHAPTER 3. FUNCTIONS 42

If we relax the requirement that f must have a value for every
x ∈ A, we get the notion of a partial functions. If f : A ↦→ B
is partial, we say f (x) is defined, f (x) ↓ if f has a value for
argument x , and otherwise we say that f (x) is undefined, f (x) ↑.
Any (partial) function f is associated with the graph R f of f ,
the relation that holds iff f (x) = y .

Problems

Problem 3.1. Show that if f : A → B has a left inverse g , then
f is injective.

Problem 3.2. Show that if f : A → B has a right inverse h, then
f is surjective.

Problem 3.3. Prove Proposition 3.18. You have to define f −1,
show that it is a function, and show that it is an inverse of f , i.e.,
f −1(f (x)) = x and f (f −1(y)) = y for all x ∈ A and y ∈ B .

Problem 3.4. Prove Proposition 3.19.

Problem 3.5. Show that if f : A → B and g : B → C are both
injective, then g ◦ f : A → C is injective.

Problem 3.6. Show that if f : A → B and g : B → C are both
surjective, then g ◦ f : A → C is surjective.

Problem 3.7. Suppose f : A → B and g : B → C . Show that the
graph of g ◦ f is R f | Rg .

Problem 3.8. Given f : A ↦→ B , define the partial function
g : B ↦→ A by: for any y ∈ B , if there is a unique x ∈ A such
that f (x) = y , then g (y) = x ; otherwise g (y) ↑. Show that if f is
injective, then g (f (x)) = x for all x ∈ dom(f), and f (g (y)) = y
for all y ∈ ran(f).

CHAPTER 4

The Size of Sets
4.1 Introduction

When Georg Cantor developed set theory in the 1870s, one of his
aims was to make palatable the idea of an infinite collection—an
actual infinity, as the medievals would say. A key part of this was
his treatment of the size of different sets. If a, b and c are all
distinct, then the set {a,b ,c } is intuitively larger than {a,b}. But
what about infinite sets? Are they all as large as each other? It
turns out that they are not.

The first important idea here is that of an enumeration. We
can list every finite set by listing all its elements. For some infinite
sets, we can also list all their elements if we allow the list itself
to be infinite. Such sets are called countable. Cantor’s surprising
result, which we will fully understand by the end of this chapter,
was that some infinite sets are not countable.

4.2 Enumerations and Countable Sets

We’ve already given examples of sets by listing their elements.
Let’s discuss in more general terms how and when we can list the
elements of a set, even if that set is infinite.

43

CHAPTER 4. THE SIZE OF SETS 44

Definition 4.1 (Enumeration, informally). Informally, an
enumeration of a set A is a list (possibly infinite) of elements
of A such that every element of A appears on the list at some
finite position. If A has an enumeration, then A is said to be
countable.

A couple of points about enumerations:

1. We count as enumerations only lists which have a beginning
and in which every element other than the first has a single
element immediately preceding it. In other words, there
are only finitely many elements between the first element
of the list and any other element. In particular, this means
that every element of an enumeration has a finite position:
the first element has position 1, the second position 2, etc.

2. We can have different enumerations of the same setA which
differ by the order in which the elements appear: 4, 1, 25,
16, 9 enumerates the (set of the) first five square numbers
just as well as 1, 4, 9, 16, 25 does.

3. Redundant enumerations are still enumerations: 1, 1, 2, 2,
3, 3, . . . enumerates the same set as 1, 2, 3, . . . does.

4. Order and redundancy do matter when we specify an enu-
meration: we can enumerate the positive integers beginning
with 1, 2, 3, 1, . . . , but the pattern is easier to see when enu-
merated in the standard way as 1, 2, 3, 4, . . .

5. Enumerations must have a beginning: . . . , 3, 2, 1 is not
an enumeration of the positive integers because it has no
first element. To see how this follows from the informal
definition, ask yourself, “at what position in the list does
the number 76 appear?”

6. The following is not an enumeration of the positive inte-
gers: 1, 3, 5, . . . , 2, 4, 6, . . . The problem is that the even

CHAPTER 4. THE SIZE OF SETS 45

numbers occur at places ∞+ 1, ∞+ 2, ∞+ 3, rather than at
finite positions.

7. The empty set is enumerable: it is enumerated by the empty
list!

Proposition 4.2. If A has an enumeration, it has an enumeration
without repetitions.

Proof. Suppose A has an enumeration x1, x2, . . . in which each
xi is an element of A. We can remove repetitions from an enu-
meration by removing repeated elements. For instance, we can
turn the enumeration into a new one in which we list xi if it is
an element of A that is not among x1, . . . , xi−1 or remove xi from
the list if it already appears among x1, . . . , xi−1. □

The last argument shows that in order to get a good handle
on enumerations and countable sets and to prove things about
them, we need a more precise definition. The following provides
it.

Definition 4.3 (Enumeration, formally). An enumeration of a
set A ≠ ∅ is any surjective function f : Z+ → A.

Let’s convince ourselves that the formal definition and the
informal definition using a possibly infinite list are equivalent.
First, any surjective function from Z+ to a set A enumerates A.
Such a function determines an enumeration as defined informally
above: the list f (1), f (2), f (3), Since f is surjective, every
element of A is guaranteed to be the value of f (n) for some n ∈
Z+. Hence, every element of A appears at some finite position in
the list. Since the function may not be injective, the list may be
redundant, but that is acceptable (as noted above).

On the other hand, given a list that enumerates all elements
of A, we can define a surjective function f : Z+ → A by letting
f (n) be the nth element of the list, or the final element of the

CHAPTER 4. THE SIZE OF SETS 46

list if there is no nth element. The only case where this does not
produce a surjective function is when A is empty, and hence the
list is empty. So, every non-empty list determines a surjective
function f : Z+ → A.

Definition 4.4. A set A is countable iff it is empty or has an
enumeration.

Example 4.5. A function enumerating the positive integers (Z+)
is simply the identity function given by f (n) = n. A function
enumerating the natural numbers N is the function g (n) = n − 1.

Example 4.6. The functions f : Z+ → Z+ and g : Z+ → Z+ given
by

f (n) = 2n and

g (n) = 2n − 1

enumerate the even positive integers and the odd positive inte-
gers, respectively. However, neither function is an enumeration
of Z+, since neither is surjective.

Example 4.7. The function f (n) = (−1)n ⌈ (n−1)
2 ⌉ (where ⌈x⌉ de-

notes the ceiling function, which rounds x up to the nearest in-
teger) enumerates the set of integers Z. Notice how f generates
the values of Z by “hopping” back and forth between positive and
negative integers:

f (1) f (2) f (3) f (4) f (5) f (6) f (7) . . .

−⌈ 0
2⌉ ⌈ 1

2⌉ −⌈ 2
2⌉ ⌈ 3

2⌉ −⌈ 4
2⌉ ⌈ 5

2⌉ −⌈ 6
2⌉ . . .

0 1 −1 2 −2 3 . . .

You can also think of f as defined by cases as follows:

f (n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if n = 1

n/2 if n is even

−(n − 1)/2 if n is odd and > 1

CHAPTER 4. THE SIZE OF SETS 47

Although it is perhaps more natural when listing the elements
of a set to start counting from the 1st element, mathematicians
like to use the natural numbers N for counting things. They talk
about the 0th, 1st, 2nd, and so on, elements of a list. Correspond-
ingly, we can define an enumeration as a surjective function from
N to A. Of course, the two definitions are equivalent.

Proposition 4.8. There is a surjection f : Z+ → A iff there is a sur-
jection g : N→ A.

Proof. Given a surjection f : Z+ → A, we can define g (n) = f (n +
1) for all n ∈ N. It is easy to see that g : N → A is surjective.
Conversely, given a surjection g : N→ A, define f (n) = g (n−1).□

This gives us the following result:

Corollary 4.9. A set A is countable iff it is empty or there is a surjec-
tive function f : N→ A.

We discussed above than an list of elements of a set A can
be turned into a list without repetitions. This is also true for
enumerations, but a bit harder to formulate and prove rigorously.
Any function f : Z+ → A must be defined for all n ∈ Z+. If there
are only finitely many elements in A then we clearly cannot have
a function defined on the infinitely many elements of Z+ that
takes as values all the elements of A but never takes the same
value twice. In that case, i.e., in the case where the list without
repetitions is finite, we must choose a different domain for f , one
with only finitely many elements. Not having repetitions means
that f must be injective. Since it is also surjective, we are looking
for a bijection between some finite set {1, . . . ,n} or Z+ and A.

Proposition 4.10. If f : Z+ → A is surjective (i.e., an enumeration
of A), there is a bijection g : Z → A where Z is either Z+ or {1, . . . ,n}
for some n ∈ Z+.

CHAPTER 4. THE SIZE OF SETS 48

Proof. We define the function g recursively: Let g (1) = f (1). If
g (i) has already been defined, let g (i+1) be the first value of f (1),
f (2), . . . not already among g (1), . . . , g (i), if there is one. If A
has just n elements, then g (1), . . . , g (n) are all defined, and so
we have defined a function g : {1, . . . ,n} → A. If A has infinitely
many elements, then for any i there must be an element of A
in the enumeration f (1), f (2), . . . , which is not already among
g (1), . . . , g (i). In this case we have defined a funtion g : Z+ → A.

The function g is surjective, since any element of A is among
f (1), f (2), . . . (since f is surjective) and so will eventually be
a value of g (i) for some i . It is also injective, since if there were
j < i such that g (j) = g (i), then g (i) would already be among
g (1), . . . , g (i − 1), contrary to how we defined g . □

Corollary 4.11. A set A is countable iff it is empty or there is a bi-
jection f : N → A where either N = N or N = {0, . . . ,n} for some
n ∈ N.

Proof. A is countable iff A is empty or there is a surjective
f : Z+ → A. By Proposition 4.10, the latter holds iff there is
a bijective function f : Z → A where Z = Z+ or Z = {1, . . . ,n}
for some n ∈ Z+. By the same argument as in the proof of Propo-
sition 4.8, that in turn is the case iff there is a bijection g : N → A
where either N = N or N = {0, . . . ,n − 1}. □

4.3 Cantor’s Zig-Zag Method

We’ve already considered some “easy” enumerations. Now we
will consider something a bit harder. Consider the set of pairs of
natural numbers, which we defined in section 1.5 thus:

N × N = {⟨n,m⟩ : n,m ∈ N}

CHAPTER 4. THE SIZE OF SETS 49

We can organize these ordered pairs into an array, like so:

0 1 2 3 . . .

0 ⟨0,0⟩ ⟨0,1⟩ ⟨0,2⟩ ⟨0,3⟩ . . .

1 ⟨1,0⟩ ⟨1,1⟩ ⟨1,2⟩ ⟨1,3⟩ . . .

2 ⟨2,0⟩ ⟨2,1⟩ ⟨2,2⟩ ⟨2,3⟩ . . .

3 ⟨3,0⟩ ⟨3,1⟩ ⟨3,2⟩ ⟨3,3⟩ . . .

...
...

...
...

...
. . .

Clearly, every ordered pair in N × N will appear exactly once in
the array. In particular, ⟨n,m⟩ will appear in the nth row and mth
column. But how do we organize the elements of such an array
into a “one-dimensional” list? The pattern in the array below
demonstrates one way to do this (although of course there are
many other options):

0 1 2 3 4 . . .

0 0 1 3 6 10 . . .

1 2 4 7 11

2 5 8 12

3 9 13

4 14

...
...

...
...

... . . .
. . .

This pattern is called Cantor’s zig-zag method. It enumerates N×N
as follows:

⟨0,0⟩, ⟨0,1⟩, ⟨1,0⟩, ⟨0,2⟩, ⟨1,1⟩, ⟨2,0⟩, ⟨0,3⟩, ⟨1,2⟩, ⟨2,1⟩, ⟨3,0⟩, . . .

And this establishes the following:

Proposition 4.12. N × N is countable.

Proof. Let f : N → N × N take each k ∈ N to the tuple ⟨n,m⟩ ∈
N ×N such that k is the value of the nth row and mth column in
Cantor’s zig-zag array. □

CHAPTER 4. THE SIZE OF SETS 50

This technique also generalises rather nicely. For example,
we can use it to enumerate the set of ordered triples of natural
numbers, i.e.:

N × N × N = {⟨n,m,k⟩ : n,m,k ∈ N}

We think of N×N×N as the Cartesian product of N×N with N,
that is,

N3 = (N × N) × N = {⟨⟨n,m⟩,k⟩ : n,m,k ∈ N}

and thus we can enumerate N3 with an array by labelling one axis
with the enumeration of N, and the other axis with the enumer-
ation of N2:

0 1 2 3 . . .

⟨0,0⟩ ⟨0,0,0⟩ ⟨0,0,1⟩ ⟨0,0,2⟩ ⟨0,0,3⟩ . . .

⟨0,1⟩ ⟨0,1,0⟩ ⟨0,1,1⟩ ⟨0,1,2⟩ ⟨0,1,3⟩ . . .

⟨1,0⟩ ⟨1,0,0⟩ ⟨1,0,1⟩ ⟨1,0,2⟩ ⟨1,0,3⟩ . . .

⟨0,2⟩ ⟨0,2,0⟩ ⟨0,2,1⟩ ⟨0,2,2⟩ ⟨0,2,3⟩ . . .

...
...

...
...

...
. . .

Thus, by using a method like Cantor’s zig-zag method, we may
similarly obtain an enumeration of N3. And we can keep going,
obtaining enumerations of Nn for any natural number n. So, we
have:

Proposition 4.13. Nn is countable, for every n ∈ N.

4.4 Pairing Functions and Codes

Cantor’s zig-zag method makes the enumerability of Nn visually
evident. But let us focus on our array depicting N2. Following the
zig-zag line in the array and counting the places, we can check
that ⟨1,2⟩ is associated with the number 7. However, it would
be nice if we could compute this more directly. That is, it would

CHAPTER 4. THE SIZE OF SETS 51

be nice to have to hand the inverse of the zig-zag enumeration,
g : N2 → N, such that

g (⟨0,0⟩) = 0, g (⟨0,1⟩) = 1, g (⟨1,0⟩) = 2, . . . , g (⟨1,2⟩) = 7, . . .

This would enable us to calculate exactly where ⟨n,m⟩ will occur
in our enumeration.

In fact, we can define g directly by making two observations.
First: if the nth row and mth column contains value v , then the
(n+1)st row and (m−1)st column contains value v+1. Second: the
first row of our enumeration consists of the triangular numbers,
starting with 0, 1, 3, 6, etc. The k th triangular number is the sum
of the natural numbers < k , which can be computed as k (k+1)/2.
Putting these two observations together, consider this function:

g (n,m) = (n +m + 1) (n +m)
2

+ n

We often just write g (n,m) rather that g (⟨n,m⟩), since it is easier
on the eyes. This tells you first to determine the (n +m)th triangle
number, and then add n to it. And it populates the array in
exactly the way we would like. So in particular, the pair ⟨1,2⟩ is
sent to 4×3

2 + 1 = 7.
This function g is the inverse of an enumeration of a set of

pairs. Such functions are called pairing functions.

Definition 4.14 (Pairing function). A function f : A × B → N
is an arithmetical pairing function if f is injective. We also say
that f encodes A × B , and that f (x ,y) is the code for ⟨x ,y⟩.

We can use pairing functions to encode, e.g., pairs of natu-
ral numbers; or, in other words, we can represent each pair of
elements using a single number. Using the inverse of the pairing
function, we can decode the number, i.e., find out which pair it
represents.

CHAPTER 4. THE SIZE OF SETS 52

4.5 An Alternative Pairing Function

There are other enumerations of N2 that make it easier to figure
out what their inverses are. Here is one. Instead of visualiz-
ing the enumeration in an array, start with the list of positive
integers associated with (initially) empty spaces. Imagine filling
these spaces successively with pairs ⟨n,m⟩ as follows. Starting
with the pairs that have 0 in the first place (i.e., pairs ⟨0,m⟩),
put the first (i.e., ⟨0,0⟩) in the first empty place, then skip an
empty space, put the second (i.e., ⟨0,2⟩) in the next empty place,
skip one again, and so forth. The (incomplete) beginning of our
enumeration now looks like this

1 2 3 4 5 6 7 8 9 10 . . .

⟨0,1⟩ ⟨0,2⟩ ⟨0,3⟩ ⟨0,4⟩ ⟨0,5⟩ . . .

Repeat this with pairs ⟨1,m⟩ for the place that still remain empty,
again skipping every other empty place:

1 2 3 4 5 6 7 8 9 10 . . .

⟨0,0⟩ ⟨1,0⟩ ⟨0,1⟩ ⟨0,2⟩ ⟨1,1⟩ ⟨0,3⟩ ⟨0,4⟩ ⟨1,2⟩ . . .

Enter pairs ⟨2,m⟩, ⟨2,m⟩, etc., in the same way. Our completed
enumeration thus starts like this:

1 2 3 4 5 6 7 8 9 10 . . .

⟨0,0⟩ ⟨1,0⟩ ⟨0,1⟩ ⟨2,0⟩ ⟨0,2⟩ ⟨1,1⟩ ⟨0,3⟩ ⟨3,0⟩ ⟨0,4⟩ ⟨1,2⟩ . . .

If we number the cells in the array above according to this enu-
meration, we will not find a neat zig-zag line, but this arrange-

CHAPTER 4. THE SIZE OF SETS 53

ment:
0 1 2 3 4 5 . . .

0 1 3 5 7 9 11 . . .

1 2 6 10 14 18

2 4 12 20 28

3 8 24 40

4 16 48

5 32

...
...

...
...

...
...

...
. . .

We can see that the pairs in row 0 are in the odd numbered places
of our enumeration, i.e., pair ⟨0,m⟩ is in place 2m + 1; pairs in
the second row, ⟨1,m⟩, are in places whose number is the double
of an odd number, specifically, 2 · (2m + 1); pairs in the third row,
⟨2,m⟩, are in places whose number is four times an odd number,
4 · (2m+1); and so on. The factors of (2m+1) for each row, 1, 2, 4,
8, . . . , are exactly the powers of 2: 1 = 20, 2 = 21, 4 = 22, 8 = 23,
. . . In fact, the relevant exponent is always the first member of
the pair in question. Thus, for pair ⟨n,m⟩ the factor is 2n . This
gives us the general formula: 2n · (2m + 1). However, this is a
mapping of pairs to positive integers, i.e., ⟨0,0⟩ has position 1. If
we want to begin at position 0 we must subtract 1 from the result.
This gives us:

Example 4.15. The function h : N2 → N given by

h (n,m) = 2n (2m + 1) − 1

is a pairing function for the set of pairs of natural numbers N2.

Accordingly, in our second enumeration of N2, the pair ⟨0,0⟩
has code h (0,0) = 20(2 · 0 + 1) − 1 = 0; ⟨1,2⟩ has code 21 · (2 · 2 +
1) − 1 = 2 · 5 − 1 = 9; ⟨2,6⟩ has code 22 · (2 · 6 + 1) − 1 = 51.

Sometimes it is enough to encode pairs of natural numbersN2

without requiring that the encoding is surjective. Such encodings
have inverses that are only partial functions.

CHAPTER 4. THE SIZE OF SETS 54

Example 4.16. The function j : N2 → N+ given by

j (n,m) = 2n3m

is an injective function N2 → N.

4.6 Uncountable Sets

Some sets, such as the set Z+ of positive integers, are infinite.
So far we’ve seen examples of infinite sets which were all count-
able. However, there are also infinite sets which do not have this
property. Such sets are called uncountable.

First of all, it is perhaps already surprising that there are un-
countable sets. For any countable set A there is a surjective func-
tion f : Z+ → A. If a set is uncountable there is no such function.
That is, no function mapping the infinitely many elements of Z+

to A can exhaust all of A. So there are “more” elements of A than
the infinitely many positive integers.

How would one prove that a set is uncountable? You have to
show that no such surjective function can exist. Equivalently, you
have to show that the elements of A cannot be enumerated in a
one way infinite list. The best way to do this is to show that every
list of elements of A must leave at least one element out; or that
no function f : Z+ → A can be surjective. We can do this using
Cantor’s diagonal method. Given a list of elements of A, say, x1, x2,
. . . , we construct another element of A which, by its construction,
cannot possibly be on that list.

Our first example is the set B𝜔 of all infinite, non-gappy se-
quences of 0’s and 1’s.

Theorem 4.17. B𝜔 is uncountable.

Proof. Suppose, by way of contradiction, that B𝜔 is countable,
i.e., suppose that there is a list s1, s2, s3, s4, . . . of all elements
of B𝜔. Each of these si is itself an infinite sequence of 0’s and 1’s.

CHAPTER 4. THE SIZE OF SETS 55

Let’s call the j -th element of the i -th sequence in this list si (j).
Then the i -th sequence si is

si (1),si (2),si (3), . . .

We may arrange this list, and the elements of each sequence
si in it, in an array:

1 2 3 4 . . .

1 s1(1) s1(2) s1(3) s1(4) . . .

2 s2(1) s2(2) s2(3) s2(4) . . .

3 s3(1) s3(2) s3(3) s3(4) . . .

4 s4(1) s4(2) s4(3) s4(4) . . .

...
...

...
...

...
. . .

The labels down the side give the number of the sequence in the
list s1, s2, . . . ; the numbers across the top label the elements of the
individual sequences. For instance, s1(1) is a name for whatever
number, a 0 or a 1, is the first element in the sequence s1, and so
on.

Now we construct an infinite sequence, s , of 0’s and 1’s which
cannot possibly be on this list. The definition of s will depend on
the list s1, s2, Any infinite list of infinite sequences of 0’s and
1’s gives rise to an infinite sequence s which is guaranteed to not
appear on the list.

To define s , we specify what all its elements are, i.e., we spec-
ify s (n) for all n ∈ Z+. We do this by reading down the diagonal
of the array above (hence the name “diagonal method”) and then
changing every 1 to a 0 and every 0 to a 1. More abstractly, we
define s (n) to be 0 or 1 according to whether the n-th element of
the diagonal, sn (n), is 1 or 0.

s (n) =
{︄
1 if sn (n) = 0

0 if sn (n) = 1.

If you like formulas better than definitions by cases, you could
also define s (n) = 1 − sn (n).

CHAPTER 4. THE SIZE OF SETS 56

Clearly s is an infinite sequence of 0’s and 1’s, since it is just
the mirror sequence to the sequence of 0’s and 1’s that appear on
the diagonal of our array. So s is an element of B𝜔. But it cannot
be on the list s1, s2, . . . Why not?

It can’t be the first sequence in the list, s1, because it differs
from s1 in the first element. Whatever s1(1) is, we defined s (1)
to be the opposite. It can’t be the second sequence in the list,
because s differs from s2 in the second element: if s2(2) is 0, s (2)
is 1, and vice versa. And so on.

More precisely: if s were on the list, there would be some k
so that s = sk . Two sequences are identical iff they agree at every
place, i.e., for any n, s (n) = sk (n). So in particular, taking n = k
as a special case, s (k) = sk (k) would have to hold. sk (k) is either
0 or 1. If it is 0 then s (k) must be 1—that’s how we defined s . But
if sk (k) = 1 then, again because of the way we defined s , s (k) = 0.
In either case s (k) ≠ sk (k).

We started by assuming that there is a list of elements of B𝜔,
s1, s2, . . . From this list we constructed a sequence s which we
proved cannot be on the list. But it definitely is a sequence of
0’s and 1’s if all the si are sequences of 0’s and 1’s, i.e., s ∈ B𝜔.
This shows in particular that there can be no list of all elements
of B𝜔, since for any such list we could also construct a sequence s
guaranteed to not be on the list, so the assumption that there is
a list of all sequences in B𝜔 leads to a contradiction. □

This proof method is called “diagonalization” because it uses
the diagonal of the array to define s . Diagonalization need not
involve the presence of an array: we can show that sets are not
countable by using a similar idea even when no array and no
actual diagonal is involved.

Theorem 4.18. ℘(Z+) is not countable.

Proof. We proceed in the same way, by showing that for every list
of subsets of Z+ there is a subset of Z+ which cannot be on the

CHAPTER 4. THE SIZE OF SETS 57

list. Suppose the following is a given list of subsets of Z+:

Z1,Z2,Z3, . . .

We now define a set Z such that for any n ∈ Z+, n ∈ Z iff n ∉ Zn :

Z = {n ∈ Z+ : n ∉ Zn} □

Z is clearly a set of positive integers, since by assumption each Zn
is, and thus Z ∈ ℘(Z+). But Z cannot be on the list. To show
this, we’ll establish that for each k ∈ Z+, Z ≠ Zk .

So let k ∈ Z+ be arbitrary. We’ve defined Z so that for any
n ∈ Z+, n ∈ Z iff n ∉ Zn . In particular, taking n = k , k ∈ Z
iff k ∉ Zk . But this shows that Z ≠ Zk , since k is an element of
one but not the other, and so Z and Zk have different elements.
Since k was arbitrary, Z is not on the list Z1, Z2, . . .

The preceding proof did not mention a diagonal, but you
can think of it as involving a diagonal if you picture it this way:
Imagine the sets Z1, Z2, . . . , written in an array, where each ele-
ment j ∈ Zi is listed in the j -th column. Say the first four sets on
that list are {1,2,3, . . . }, {2,4,6, . . . }, {1,2,5}, and {3,4,5, . . . }.
Then the array would begin with

Z1 = {1, 2, 3, 4, 5, 6, . . . }
Z2 = { 2, 4, 6, . . . }
Z3 = {1, 2, 5 }
Z4 = { 3, 4, 5, 6, . . . }

...
. . .

Then Z is the set obtained by going down the diagonal, leav-
ing out any numbers that appear along the diagonal and include
those j where the array has a gap in the j -th row/column. In the
above case, we would leave out 1 and 2, include 3, leave out 4,
etc.

CHAPTER 4. THE SIZE OF SETS 58

4.7 Reduction

We showed ℘(Z+) to be uncountable by a diagonalization argu-
ment. We already had a proof that B𝜔, the set of all infinite
sequences of 0s and 1s, is uncountable. Here’s another way we
can prove that ℘(Z+) is uncountable: Show that if ℘(Z+) is count-
able then B𝜔 is also countable. Since we know B𝜔 is not countable,
℘(Z+) can’t be either. This is called reducing one problem to
another—in this case, we reduce the problem of enumerating B𝜔

to the problem of enumerating ℘(Z+). A solution to the latter—an
enumeration of ℘(Z+)—would yield a solution to the former—an
enumeration of B𝜔.

How do we reduce the problem of enumerating a set B to
that of enumerating a set A? We provide a way of turning an
enumeration of A into an enumeration of B . The easiest way to
do that is to define a surjective function f : A → B . If x1, x2, . . .
enumerates A, then f (x1), f (x2), . . . would enumerate B . In our
case, we are looking for a surjective function f : ℘(Z+) → B𝜔.

Proof of Theorem 4.18 by reduction. Suppose that ℘(Z+) were
countable, and thus that there is an enumeration of it, Z1,
Z2, Z3, . . .

Define the function f : ℘(Z+) → B𝜔 by letting f (Z) be the
sequence sk such that sk (n) = 1 iff n ∈ Z , and sk (n) = 0 other-
wise. This clearly defines a function, since whenever Z ⊆ Z+, any
n ∈ Z+ either is an element of Z or isn’t. For instance, the set
2Z+ = {2,4,6, . . . } of positive even numbers gets mapped to the
sequence 010101 . . . , the empty set gets mapped to 0000 . . . and
the set Z+ itself to 1111

It also is surjective: Every sequence of 0s and 1s corresponds
to some set of positive integers, namely the one which has as its
members those integers corresponding to the places where the
sequence has 1s. More precisely, suppose s ∈ B𝜔. Define Z ⊆ Z+
by:

Z = {n ∈ Z+ : s (n) = 1}

CHAPTER 4. THE SIZE OF SETS 59

Then f (Z) = s , as can be verified by consulting the definition
of f .

Now consider the list

f (Z1), f (Z2), f (Z3), . . .

Since f is surjective, every member of B𝜔 must appear as a value
of f for some argument, and so must appear on the list. This list
must therefore enumerate all of B𝜔.

So if ℘(Z+) were countable, B𝜔 would be countable. But B𝜔

is uncountable (Theorem 4.17). Hence ℘(Z+) is uncountable. □

It is easy to be confused about the direction the reduction
goes in. For instance, a surjective function g : B𝜔 → B does not
establish that B is uncountable. (Consider g : B𝜔 → B defined
by g (s) = s (1), the function that maps a sequence of 0’s and 1’s
to its first element. It is surjective, because some sequences start
with 0 and some start with 1. But B is finite.) Note also that the
function f must be surjective, or otherwise the argument does
not go through: f (x1), f (x2), . . . would then not be guaranteed
to include all the elements of B . For instance,

h (n) = 000 . . . 0⏞ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄⏞
n 0’s

defines a function h : Z+ → B𝜔, but Z+ is countable.

4.8 Equinumerosity

We have an intuitive notion of “size” of sets, which works fine for
finite sets. But what about infinite sets? If we want to come up
with a formal way of comparing the sizes of two sets of any size,
it is a good idea to start by defining when sets are the same size.
Here is Frege:

If a waiter wants to be sure that he has laid exactly as
many knives as plates on the table, he does not need

CHAPTER 4. THE SIZE OF SETS 60

to count either of them, if he simply lays a knife to the
right of each plate, so that every knife on the table lies
to the right of some plate. The plates and knives are
thus uniquely correlated to each other, and indeed
through that same spatial relationship. (Frege, 1884,
§70)

The insight of this passage can be brought out through a formal
definition:

Definition 4.19. A is equinumerous with B , written A ≈ B , iff
there is a bijection f : A → B .

Proposition 4.20. Equinumerosity is an equivalence relation.

Proof. We must show that equinumerosity is reflexive, symmetric,
and transitive. Let A,B , and C be sets.

Reflexivity. The identity map IdA : A → A, where IdA (x) = x
for all x ∈ A, is a bijection. So A ≈ A.

Symmetry. Suppose A ≈ B , i.e., there is a bijection f : A → B .
Since f is bijective, its inverse f −1 exists and is also bijective.
Hence, f −1 : B → A is a bijection, so B ≈ A.

Transitivity. Suppose that A ≈ B and B ≈ C , i.e., there are
bijections f : A → B and g : B → C . Then the composition
g ◦ f : A → C is bijective, so that A ≈ C . □

Proposition 4.21. If A ≈ B, then A is countable if and only if B is.

Proof. Suppose A ≈ B , so there is some bijection f : A → B ,
and suppose that A is countable. Then either A = ∅ or there
is a surjective function g : Z+ → A. If A = ∅, then B = ∅ also
(otherwise there would be an element y ∈ B but no x ∈ A with
g (x) = y). If, on the other hand, g : Z+ → A is surjective, then
f ◦ g : Z+ → B is surjective. To see this, let y ∈ B . Since f

CHAPTER 4. THE SIZE OF SETS 61

is surjective, there is an x ∈ A such that f (x) = y . Since g is
surjective, there is an n ∈ Z+ such that g (n) = x . Hence,

(f ◦ g) (n) = f (g (n)) = f (x) = y

and thus f ◦ g is surjective. We have that f ◦ g is an enumeration
of B , and so B is countable.

If B is countable, we obtain that A is countable by repeating
the argument with the bijection f −1 : B → A instead of f . □

4.9 Sets of Different Sizes, and Cantor’s
Theorem

We have offered a precise statement of the idea that two sets have
the same size. We can also offer a precise statement of the idea
that one set is smaller than another. Our definition of “is smaller
than (or equinumerous)” will require, instead of a bijection be-
tween the sets, an injection from the first set to the second. If
such a function exists, the size of the first set is less than or equal
to the size of the second. Intuitively, an injection from one set
to another guarantees that the range of the function has at least
as many elements as the domain, since no two elements of the
domain map to the same element of the range.

Definition 4.22. A is no larger than B , written A ⪯ B , iff there is
an injection f : A → B .

It is clear that this is a reflexive and transitive relation, but
that it is not symmetric (this is left as an exercise). We can also
introduce a notion, which states that one set is (strictly) smaller
than another.

Definition 4.23. A is smaller than B , written A ≺ B , iff there is
an injection f : A → B but no bijection g : A → B , i.e., A ⪯ B
and A ≉ B .

CHAPTER 4. THE SIZE OF SETS 62

It is clear that this relation is irreflexive and transitive. (This
is left as an exercise.) Using this notation, we can say that a set
A is countable iff A ⪯ N, and that A is uncountable iff N ≺ A.
This allows us to restate Theorem 4.18 as the observation that
Z+ ≺ ℘(Z+). In fact, Cantor (1892) proved that this last point is
perfectly general:

Theorem 4.24 (Cantor). A ≺ ℘(A), for any set A.

Proof. The map f (x) = {x} is an injection f : A → ℘(A), since if
x ≠ y , then also {x} ≠ {y} by extensionality, and so f (x) ≠ f (y).
So we have that A ⪯ ℘(A).

We will now show that there cannot be a surjective func-
tion g : A → ℘(A), let alone a bijective one, and hence that
A ≉ ℘(A). For suppose that g : A → ℘(A). Since g is total,
every x ∈ A is mapped to a subset g (x) ⊆ A. We can show that g
cannot be surjective. To do this, we define a subset A ⊆ A which
by definition cannot be in the range of g . Let

A = {x ∈ A : x ∉ g (x)}.

Since g (x) is defined for all x ∈ A, A is clearly a well-defined
subset of A. But, it cannot be in the range of g . Let x ∈ A be
arbitrary, we will show that A ≠ g (x). If x ∈ g (x), then it does
not satisfy x ∉ g (x), and so by the definition of A, we have x ∉ A.
If x ∈ A, it must satisfy the defining property of A, i.e., x ∈ A
and x ∉ g (x). Since x was arbitrary, this shows that for each
x ∈ A, x ∈ g (x) iff x ∉ A, and so g (x) ≠ A. In other words, A
cannot be in the range of g , contradicting the assumption that g
is surjective. □

It’s instructive to compare the proof of Theorem 4.24 to that
of Theorem 4.18. There we showed that for any list Z1, Z2, . . . , of
subsets of Z+ one can construct a set Z of numbers guaranteed
not to be on the list. It was guaranteed not to be on the list
because, for every n ∈ Z+, n ∈ Zn iff n ∉ Z . This way, there is
always some number that is an element of one of Zn or Z but not

CHAPTER 4. THE SIZE OF SETS 63

the other. We follow the same idea here, except the indices n are
now elements of A instead of Z+. The set B is defined so that it
is different from g (x) for each x ∈ A, because x ∈ g (x) iff x ∉ B .
Again, there is always an element of A which is an element of one
of g (x) and B but not the other. And just as Z therefore cannot
be on the list Z1, Z2, . . . , B cannot be in the range of g .

The proof is also worth comparing with the proof of Russell’s
Paradox, Theorem 1.29. Indeed, Cantor’s Theorem was the in-
spiration for Russell’s own paradox.

4.10 The Notion of Size, and
Schröder-Bernstein

Here is an intuitive thought: if A is no larger than B and B is no
larger than A, then A and B are equinumerous. To be honest, if
this thought were wrong, then we could scarcely justify the thought
that our defined notion of equinumerosity has anything to do
with comparisons of “sizes” between sets! Fortunately, though,
the intuitive thought is correct. This is justified by the Schröder-
Bernstein Theorem.

Theorem 4.25 (Schröder-Bernstein). If A ⪯ B and B ⪯ A, then
A ≈ B.

In other words, if there is an injection from A to B , and an in-
jection from B to A, then there is a bijection from A to B .

This result, however, is really rather difficult to prove. Indeed,
although Cantor stated the result, others proved it.1 For now, you
can (and must) take it on trust.

Fortunately, Schröder-Bernstein is correct, and it vindicates our
thinking of the relations we defined, i.e., A ≈ B andA ⪯ B , as hav-
ing something to do with “size”. Moreover, Schröder-Bernstein is
very useful. It can be difficult to think of a bijection between two
equinumerous sets. The Schröder-Bernstein Theorem allows us

1For more on the history, see e.g., Potter (2004, pp. 165–6).

CHAPTER 4. THE SIZE OF SETS 64

to break the comparison down into cases so we only have to think
of an injection from the first to the second, and vice-versa.

Summary

The size of a set A can be measured by a natural number if the set
is finite, and sizes can be compared by comparing these numbers.
If sets are infinite, things are more complicated. The first level of
infinity is that of countably infinite sets. A set A is countable
if its elements can be arranged in an enumeration, a one-way
infinite list, i.e., when there is a surjective function f : Z+ → A. It
is countably infinite if it is countable but not finite. Cantor’s zig-
zag method shows that the sets of pairs of elements of countably
infinite sets is also countable; and this can be used to show that
even the set of rational numbers Q is countable.

There are, however, infinite sets that are not countable: these
sets are called uncountable. There are two ways of showing that
a set is uncountable: directly, using a diagonal argument, or
by reduction. To give a diagonal argument, we assume that the
set A in question is countable, and use a hypothetical enumera-
tion to define an element of A which, by the very way we define
it, is guaranteed to be different from every element in the enu-
meration. So the enumeration can’t be an enumeration of all
of A after all, and we’ve shown that no enumeration of A can
exist. A reduction shows that A is uncountable by associating
every element of A with an element of some known uncountable
set B in a surjective way. If this is possible, than a hypothetical
enumeration of A would yield an enumeration of B . Since B is
uncountable, no enumeration of A can exist.

In general, infinite sets can be compared sizewise: A and
B are the same size, or equinumerous, if there is a bijection
between them. We can also define that A is no larger than B
(A ⪯ B) if there is an injective function from A to B . By the
Schröder-Bernstein Theorem, this in fact provides a sizewise or-
der of infinite sets. Finally, Cantor’s theorem says that for any

CHAPTER 4. THE SIZE OF SETS 65

A, A ≺ ℘(A). This is a generalization of our result that ℘(Z+) is
uncountable, and shows that there are not just two, but infinitely
many levels of infinity.

Problems

Problem 4.1. Define an enumeration of the positive squares 1,
4, 9, 16, . . .

Problem 4.2. Show that if A and B are countable, so is A ∪ B .
To do this, suppose there are surjective functions f : Z+ → A
and g : Z+ → B , and define a surjective function h : Z+ → A ∪ B
and prove that it is surjective. Also consider the cases where A
or B = ∅.

Problem 4.3. Show that if B ⊆ A and A is countable, so is B . To
do this, suppose there is a surjective function f : Z+ → A. Define
a surjective function g : Z+ → B and prove that it is surjective.
What happens if B = ∅?

Problem 4.4. Show by induction on n that if A1, A2, . . . , An are
all countable, so is A1 ∪ · · · ∪An . You may assume the fact that if
two sets A and B are countable, so is A ∪ B .

Problem 4.5. According to Definition 4.4, a set A is enumerable
iff A = ∅ or there is a surjective f : Z+ → A. It is also possible to
define “countable set” precisely by: a set is enumerable iff there
is an injective function g : A → Z+. Show that the definitions are
equivalent, i.e., show that there is an injective function g : A → Z+
iff either A = ∅ or there is a surjective f : Z+ → A.

Problem 4.6. Show that (Z+)n is countable, for every n ∈ N.

Problem 4.7. Show that (Z+)∗ is countable. You may assume
problem 4.6.

CHAPTER 4. THE SIZE OF SETS 66

Problem 4.8. Give an enumeration of the set of all non-negative
rational numbers.

Problem 4.9. Show that Q is countable. Recall that any rational
number can be written as a fraction z/m with z ∈ Z, m ∈ N+.

Problem 4.10. Define an enumeration of B∗.

Problem 4.11. Recall from your introductory logic course that
each possible truth table expresses a truth function. In other
words, the truth functions are all functions from Bk → B for
some k . Prove that the set of all truth functions is enumerable.

Problem 4.12. Show that the set of all finite subsets of an arbi-
trary infinite countable set is countable.

Problem 4.13. A subset of N is said to be cofinite iff it is the
complement of a finite set N; that is, A ⊆ N is cofinite iff N \A is
finite. Let I be the set whose elements are exactly the finite and
cofinite subsets of N. Show that I is countable.

Problem 4.14. Show that the countable union of countable sets
is countable. That is, wheneverA1, A2, . . . are sets, and eachAi is
countable, then the union

⋃︁∞
i=1Ai of all of them is also countable.

[NB: this is hard!]

Problem 4.15. Let f : A × B → N be an arbitrary pairing func-
tion. Show that the inverse of f is an enumeration of A × B .

Problem 4.16. Specify a function that encodes N3.

Problem 4.17. Show that ℘(N) is uncountable by a diagonal ar-
gument.

Problem 4.18. Show that the set of functions f : Z+ → Z+ is
uncountable by an explicit diagonal argument. That is, show
that if f1, f2, . . . , is a list of functions and each fi : Z+ → Z+, then
there is some f : Z+ → Z+ not on this list.

CHAPTER 4. THE SIZE OF SETS 67

Problem 4.19. Show that if there is an injective function g : B →
A, and B is uncountable, then so is A. Do this by showing how
you can use g to turn an enumeration of A into one of B .

Problem 4.20. Show that the set of all sets of pairs of positive
integers is uncountable by a reduction argument.

Problem 4.21. Show that the set X of all functions f : N → N

is uncountable by a reduction argument (Hint: give a surjective
function from X to B𝜔.)

Problem 4.22. Show that N𝜔, the set of infinite sequences of nat-
ural numbers, is uncountable by a reduction argument.

Problem 4.23. Let P be the set of functions from the set of posi-
tive integers to the set {0}, and letQ be the set of partial functions
from the set of positive integers to the set {0}. Show that P is
countable and Q is not. (Hint: reduce the problem of enumerat-
ing B𝜔 to enumerating Q).

Problem 4.24. Let S be the set of all surjective functions from
the set of positive integers to the set {0,1}, i.e., S consists of all
surjective f : Z+ → B. Show that S is uncountable.

Problem 4.25. Show that the set R of all real numbers is un-
countable.

Problem 4.26. Show that if A ≈ C and B ≈ D , and A ∩ B =

C ∩D = ∅, then A ∪ B ≈ C ∪D .

Problem 4.27. Show that if A is infinite and countable, then A ≈
N.

Problem 4.28. Show that there cannot be an injection
g : ℘(A) → A, for any set A. Hint: Suppose g : ℘(A) → A
is injective. Consider D = {g (B) : B ⊆ A and g (B) ∉ B }. Let
x = g (D). Use the fact that g is injective to derive a contradiction.

PART II

First-order
Logic

68

CHAPTER 5

Introduction to
First-Order
Logic
5.1 First-Order Logic

You are probably familiar with first-order logic from your first in-
troduction to formal logic.1 You may know it as “quantificational
logic” or “predicate logic.” First-order logic, first of all, is a for-
mal language. That means, it has a certain vocabulary, and its
expressions are strings from this vocabulary. But not every string
is permitted. There are different kinds of permitted expressions:
terms, formulas, and sentences. We are mainly interested in sen-
tences of first-order logic: they provide us with a formal analogue
of sentences of English, and about them we can ask the questions
a logician typically is interested in. For instance:

• Does B follow from A logically?

• Is A logically true, logically false, or contingent?

1In fact, we more or less assume you are! If you’re not, you could review a
more elementary textbook, such as forall x (Magnus et al., 2021).

69

CHAPTER 5. INTRODUCTION TO FIRST-ORDER LOGIC 70

• Are A and B equivalent?

These questions are primarily questions about the “meaning”
of sentences of first-order logic. For instance, a philosopher would
analyze the question of whether B follows logically from A as ask-
ing: is there a case where A is true but B is false (B doesn’t follow
fromA), or does every case that makesA true also make B true (B
does follow from A)? But we haven’t been told yet what a “case”
is—that is the job of semantics. The semantics of first-order logic
provides a mathematically precise model of the philosopher’s in-
tuitive idea of “case,” and also—and this is important—of what
it is for a sentence A to be true in a case. We call the mathemati-
cally precise model that we will develop a structure. The relation
which makes “true in” precise, is called the relation of satisfac-
tion. So what we will define is “A is satisfied in M” (in symbols:
M ⊨ A) for sentences A and structures M. Once this is done,
we can also give precise definitions of the other semantical terms
such as “follows from” or “is logically true.” These definitions
will make it possible to settle, again with mathematical precision,
whether, e.g., ∀x (A(x) → B (x)),∃x A(x) ⊨ ∃x B (x). The answer
will, of course, be “yes.” If you’ve already been trained to sym-
bolize sentences of English in first-order logic, you will recognize
this as, e.g., the symbolizations of, say, “All ants are insects, there
are ants, therefore there are insects.” That is obviously a valid
argument, and so our mathematical model of “follows from” for
our formal language should give the same answer.

Another topic you probably remember from your first intro-
duction to formal logic is that there are derivations. If you have
taken a first formal logic course, your instructor will have made
you practice finding such derivations, perhaps even a derivation
that shows that the above entailment holds. There are many dif-
ferent ways to give derivations: you may have done something
called “natural deduction” or “truth trees,” but there are many
others. The purpose of derivation systems is to provide tools us-
ing which the logicians’ questions above can be answered: e.g.,
a natural deduction derivation in which ∀x (A(x) → B (x)) and

CHAPTER 5. INTRODUCTION TO FIRST-ORDER LOGIC 71

∃x A(x) are premises and ∃x B (x) is the conclusion (last line)
verifies that ∃x B (x) logically follows from ∀x (A(x) →B (x)) and
∃x A(x).

But why is that? On the face of it, derivation systems have
nothing to do with semantics: giving a formal derivation merely
involves arranging symbols in certain rule-governed ways; they
don’t mention “cases” or “true in” at all. The connection between
derivation systems and semantics has to be established by a meta-
logical investigation. What’s needed is a mathematical proof, e.g.,
that a formal derivation of ∃x B (x) from premises ∀x (A(x) →
B (x)) and ∃x A(x) is possible, if, and only if, ∀x (A(x) → B (x))
and ∃x A(x) together entail ∃x B (x). Before this can be done,
however, a lot of painstaking work has to be carried out to get
the definitions of syntax and semantics correct.

5.2 Syntax

We first must make precise what strings of symbols count as
sentences of first-order logic. We’ll do this later; for now
we’ll just proceed by example. The basic building blocks—the
vocabulary—of first-order logic divides into two parts. The first
part is the symbols we use to say specific things or to pick out spe-
cific things. We pick out things using constant symbols, and we
say stuff about the things we pick out using predicate symbols.
E.g, we might use a as a constant symbol to pick out a single
thing, and then say something about it using the sentence P (a).
If you have meanings for “a” and “P ” in mind, you can read P (a)
as a sentence of English (and you probably have done so when
you first learned formal logic). Once you have such simple sen-
tences of first-order logic, you can build more complex ones using
the second part of the vocabulary: the logical symbols (connec-
tives and quantifiers). So, for instance, we can form expressions
like (P (a) ∧Q(b)) or ∃x P (x).

In order to provide the precise definitions of semantics and
the rules of our derivation systems required for rigorous meta-

CHAPTER 5. INTRODUCTION TO FIRST-ORDER LOGIC 72

logical study, we first of all have to give a precise definition of
what counts as a sentence of first-order logic. The basic idea
is easy enough to understand: there are some simple sentences
we can form from just predicate symbols and constant symbols,
such as P (a). And then from these we form more complex ones
using the connectives and quantifiers. But what exactly are the
rules by which we are allowed to form more complex sentences?
These must be specified, otherwise we have not defined “sentence
of first-order logic” precisely enough. There are a few issues.
The first one is to get the right strings to count as sentences.
The second one is to do this in such a way that we can give
mathematical proofs about all sentences. Finally, we’ll have to
also give precise definitions of some rudimentary operations with
sentences, such as “replace every x in A by b.” The trouble is that
the quantifiers and variables we have in first-order logic make
it not entirely obvious how this should be done. E.g., should
∃x P (a) count as a sentence? What about ∃x ∃x P (x)? What
should the result of “replace x by b in (P (x) ∧ ∃x P (x))” be?

5.3 Formulas

Here is the approach we will use to rigorously specify sentences
of first-order logic and to deal with the issues arising from the use
of variables. We first define a different set of expressions: formu-
las. Once we’ve done that, we can consider the role variables play
in them—and on the basis of some other ideas, namely those of
“free” and “bound” variables, we can define what a sentence is
(namely, a formula without free variables). We do this not just be-
cause it makes the definition of “sentence” more manageable, but
also because it will be crucial to the way we define the semantic
notion of satisfaction.

Let’s define “formula” for a simple first-order language, one
containing only a single predicate symbol P and a single con-
stant symbol a, and only the logical symbols ¬, ∧, and ∃. Our
full definitions will be much more general: we’ll allow infinitely

CHAPTER 5. INTRODUCTION TO FIRST-ORDER LOGIC 73

many predicate symbols and constant symbols. In fact, we will
also consider function symbols which can be combined with con-
stant symbols and variables to form “terms.” For now, a and
the variables will be our only terms. We do need infinitely many
variables. We’ll officially use the symbols v0, v1, . . . , as variables.

Definition 5.1. The set of formulas Frm is defined as follows:

1. P (a) and P (vi) are formulas (i ∈ N).

2. If A is a formula, then ¬A is formula.

3. If A and B are formulas, then (A ∧ B) is a formula.

4. If A is a formula and x is a variable, then ∃x A is a formula.

5. Nothing else is a formula.

(1) tells us that P (a) and P (vi) are formulas, for any i ∈ N.
These are the so-called atomic formulas. They give us something
to start from. The other clauses give us ways of forming new for-
mulas from ones we have already formed. So for instance, by (2),
we get that ¬P (v2) is a formula, since P (v2) is already a formula
by (1). Then, by (4), we get that ∃v2 ¬P (v2) is another formula,
and so on. (5) tells us that only strings we can form in this way
count as formulas. In particular, ∃v0 P (a) and ∃v0 ∃v0 P (a) do
count as formulas, and (¬P (a)) does not, because of the extra-
neous outer parentheses.

This way of defining formulas is called an inductive definition,
and it allows us to prove things about formulas using a version of
proof by induction called structural induction. These are discussed
in a general way in appendix C.4 and appendix C.5, which you
should review before delving into the proofs later on. Basically,
the idea is that if you want to give a proof that something is
true for all formulas, you show first that it is true for the atomic
formulas, and then that if it’s true for any formula A (and B),
it’s also true for ¬A, (A ∧ B), and ∃x A. For instance, this proves

CHAPTER 5. INTRODUCTION TO FIRST-ORDER LOGIC 74

that it’s true for ∃v2 ¬P (v2): from the first part you know that
it’s true for the atomic formula P (v2). Then you get that it’s true
for ¬P (v2) by the second part, and then again that it’s true for
∃v2 ¬P (v2) itself. Since all formulas are inductively generated
from atomic formulas, this works for any of them.

5.4 Satisfaction

We can already skip ahead to the semantics of first-order logic
once we know what formulas are: here, the basic definition is that
of a structure. For our simple language, a structure M has just
three components: a non-empty set |M | called the domain, what
a picks out in M, and what P is true of in M. The object picked
out by a is denoted aM and the set of things P is true of by PM.
A structure M consists of just these three things: |M |, aM ∈ |M |
and PM ⊆ |M |. The general case will be more complicated, since
there will be many predicate symbols and constant symbols, the
constant symbols can have more than one place, and there will
also be function symbols.

This is enough to give a definition of satisfaction for formulas
that don’t contain variables. The idea is to give an inductive
definition that mirrors the way we have defined formulas. We
specify when an atomic formula is satisfied in M, and then when,
e.g., ¬A is satisfied in M on the basis of whether or not A is
satisfied in M. E.g., we could define:

1. P (a) is satisfied in M iff aM ∈ PM.

2. ¬A is satisfied in M iff A is not satisfied in M.

3. (A ∧ B) is satisfied in M iff A is satisfied in M, and B is
satisfied in M as well.

Let’s say that |M | = {0,1,2}, aM = 1, and PM = {1,2}. This
definition would tell us that P (a) is satisfied in M (since aM =

1 ∈ {1,2} = PM). It tells us further that ¬P (a) is not satisfied

CHAPTER 5. INTRODUCTION TO FIRST-ORDER LOGIC 75

in M, and that in turn ¬¬P (a) is and (¬P (a) ∧ P (a)) is not
satisfied, and so on.

The trouble comes when we want to give a definition for the
quantifiers: we’d like to say something like, “∃v0 P (v0) is satisfied
iff P (v0) is satisfied.” But the structure M doesn’t tell us what to
do about variables. What we actually want to say is that P (v0)
is satisfied for some value of v0. To make this precise we need a
way to assign elements of |M | not just to a but also to v0. To this
end, we introduce variable assignments. A variable assignment is
simply a function s that maps variables to elements of |M | (in our
example, to one of 1, 2, or 3). Since we don’t know beforehand
which variables might appear in a formula we can’t limit which
variables s assigns values to. The simple solution is to require
that s assigns values to all variables v0, v1, . . . We’ll just use only
the ones we need.

Instead of defining satisfaction of formulas just relative to
a structure, we’ll define it relative to a structure M and a vari-
able assignment s , and write M,s ⊨ A for short. Our definition
will now include an additional clause to deal with atomic formu-
las containing variables:

1. M,s ⊨ P (a) iff aM ∈ PM.

2. M,s ⊨ P (vi) iff s (vi) ∈ PM.

3. M,s ⊨ ¬A iff not M,s ⊨ A.

4. M,s ⊨ (A ∧ B) iff M,s ⊨ A and M,s ⊨ B .

Ok, this solves one problem: we can now say when M satis-
fies P (v0) for the value s (v0). To get the definition right for
∃v0 P (v0) we have to do one more thing: We want to have that
M,s ⊨ ∃v0 P (v0) iff M,s ′ ⊨ P (v0) for some way s ′ of assigning
a value to v0. But the value assigned to v0 does not necessarily
have to be the value that s (v0) picks out. We’ll introduce a nota-
tion for that: if m ∈ |M |, then we let s [m/v0] be the assignment
that is just like s (for all variables other than v0), except to v0 it
assigns m. Now our definition can be:

CHAPTER 5. INTRODUCTION TO FIRST-ORDER LOGIC 76

5. M,s ⊨ ∃vi A iff M,s [m/vi] ⊨ A for some m ∈ |M |.

Does it work out? Let’s say we let s (vi) = 0 for all i ∈ N. M,s ⊨
∃v0 P (v0) iff there is an m ∈ |M | so that M,s [m/v0] ⊨ P (v0).
And there is: we can choose m = 1 or m = 2. Note that this
is true even if the value s (v0) assigned to v0 by s itself—in this
case, 0—doesn’t do the job. We have M,s [1/v0] ⊨ P (v0) but not
M,s ⊨ P (v0).

If this looks confusing and cumbersome: it is. But the added
complexity is required to give a precise, inductive definition of
satisfaction for all formulas, and we need something like it to
precisely define the semantic notions. There are other ways of
doing it, but they are all equally (in)elegant.

5.5 Sentences

Ok, now we have a (sketch of a) definition of satisfaction (“true
in”) for structures and formulas. But it needs this additional bit—
a variable assignment—and what we wanted is a definition of
sentences. How do we get rid of assignments, and what are sen-
tences?

You probably remember a discussion in your first introduction
to formal logic about the relation between variables and quanti-
fiers. A quantifier is always followed by a variable, and then in the
part of the sentence to which that quantifier applies (its “scope”),
we understand that the variable is “bound” by that quantifier. In
formulas it was not required that every variable has a matching
quantifier, and variables without matching quantifiers are “free”
or “unbound.” We will take sentences to be all those formulas
that have no free variables.

Again, the intuitive idea of when an occurrence of a variable
in a formula A is bound, which quantifier binds it, and when it
is free, is not difficult to get. You may have learned a method for
testing this, perhaps involving counting parentheses. We have to
insist on a precise definition—and because we have defined for-
mulas by induction, we can give a definition of the free and bound

CHAPTER 5. INTRODUCTION TO FIRST-ORDER LOGIC 77

occurrences of a variable x in a formula A also by induction. E.g.,
it might look like this for our simplified language:

1. If A is atomic, all occurrences of x in it are free (that is, the
occurrence of x in P (x) is free).

2. If A is of the form ¬B , then an occurrence of x in ¬B is
free iff the corresponding occurrence of x is free in B (that
is, the free occurrences of variables in B are exactly the
corresponding occurrences in ¬B).

3. IfA is of the form (B∧C), then an occurrence of x in (B∧C)
is free iff the corresponding occurrence of x is free in B or
in C .

4. If A is of the form ∃x B , then no occurrence of x in A is free;
if it is of the form ∃y B where y is a different variable than x ,
then an occurrence of x in ∃y B is free iff the corresponding
occurrence of x is free in B .

Once we have a precise definition of free and bound occur-
rences of variables, we can simply say: a sentence is any formula
without free occurrences of variables.

5.6 Semantic Notions

We mentioned above that when we consider whether M,s ⊨ A
holds, we (for convenience) let s assign values to all variables,
but only the values it assigns to variables in A are used. In fact,
it’s only the values of free variables in A that matter. Of course,
because we’re careful, we are going to prove this fact. Since sen-
tences have no free variables, s doesn’t matter at all when it comes
to whether or not they are satisfied in a structure. So, when A
is a sentence we can define M ⊨ A to mean “M,s ⊨ A for all s ,”
which as it happens is true iff M,s ⊨ A for at least one s . We
need to introduce variable assignments to get a working defini-
tion of satisfaction for formulas, but for sentences, satisfaction is
independent of the variable assignments.

CHAPTER 5. INTRODUCTION TO FIRST-ORDER LOGIC 78

Once we have a definition of “M ⊨ A,” we know what “case”
and “true in” mean as far as sentences of first-order logic are con-
cerned. On the basis of the definition of M ⊨ A for sentences we
can then define the basic semantic notions of validity, entailment,
and satisfiability. A sentence is valid, ⊨ A, if every structure satis-
fies it. It is entailed by a set of sentences, 𝛤 ⊨ A, if every structure
that satisfies all the sentences in 𝛤 also satisfies A. And a set of
sentences is satisfiable if some structure satisfies all sentences in
it at the same time.

Because formulas are inductively defined, and satisfaction is
in turn defined by induction on the structure of formulas, we can
use induction to prove properties of our semantics and to relate
the semantic notions defined. We’ll collect and prove some of
these properties, partly because they are individually interesting,
but mainly because many of them will come in handy when we go
on to investigate the relation between semantics and derivation
systems. In order to do so, we’ll also have to define (precisely, i.e.,
by induction) some syntactic notions and operations we haven’t
mentioned yet.

5.7 Substitution

We’ll discuss an example to illustrate how things hang together,
and how the development of syntax and semantics lays the foun-
dation for our more advanced investigations later. Our derivation
systems should let us derive P (a) from ∀v0 P (v0). Maybe we even
want to state this as a rule of inference. However, to do so, we
must be able to state it in the most general terms: not just for P ,
a, and v0, but for any formula A, and term t , and variable x . (Re-
call that constant symbols are terms, but we’ll consider also more
complicated terms built from constant symbols and function sym-
bols.) So we want to be able to say something like, “whenever
you have derived ∀x A(x) you are justified in inferring A(t)—the
result of removing ∀x and replacing x by t .” But what exactly
does “replacing x by t” mean? What is the relation between A(x)

CHAPTER 5. INTRODUCTION TO FIRST-ORDER LOGIC 79

and A(t)? Does this always work?
To make this precise, we define the operation of substitution.

Substitution is actually tricky, because we can’t just replace all x ’s
in A by t , and not every t can be substituted for any x . We’ll
deal with this, again, using inductive definitions. But once this is
done, specifying an inference rule as “infer A(t) from ∀x A(x)”
becomes a precise definition. Moreover, we’ll be able to show that
this is a good inference rule in the sense that ∀x A(x) entails A(t).
But to prove this, we have to again prove something that may at
first glance prompt you to ask “why are we doing this?” That
∀x A(x) entails A(t) relies on the fact that whether or not M ⊨
A(t) holds depends only on the value of the term t , i.e., if we let
m be whatever element of |M | is picked out by t , then M,s ⊨ A(t)
iff M,s [m/x] ⊨ A(x). This holds even when t contains variables,
but we’ll have to be careful with how exactly we state the result.

5.8 Models and Theories

Once we’ve defined the syntax and semantics of first-order logic,
we can get to work investigating the properties of structures and
the semantic notions. We can also define derivation systems,
and investigate those. For a set of sentences, we can ask: what
structures make all the sentences in that set true? Given a set of
sentences 𝛤 , a structure M that satisfies them is called a model
of 𝛤 . We might start from 𝛤 and try to find its models—what do
they look like? How big or small do they have to be? But we might
also start with a single structure or collection of structures and
ask: what sentences are true in them? Are there sentences that
characterize these structures in the sense that they, and only they,
are true in them? These kinds of questions are the domain of
model theory. They also underlie the axiomatic method : describing
a collection of structures by a set of sentences, the axioms of
a theory. This is made possible by the observation that exactly
those sentences entailed in first-order logic by the axioms are true
in all models of the axioms.

CHAPTER 5. INTRODUCTION TO FIRST-ORDER LOGIC 80

As a very simple example, consider preorders. A preorder is
a relation R on some set A which is both reflexive and transitive.
A set A with a two-place relation R ⊆ A ×A on it is exactly what
we would need to give a structure for a first-order language with
a single two-place relation symbol P : we would set |M | = A and
PM = R. Since R is a preorder, it is reflexive and transitive, and
we can find a set 𝛤 of sentences of first-order logic that say this:

∀v0 P (v0,v0)
∀v0 ∀v1 ∀v2 ((P (v0,v1) ∧ P (v1,v2)) → P (v0,v2))

These sentences are just the symbolizations of “for any x , Rxx”
(R is reflexive) and “whenever Rxy and Ryz then also Rxz” (R
is transitive). We see that a structure M is a model of these two
sentences 𝛤 iffR (i.e., PM), is a preorder on A (i.e., |M |). In other
words, the models of 𝛤 are exactly the preorders. Any property
of all preorders that can be expressed in the first-order language
with just P as predicate symbol (like reflexivity and transitivity
above), is entailed by the two sentences in 𝛤 and vice versa. So
anything we can prove about models of 𝛤 we have proved about
all preorders.

For any particular theory and class of models (such as 𝛤 and
all preorders), there will be interesting questions about what can
be expressed in the corresponding first-order language, and what
cannot be expressed. There are some properties of structures that
are interesting for all languages and classes of models, namely
those concerning the size of the domain. One can always ex-
press, for instance, that the domain contains exactly n elements,
for any n ∈ Z+. One can also express, using a set of infinitely
many sentences, that the domain is infinite. But one cannot ex-
press that the domain is finite, or that the domain is uncountable.
These results about the limitations of first-order languages are
consequences of the compactness and Löwenheim-Skolem theo-
rems.

CHAPTER 5. INTRODUCTION TO FIRST-ORDER LOGIC 81

5.9 Soundness and Completeness

We’ll also introduce derivation systems for first-order logic. There
are many derivation systems that logicians have developed, but
they all define the same derivability relation between sentences.
We say that 𝛤 derives A, 𝛤 ⊢ A, if there is a derivation of a certain
precisely defined sort. Derivations are always finite arrangements
of symbols—perhaps a list of sentences, or some more compli-
cated structure. The purpose of derivation systems is to provide
a tool to determine if a sentence is entailed by some set 𝛤 . In
order to serve that purpose, it must be true that 𝛤 ⊨ A if, and
only if, 𝛤 ⊢ A.

If 𝛤 ⊢ A but not 𝛤 ⊨ A, our derivation system would be
too strong, prove too much. The property that if 𝛤 ⊢ A then
𝛤 ⊨ A is called soundness, and it is a minimal requirement on
any good derivation system. On the other hand, if 𝛤 ⊨ A but
not 𝛤 ⊢ A, then our derivation system is too weak, it doesn’t
prove enough. The property that if 𝛤 ⊨ A then 𝛤 ⊢ A is called
completeness. Soundness is usually relatively easy to prove (by
induction on the structure of derivations, which are inductively
defined). Completeness is harder to prove.

Soundness and completeness have a number of important
consequences. If a set of sentences 𝛤 derives a contradiction
(such as A ∧ ¬A) it is called inconsistent. Inconsistent 𝛤s cannot
have any models, they are unsatisfiable. From completeness the
converse follows: any 𝛤 that is not inconsistent—or, as we will
say, consistent—has a model. In fact, this is equivalent to com-
pleteness, and is the form of completeness we will actually prove.
It is a deep and perhaps surprising result: just because you can-
not prove A∧¬A from 𝛤 guarantees that there is a structure that
is as 𝛤 describes it. So completeness gives an answer to the ques-
tion: which sets of sentences have models? Answer: all and only
consistent sets do.

The soundness and completeness theorems have two impor-
tant consequences: the compactness and the Löwenheim-Skolem
theorem. These are important results in the theory of models,

CHAPTER 5. INTRODUCTION TO FIRST-ORDER LOGIC 82

and can be used to establish many interesting results. We’ve al-
ready mentioned two: first-order logic cannot express that the
domain of a structure is finite or that it is uncountable.

Historically, all of this—how to define syntax and semantics
of first-order logic, how to define good derivation systems, how
to prove that they are sound and complete, getting clear about
what can and cannot be expressed in first-order languages—took
a long time to figure out and get right. We now know how to
do it, but going through all the details can still be confusing and
tedious. But it’s also important, because the methods developed
here for the formal language of first-order logic are applied all
over the place in logic, computer science, and linguistics. So
working through the details pays off in the long run.

CHAPTER 6

Syntax of
First-Order
Logic
6.1 Introduction

In order to develop the theory and metatheory of first-order
logic, we must first define the syntax and semantics of its expres-
sions. The expressions of first-order logic are terms and formulas.
Terms are formed from variables, constant symbols, and function
symbols. Formulas, in turn, are formed from predicate symbols
together with terms (these form the smallest, “atomic” formu-
las), and then from atomic formulas we can form more complex
ones using logical connectives and quantifiers. There are many
different ways to set down the formation rules; we give just one
possible one. Other systems will chose different symbols, will se-
lect different sets of connectives as primitive, will use parentheses
differently (or even not at all, as in the case of so-called Polish
notation). What all approaches have in common, though, is that
the formation rules define the set of terms and formulas induc-
tively. If done properly, every expression can result essentially

83

CHAPTER 6. SYNTAX OF FIRST-ORDER LOGIC 84

in only one way according to the formation rules. The induc-
tive definition resulting in expressions that are uniquely readable
means we can give meanings to these expressions using the same
method—inductive definition.

6.2 First-Order Languages

Expressions of first-order logic are built up from a basic vocab-
ulary containing variables, constant symbols, predicate symbols and
sometimes function symbols. From them, together with logical con-
nectives, quantifiers, and punctuation symbols such as parenthe-
ses and commas, terms and formulas are formed.

Informally, predicate symbols are names for properties and
relations, constant symbols are names for individual objects, and
function symbols are names for mappings. These, except for
the identity predicate =, are the non-logical symbols and together
make up a language. Any first-order language L is determined
by its non-logical symbols. In the most general case, L contains
infinitely many symbols of each kind.

In the general case, we make use of the following symbols in
first-order logic:

1. Logical symbols

a) Logical connectives: ¬ (negation), ∧ (conjunction),
∨ (disjunction), → (conditional), ∀ (universal quanti-
fier), ∃ (existential quantifier).

b) The propositional constant for falsity ⊥.

c) The two-place identity predicate =.

d) A countably infinite set of variables: v0, v1, v2, . . .

2. Non-logical symbols, making up the standard language of
first-order logic

a) A countably infinite set of n-place predicate symbols
for each n > 0: An0 , An1 , An2 , . . .

CHAPTER 6. SYNTAX OF FIRST-ORDER LOGIC 85

b) A countably infinite set of constant symbols: c0, c1,
c2,

c) A countably infinite set of n-place function symbols
for each n > 0: f n0 , f n1 , f n2 , . . .

3. Punctuation marks: (,), and the comma.

Most of our definitions and results will be formulated for the
full standard language of first-order logic. However, depending
on the application, we may also restrict the language to only a
few predicate symbols, constant symbols, and function symbols.

Example 6.1. The language LA of arithmetic contains a single
two-place predicate symbol <, a single constant symbol 0, one
one-place function symbol ′, and two two-place function sym-
bols + and ×.

Example 6.2. The language of set theory LZ contains only the
single two-place predicate symbol ∈.

Example 6.3. The language of orders L≤ contains only the two-
place predicate symbol ≤.

Again, these are conventions: officially, these are just aliases,
e.g., <, ∈, and ≤ are aliases for A2

0, 0 for c0, ′ for f 1
0 , + for f 2

0 , ×
for f 2

1 .
In addition to the primitive connectives and quantifiers in-

troduced above, we also use the following defined symbols: ↔
(biconditional), truth ⊤

A defined symbol is not officially part of the language, but
is introduced as an informal abbreviation: it allows us to abbre-
viate formulas which would, if we only used primitive symbols,
get quite long. This is obviously an advantage. The bigger ad-
vantage, however, is that proofs become shorter. If a symbol is
primitive, it has to be treated separately in proofs. The more
primitive symbols, therefore, the longer our proofs.

CHAPTER 6. SYNTAX OF FIRST-ORDER LOGIC 86

You may be familiar with different terminology and symbols
than the ones we use above. Logic texts (and teachers) com-
monly use ∼, ¬, or ! for “negation”, ∧, ·, or & for “conjunction”.
Commonly used symbols for the “conditional” or “implication”
are →, ⇒, and ⊃. Symbols for “biconditional,” “bi-implication,”
or “(material) equivalence” are ↔, ⇔, and ≡. The ⊥ symbol
is variously called “falsity,” “falsum,”, “absurdity,” or “bottom.”
The ⊤ symbol is variously called “truth,” “verum,” or “top.”

It is conventional to use lower case letters (e.g., a, b , c) from
the beginning of the Latin alphabet for constant symbols (some-
times called names), and lower case letters from the end (e.g., x ,
y , z) for variables. Quantifiers combine with variables, e.g., x ;
notational variations include ∀x , (∀x), (x), 𝛱 x , ⋀︁x for the uni-
versal quantifier and ∃x , (∃x), (Ex), 𝛴 x , ⋁︁x for the existential
quantifier.

We might treat all the propositional operators and both quan-
tifiers as primitive symbols of the language. We might instead
choose a smaller stock of primitive symbols and treat the other
logical operators as defined. “Truth functionally complete” sets
of Boolean operators include {¬,∨}, {¬,∧}, and {¬,→}—these
can be combined with either quantifier for an expressively com-
plete first-order language.

You may be familiar with two other logical operators: the
Sheffer stroke | (named after Henry Sheffer), and Peirce’s ar-
row ↓, also known as Quine’s dagger. When given their usual
readings of “nand” and “nor” (respectively), these operators are
truth functionally complete by themselves.

6.3 Terms and Formulas

Once a first-order language L is given, we can define expressions
built up from the basic vocabulary of L. These include in partic-
ular terms and formulas.

CHAPTER 6. SYNTAX OF FIRST-ORDER LOGIC 87

Definition 6.4 (Terms). The set of terms Trm(L) of L is de-
fined inductively by:

1. Every variable is a term.

2. Every constant symbol of L is a term.

3. If f is an n-place function symbol and t1, . . . , tn are terms,
then f (t1, . . . ,tn) is a term.

4. Nothing else is a term.

A term containing no variables is a closed term.

The constant symbols appear in our specification of the lan-
guage and the terms as a separate category of symbols, but they
could instead have been included as zero-place function symbols.
We could then do without the second clause in the definition of
terms. We just have to understand f (t1, . . . ,tn) as just f by itself
if n = 0.

Definition 6.5 (Formula). The set of formulas Frm(L) of the
language L is defined inductively as follows:

1. ⊥ is an atomic formula.

2. If R is an n-place predicate symbol of L and t1, . . . , tn are
terms of L, then R (t1, . . . ,tn) is an atomic formula.

3. If t1 and t2 are terms of L, then =(t1,t2) is an atomic for-
mula.

4. If A is a formula, then ¬A is formula.

5. If A and B are formulas, then (A ∧ B) is a formula.

6. If A and B are formulas, then (A ∨ B) is a formula.

7. If A and B are formulas, then (A→ B) is a formula.

CHAPTER 6. SYNTAX OF FIRST-ORDER LOGIC 88

8. If A is a formula and x is a variable, then ∀x A is a formula.

9. If A is a formula and x is a variable, then ∃x A is a formula.

10. Nothing else is a formula.

The definitions of the set of terms and that of formulas are
inductive definitions. Essentially, we construct the set of formu-
las in infinitely many stages. In the initial stage, we pronounce
all atomic formulas to be formulas; this corresponds to the first
few cases of the definition, i.e., the cases for ⊥, R (t1, . . . ,tn) and
=(t1,t2). “Atomic formula” thus means any formula of this form.

The other cases of the definition give rules for constructing
new formulas out of formulas already constructed. At the second
stage, we can use them to construct formulas out of atomic for-
mulas. At the third stage, we construct new formulas from the
atomic formulas and those obtained in the second stage, and so
on. A formula is anything that is eventually constructed at such
a stage, and nothing else.

By convention, we write = between its arguments and leave
out the parentheses: t1 = t2 is an abbreviation for =(t1,t2). More-
over, ¬=(t1,t2) is abbreviated as t1 ≠ t2. When writing a formula
(B ∗C) constructed from B , C using a two-place connective ∗, we
will often leave out the outermost pair of parentheses and write
simply B ∗C .

Some logic texts require that the variable x must occur in A
in order for ∃x A and ∀x A to count as formulas. Nothing bad
happens if you don’t require this, and it makes things easier.

Definition 6.6. Formulas constructed using the defined opera-
tors are to be understood as follows:

1. ⊤ abbreviates ¬⊥.

2. A↔ B abbreviates (A→ B) ∧ (B → A).

CHAPTER 6. SYNTAX OF FIRST-ORDER LOGIC 89

If we work in a language for a specific application, we will
often write two-place predicate symbols and function symbols
between the respective terms, e.g., t1 < t2 and (t1 + t2) in the
language of arithmetic and t1 ∈ t2 in the language of set the-
ory. The successor function in the language of arithmetic is even
written conventionally after its argument: t ′. Officially, however,
these are just conventional abbreviations for A2

0(t1,t2), f
2

0 (t1,t2),
A2

0(t1,t2) and f 1
0 (t), respectively.

Definition 6.7 (Syntactic identity). The symbol ≡ expresses
syntactic identity between strings of symbols, i.e., A ≡ B iff A
and B are strings of symbols of the same length and which con-
tain the same symbol in each place.

The ≡ symbol may be flanked by strings obtained by con-
catenation, e.g., A ≡ (B ∨ C) means: the string of symbols A is
the same string as the one obtained by concatenating an opening
parenthesis, the string B , the ∨ symbol, the string C , and a clos-
ing parenthesis, in this order. If this is the case, then we know
that the first symbol of A is an opening parenthesis, A contains
B as a substring (starting at the second symbol), that substring
is followed by ∨, etc.

6.4 Unique Readability

The way we defined formulas guarantees that every formula has
a unique reading, i.e., there is essentially only one way of con-
structing it according to our formation rules for formulas and
only one way of “interpreting” it. If this were not so, we would
have ambiguous formulas, i.e., formulas that have more than one
reading or intepretation—and that is clearly something we want
to avoid. But more importantly, without this property, most of the
definitions and proofs we are going to give will not go through.

Perhaps the best way to make this clear is to see what would
happen if we had given bad rules for forming formulas that would

CHAPTER 6. SYNTAX OF FIRST-ORDER LOGIC 90

not guarantee unique readability. For instance, we could have
forgotten the parentheses in the formation rules for connectives,
e.g., we might have allowed this:

If A and B are formulas, then so is A→ B .

Starting from an atomic formula D , this would allow us to form
D → D . From this, together with D , we would get D → D → D .
But there are two ways to do this:

1. We take D to be A and D →D to be B .

2. We take A to be D →D and B is D .

Correspondingly, there are two ways to “read” the formula D →
D→D . It is of the form B→C where B is D and C is D→D , but
it is also of the form B→C with B being D→D and C being D .

If this happens, our definitions will not always work. For in-
stance, when we define the main operator of a formula, we say: in
a formula of the form B →C , the main operator is the indicated
occurrence of →. But if we can match the formula D → D → D
with B → C in the two different ways mentioned above, then in
one case we get the first occurrence of → as the main operator,
and in the second case the second occurrence. But we intend the
main operator to be a function of the formula, i.e., every formula
must have exactly one main operator occurrence.

Lemma 6.8. The number of left and right parentheses in a formula A
are equal.

Proof. We prove this by induction on the way A is constructed.
This requires two things: (a) We have to prove first that all atomic
formulas have the property in question (the induction basis). (b)
Then we have to prove that when we construct new formulas out
of given formulas, the new formulas have the property provided
the old ones do.

CHAPTER 6. SYNTAX OF FIRST-ORDER LOGIC 91

Let l (A) be the number of left parentheses, and r (A) the num-
ber of right parentheses in A, and l (t) and r (t) similarly the num-
ber of left and right parentheses in a term t . We leave the proof
that for any term t , l (t) = r (t) as an exercise.

1. A ≡ ⊥: A has 0 left and 0 right parentheses.

2. A ≡ R (t1, . . . ,tn): l (A) = 1 + l (t1) + · · · + l (tn) = 1 + r (t1) +
· · · + r (tn) = r (A). Here we make use of the fact, left as an
exercise, that l (t) = r (t) for any term t .

3. A ≡ t1 = t2: l (A) = l (t1) + l (t2) = r (t1) + r (t2) = r (A).

4. A ≡ ¬B : By induction hypothesis, l (B) = r (B). Thus
l (A) = l (B) = r (B) = r (A).

5. A ≡ (B ∗ C): By induction hypothesis, l (B) = r (B) and
l (C) = r (C). Thus l (A) = 1+l (B) +l (C) = 1+r (B) +r (C) =
r (A).

6. A ≡ ∀x B : By induction hypothesis, l (B) = r (B). Thus,
l (A) = l (B) = r (B) = r (A).

7. A ≡ ∃x B : Similarly. □

Definition 6.9 (Proper prefix). A string of symbols B is a
proper prefix of a string of symbols A if concatenating B and a
non-empty string of symbols yields A.

Lemma 6.10. If A is a formula, and B is a proper prefix of A, then
B is not a formula.

Proof. Exercise. □

CHAPTER 6. SYNTAX OF FIRST-ORDER LOGIC 92

Proposition 6.11. If A is an atomic formula, then it satisfies one,
and only one of the following conditions.

1. A ≡ ⊥.

2. A ≡ R (t1, . . . ,tn) where R is an n-place predicate symbol, t1, . . . ,
tn are terms, and each of R, t1, . . . , tn is uniquely determined.

3. A ≡ t1 = t2 where t1 and t2 are uniquely determined terms.

Proof. Exercise. □

Proposition 6.12 (Unique Readability). Every formula satisfies
one, and only one of the following conditions.

1. A is atomic.

2. A is of the form ¬B.

3. A is of the form (B ∧C).

4. A is of the form (B ∨C).

5. A is of the form (B →C).

6. A is of the form ∀x B.

7. A is of the form ∃x B.

Moreover, in each case B, or B and C , are uniquely determined. This
means that, e.g., there are no different pairs B, C and B ′, C ′ so that A
is both of the form (B →C) and (B ′ →C ′).

Proof. The formation rules require that if a formula is not atomic,
it must start with an opening parenthesis (, ¬, or a quantifier. On
the other hand, every formula that starts with one of the following
symbols must be atomic: a predicate symbol, a function symbol,
a constant symbol, ⊥.

CHAPTER 6. SYNTAX OF FIRST-ORDER LOGIC 93

So we really only have to show that if A is of the form (B ∗C)
and also of the form (B ′ ∗′ C ′), then B ≡ B ′, C ≡ C ′, and ∗ = ∗′.

So suppose both A ≡ (B ∗C) and A ≡ (B ′ ∗′C ′). Then either
B ≡ B ′ or not. If it is, clearly ∗ = ∗′ and C ≡ C ′, since they then
are substrings of A that begin in the same place and are of the
same length. The other case is B ̸≡ B ′. Since B and B ′ are both
substrings ofA that begin at the same place, one must be a proper
prefix of the other. But this is impossible by Lemma 6.10. □

6.5 Main operator of a Formula

It is often useful to talk about the last operator used in construct-
ing a formula A. This operator is called the main operator of A.
Intuitively, it is the “outermost” operator of A. For example, the
main operator of ¬A is ¬, the main operator of (A∨B) is ∨, etc.

Definition 6.13 (Main operator). The main operator of a for-
mula A is defined as follows:

1. A is atomic: A has no main operator.

2. A ≡ ¬B : the main operator of A is ¬.

3. A ≡ (B ∧C): the main operator of A is ∧.

4. A ≡ (B ∨C): the main operator of A is ∨.

5. A ≡ (B →C): the main operator of A is →.

6. A ≡ ∀x B : the main operator of A is ∀.

7. A ≡ ∃x B : the main operator of A is ∃.

In each case, we intend the specific indicated occurrence of the
main operator in the formula. For instance, since the formula
((D→E)→(E→D)) is of the form (B→C) where B is (D→E) and
C is (E→D), the second occurrence of → is the main operator.

CHAPTER 6. SYNTAX OF FIRST-ORDER LOGIC 94

This is a recursive definition of a function which maps all non-
atomic formulas to their main operator occurrence. Because of
the way formulas are defined inductively, every formula A satis-
fies one of the cases in Definition 6.13. This guarantees that for
each non-atomic formula A a main operator exists. Because each
formula satisfies only one of these conditions, and because the
smaller formulas from which A is constructed are uniquely deter-
mined in each case, the main operator occurrence of A is unique,
and so we have defined a function.

We call formulas by the names in Table 6.1 depending on
which symbol their main operator is.Recall, however, that de-
fined operators do not officially appear in formulas. They are
just abbreviations, so officially they cannot be the main operator
of a formula. In proofs about all formulas they therefore do not
have to be treated separately.
Main operator Type of formula Example

none atomic (formula) ⊥, R (t1, . . . ,tn), t1 = t2
¬ negation ¬A
∧ conjunction (A ∧ B)
∨ disjunction (A ∨ B)
→ conditional (A→ B)
↔ biconditional (A↔ B)
∀ universal (formula) ∀x A
∃ existential (formula) ∃x A

Table 6.1: Main operator and names of formulas

6.6 Subformulas

It is often useful to talk about the formulas that “make up” a
given formula. We call these its subformulas. Any formula counts
as a subformula of itself; a subformula of A other than A itself is
a proper subformula.

CHAPTER 6. SYNTAX OF FIRST-ORDER LOGIC 95

Definition 6.14 (Immediate Subformula). If A is a formula,
the immediate subformulas of A are defined inductively as follows:

1. Atomic formulas have no immediate subformulas.

2. A ≡ ¬B : The only immediate subformula of A is B .

3. A ≡ (B ∗ C): The immediate subformulas of A are B and
C (∗ is any one of the two-place connectives).

4. A ≡ ∀x B : The only immediate subformula of A is B .

5. A ≡ ∃x B : The only immediate subformula of A is B .

Definition 6.15 (Proper Subformula). If A is a formula, the
proper subformulas of A are recursively as follows:

1. Atomic formulas have no proper subformulas.

2. A ≡ ¬B : The proper subformulas of A are B together with
all proper subformulas of B .

3. A ≡ (B ∗ C): The proper subformulas of A are B , C ,
together with all proper subformulas of B and those of C .

4. A ≡ ∀x B : The proper subformulas of A are B together
with all proper subformulas of B .

5. A ≡ ∃x B : The proper subformulas of A are B together
with all proper subformulas of B .

Definition 6.16 (Subformula). The subformulas of A are A it-
self together with all its proper subformulas.

Note the subtle difference in how we have defined immediate
subformulas and proper subformulas. In the first case, we have

CHAPTER 6. SYNTAX OF FIRST-ORDER LOGIC 96

directly defined the immediate subformulas of a formula A for
each possible form of A. It is an explicit definition by cases, and
the cases mirror the inductive definition of the set of formulas.
In the second case, we have also mirrored the way the set of all
formulas is defined, but in each case we have also included the
proper subformulas of the smaller formulas B , C in addition to
these formulas themselves. This makes the definition recursive. In
general, a definition of a function on an inductively defined set
(in our case, formulas) is recursive if the cases in the definition of
the function make use of the function itself. To be well defined,
we must make sure, however, that we only ever use the values
of the function for arguments that come “before” the one we are
defining—in our case, when defining “proper subformula” for (B∗
C) we only use the proper subformulas of the “earlier” formulas
B and C .

6.7 Free Variables and Sentences

Definition 6.17 (Free occurrences of a variable). The free
occurrences of a variable in a formula are defined inductively as
follows:

1. A is atomic: all variable occurrences in A are free.

2. A ≡ ¬B : the free variable occurrences of A are exactly
those of B .

3. A ≡ (B ∗ C): the free variable occurrences of A are those
in B together with those in C .

4. A ≡ ∀x B : the free variable occurrences in A are all of
those in B except for occurrences of x .

5. A ≡ ∃x B : the free variable occurrences in A are all of
those in B except for occurrences of x .

CHAPTER 6. SYNTAX OF FIRST-ORDER LOGIC 97

Definition 6.18 (Bound Variables). An occurrence of a vari-
able in a formula A is bound if it is not free.

Definition 6.19 (Scope). If ∀x B is an occurrence of a subfor-
mula in a formula A, then the corresponding occurrence of B
in A is called the scope of the corresponding occurrence of ∀x .
Similarly for ∃x .

If B is the scope of a quantifier occurrence ∀x or ∃x in A, then
the free occurrences of x in B are bound in ∀x B and ∃x B . We
say that these occurrences are bound by the mentioned quantifier
occurrence.

Example 6.20. Consider the following formula:

∃v0 A2
0(v0,v1)⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞

B

B represents the scope of ∃v0. The quantifier binds the occur-
rence of v0 in B , but does not bind the occurrence of v1. So v1 is
a free variable in this case.

We can now see how this might work in a more complicated
formula A:

∀v0 (A1
0(v0) → A

2
0(v0,v1))⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

B

→∃v1 (A2
1(v0,v1) ∨ ∀v0

D⏟ˉ̄ ˉ⏞⏞ˉ̄ ˉ⏟
¬A1

1(v0))⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
C

B is the scope of the first ∀v0, C is the scope of ∃v1, and D is the
scope of the second ∀v0. The first ∀v0 binds the occurrences of
v0 in B , ∃v1 binds the occurrence of v1 in C , and the second ∀v0
binds the occurrence of v0 in D . The first occurrence of v1 and
the fourth occurrence of v0 are free in A. The last occurrence of
v0 is free in D , but bound in C and A.

CHAPTER 6. SYNTAX OF FIRST-ORDER LOGIC 98

Definition 6.21 (Sentence). A formula A is a sentence iff it con-
tains no free occurrences of variables.

6.8 Substitution

Definition 6.22 (Substitution in a term). We define s [t/x],
the result of substituting t for every occurrence of x in s , recur-
sively:

1. s ≡ c : s [t/x] is just s .

2. s ≡ y : s [t/x] is also just s , provided y is a variable and
y ̸≡ x .

3. s ≡ x : s [t/x] is t .

4. s ≡ f (t1, . . . ,tn): s [t/x] is f (t1 [t/x], . . . ,tn [t/x]).

Definition 6.23. A term t is free for x in A if none of the free
occurrences of x in A occur in the scope of a quantifier that binds
a variable in t .

Example 6.24.

1. v8 is free for v1 in ∃v3A2
4(v3,v1)

2. f 2
1 (v1,v2) is not free for v0 in ∀v2A2

4(v0,v2)

Definition 6.25 (Substitution in a formula). IfA is a formula,
x is a variable, and t is a term free for x in A, then A[t/x] is the
result of substituting t for all free occurrences of x in A.

1. A ≡ ⊥: A[t/x] is ⊥.

2. A ≡ P (t1, . . . ,tn): A[t/x] is P (t1 [t/x], . . . ,tn [t/x]).

CHAPTER 6. SYNTAX OF FIRST-ORDER LOGIC 99

3. A ≡ t1 = t2: A[t/x] is t1 [t/x] = t2 [t/x].

4. A ≡ ¬B : A[t/x] is ¬B [t/x].

5. A ≡ (B ∧C): A[t/x] is (B [t/x] ∧C [t/x]).

6. A ≡ (B ∨C): A[t/x] is (B [t/x] ∨C [t/x]).

7. A ≡ (B →C): A[t/x] is (B [t/x] →C [t/x]).

8. A ≡ ∀y B : A[t/x] is ∀y B [t/x], provided y is a variable
other than x ; otherwise A[t/x] is just A.

9. A ≡ ∃y B : A[t/x] is ∃y B [t/x], provided y is a variable
other than x ; otherwise A[t/x] is just A.

Note that substitution may be vacuous: If x does not occur in
A at all, then A[t/x] is just A.

The restriction that t must be free for x in A is necessary
to exclude cases like the following. If A ≡ ∃y x < y and t ≡ y ,
then A[t/x] would be ∃y y < y . In this case the free variable y
is “captured” by the quantifier ∃y upon substitution, and that is
undesirable. For instance, we would like it to be the case that
whenever ∀x B holds, so does B [t/x]. But consider ∀x ∃y x < y
(here B is ∃y x < y). It is a sentence that is true about, e.g., the
natural numbers: for every number x there is a number y greater
than it. If we allowed y as a possible substitution for x , we would
end up with B [y/x] ≡ ∃y y < y , which is false. We prevent this by
requiring that none of the free variables in t would end up being
bound by a quantifier in A.

We often use the following convention to avoid cumbersome
notation: If A is a formula which may contain the variable x free,
we also write A(x) to indicate this. When it is clear which A
and x we have in mind, and t is a term (assumed to be free for x
in A(x)), then we write A(t) as short for A[t/x]. So for instance,
we might say, “we call A(t) an instance of ∀x A(x).” By this we
mean that if A is any formula, x a variable, and t a term that’s
free for x in A, then A[t/x] is an instance of ∀x A.

CHAPTER 6. SYNTAX OF FIRST-ORDER LOGIC 100

Summary

A first-order language consists of constant, function, and
predicate symbols. Function and constant symbols take a speci-
fied number of arguments. In the language of arithmetic, e.g.,
we have a single constant symbol 0, one 1-place function sym-
bol ′, two 2-place function symbols + and ×, and one 2-place
predicate symbol <. From variables and constant and function
symbols we form the terms of a language. From the terms of
a language together with its predicate symbols, as well as the
identity symbol =, we form the atomic formulas. And in turn
from them, using the logical connectives ¬, ∨, ∧, →, ↔ and the
quantifiers ∀ and ∃ we form its formulas. Since we are careful to
always include necessary parentheses in the process of forming
terms and formulas, there is always exactly one way of reading a
formula. This makes it possible to define things by induction on
the structure of formulas.

Occurrences of variables in formulas are sometimes governed
by a corresponding quantifier: if a variable occurs in the scope
of a quantifier it is considered bound, otherwise free. These
concepts all have inductive definitions, and we also inductively
define the operation of substitution of a term for a variable in
a formula. Formulas without free variable occurrences are called
sentences.

Problems

Problem 6.1. Prove Lemma 6.10.

Problem 6.2. Prove Proposition 6.11 (Hint: Formulate and
prove a version of Lemma 6.10 for terms.)

Problem 6.3. Give an inductive definition of the bound variable
occurrences along the lines of Definition 6.17.

CHAPTER 7

Semantics of
First-Order
Logic
7.1 Introduction

Giving the meaning of expressions is the domain of semantics.
The central concept in semantics is that of satisfaction in a struc-
ture. A structure gives meaning to the building blocks of the
language: a domain is a non-empty set of objects. The quanti-
fiers are interpreted as ranging over this domain, constant sym-
bols are assigned elements in the domain, function symbols are
assigned functions from the domain to itself, and predicate sym-
bols are assigned relations on the domain. The domain together
with assignments to the basic vocabulary constitutes a structure.
Variables may appear in formulas, and in order to give a seman-
tics, we also have to assign elements of the domain to them—this
is a variable assignment. The satisfaction relation, finally, brings
these together. A formula may be satisfied in a structure M rela-
tive to a variable assignment s , written as M,s ⊨ A. This relation
is also defined by induction on the structure of A, using the truth

101

CHAPTER 7. SEMANTICS OF FIRST-ORDER LOGIC 102

tables for the logical connectives to define, say, satisfaction of
(A∧B) in terms of satisfaction (or not) of A and B . It then turns
out that the variable assignment is irrelevant if the formula A
is a sentence, i.e., has no free variables, and so we can talk of
sentences being simply satisfied (or not) in structures.

On the basis of the satisfaction relation M ⊨ A for sentences
we can then define the basic semantic notions of validity, entail-
ment, and satisfiability. A sentence is valid, ⊨ A, if every struc-
ture satisfies it. It is entailed by a set of sentences, 𝛤 ⊨ A, if every
structure that satisfies all the sentences in 𝛤 also satisfies A. And
a set of sentences is satisfiable if some structure satisfies all sen-
tences in it at the same time. Because formulas are inductively
defined, and satisfaction is in turn defined by induction on the
structure of formulas, we can use induction to prove properties
of our semantics and to relate the semantic notions defined.

7.2 Structures for First-order Languages

First-order languages are, by themselves, uninterpreted: the con-
stant symbols, function symbols, and predicate symbols have no
specific meaning attached to them. Meanings are given by spec-
ifying a structure. It specifies the domain, i.e., the objects which
the constant symbols pick out, the function symbols operate on,
and the quantifiers range over. In addition, it specifies which
constant symbols pick out which objects, how a function symbol
maps objects to objects, and which objects the predicate symbols
apply to. Structures are the basis for semantic notions in logic,
e.g., the notion of consequence, validity, satisfiability. They are
variously called “structures,” “interpretations,” or “models” in
the literature.

Definition 7.1 (Structures). A structure M, for a language L of
first-order logic consists of the following elements:

1. Domain: a non-empty set, |M |

CHAPTER 7. SEMANTICS OF FIRST-ORDER LOGIC 103

2. Interpretation of constant symbols: for each constant symbol c
of L, an element cM ∈ |M |

3. Interpretation of predicate symbols: for each n-place predicate
symbol R of L (other than =), an n-place relation RM ⊆
|M |n

4. Interpretation of function symbols: for each n-place function
symbol f of L, an n-place function f M : |M |n → |M |

Example 7.2. A structure M for the language of arithmetic con-
sists of a set, an element of |M |, 0M, as interpretation of the
constant symbol 0, a one-place function ′M : |M | → |M |, two
two-place functions +M and ×M, both |M |2 → |M |, and a two-
place relation <M ⊆ |M |2.

An obvious example of such a structure is the following:

1. |N | = N

2. 0N = 0

3. ′N (n) = n + 1 for all n ∈ N

4. +N (n,m) = n +m for all n,m ∈ N

5. ×N (n,m) = n · m for all n,m ∈ N

6. <N = {⟨n,m⟩ : n ∈ N,m ∈ N,n < m}

The structure N for LA so defined is called the standard model of
arithmetic, because it interprets the non-logical constants of LA
exactly how you would expect.

However, there are many other possible structures for LA. For
instance, we might take as the domain the set Z of integers instead
of N, and define the interpretations of 0, ′, +, ×, < accordingly.
But we can also define structures for LA which have nothing even
remotely to do with numbers.

CHAPTER 7. SEMANTICS OF FIRST-ORDER LOGIC 104

Example 7.3. A structure M for the language LZ of set theory
requires just a set and a single-two place relation. So technically,
e.g., the set of people plus the relation “x is older than y” could
be used as a structure for LZ , as well as N together with n ≥ m
for n,m ∈ N.

A particularly interesting structure for LZ in which the ele-
ments of the domain are actually sets, and the interpretation of ∈
actually is the relation “x is an element of y” is the structure HF
of hereditarily finite sets:

1. |HF | = ∅ ∪ ℘(∅) ∪ ℘(℘(∅)) ∪ ℘(℘(℘(∅))) ∪ . . . ;

2. ∈HF = {⟨x ,y⟩ : x ,y ∈ |HF | ,x ∈ y}.

The stipulations we make as to what counts as a structure
impact our logic. For example, the choice to prevent empty do-
mains ensures, given the usual account of satisfaction (or truth)
for quantified sentences, that ∃x (A(x) ∨ ¬A(x)) is valid—that
is, a logical truth. And the stipulation that all constant symbols
must refer to an object in the domain ensures that the existential
generalization is a sound pattern of inference: A(a), therefore
∃x A(x). If we allowed names to refer outside the domain, or to
not refer, then we would be on our way to a free logic, in which ex-
istential generalization requires an additional premise: A(a) and
∃x x = a, therefore ∃x A(x).

7.3 Covered Structures for First-order
Languages

Recall that a term is closed if it contains no variables.

Definition 7.4 (Value of closed terms). If t is a closed term of
the language L and M is a structure for L, the value ValM (t) is
defined as follows:

1. If t is just the constant symbol c , then ValM (c) = cM.

CHAPTER 7. SEMANTICS OF FIRST-ORDER LOGIC 105

2. If t is of the form f (t1, . . . ,tn), then

ValM (t) = f M (ValM (t1), . . . ,ValM (tn)).

Definition 7.5 (Covered structure). A structure is covered if ev-
ery element of the domain is the value of some closed term.

Example 7.6. Let L be the language with constant symbols
zero, one, two, . . . , the binary predicate symbol <, and the bi-
nary function symbols + and ×. Then a structure M for L is the
one with domain |M | = {0,1,2, . . .} and assignments zeroM = 0,
oneM = 1, twoM = 2, and so forth. For the binary relation
symbol <, the set <M is the set of all pairs ⟨c1,c2⟩ ∈ |M |2
such that c1 is less than c2: for example, ⟨1,3⟩ ∈ <M but
⟨2,2⟩ ∉ <M. For the binary function symbol +, define +M in
the usual way—for example, +M (2,3) maps to 5, and similarly
for the binary function symbol ×. Hence, the value of f our is
just 4, and the value of ×(two,+(three,zero)) (or in infix nota-
tion, two × (three + zero)) is

ValM (×(two,+(three,zero)) =
= ×M (ValM (two),ValM (+(three,zero)))
= ×M (ValM (two),+M (ValM (three),ValM (zero)))
= ×M (twoM ,+M (threeM ,zeroM))
= ×M (2,+M (3,0))
= ×M (2,3)
= 6

7.4 Satisfaction of a Formula in a Structure

The basic notion that relates expressions such as terms and for-
mulas, on the one hand, and structures on the other, are those
of value of a term and satisfaction of a formula. Informally, the

CHAPTER 7. SEMANTICS OF FIRST-ORDER LOGIC 106

value of a term is an element of a structure—if the term is just a
constant, its value is the object assigned to the constant by the
structure, and if it is built up using function symbols, the value is
computed from the values of constants and the functions assigned
to the functions in the term. A formula is satisfied in a structure
if the interpretation given to the predicates makes the formula
true in the domain of the structure. This notion of satisfaction
is specified inductively: the specification of the structure directly
states when atomic formulas are satisfied, and we define when a
complex formula is satisfied depending on the main connective
or quantifier and whether or not the immediate subformulas are
satisfied.

The case of the quantifiers here is a bit tricky, as the imme-
diate subformula of a quantified formula has a free variable, and
structures don’t specify the values of variables. In order to deal
with this difficulty, we also introduce variable assignments and de-
fine satisfaction not with respect to a structure alone, but with
respect to a structure plus a variable assignment.

Definition 7.7 (Variable Assignment). A variable assign-
ment s for a structure M is a function which maps each variable
to an element of |M |, i.e., s : Var → |M |.

A structure assigns a value to each constant symbol, and a
variable assignment to each variable. But we want to use terms
built up from them to also name elements of the domain. For
this we define the value of terms inductively. For constant sym-
bols and variables the value is just as the structure or the variable
assignment specifies it; for more complex terms it is computed re-
cursively using the functions the structure assigns to the function
symbols.

Definition 7.8 (Value of Terms). If t is a term of the lan-
guage L, M is a structure for L, and s is a variable assignment
for M, the value ValMs (t) is defined as follows:

CHAPTER 7. SEMANTICS OF FIRST-ORDER LOGIC 107

1. t ≡ c : ValMs (t) = cM.

2. t ≡ x : ValMs (t) = s (x).

3. t ≡ f (t1, . . . ,tn):

ValMs (t) = f M (ValMs (t1), . . . ,ValMs (tn)).

Definition 7.9 (x -Variant). If s is a variable assignment for
a structure M, then any variable assignment s ′ for M which dif-
fers from s at most in what it assigns to x is called an x-variant
of s . If s ′ is an x -variant of s we write s ′ ∼x s .

Note that an x -variant of an assignment s does not have to
assign something different to x . In fact, every assignment counts
as an x -variant of itself.

Definition 7.10. If s is a variable assignment for a structure M
and m ∈ |M |, then the assignment s [m/x] is the variable assign-
ment defined by

s [m/x] (y) =
{︄
m if y ≡ x
s (y) otherwise.

In other words, s [m/x] is the particular x -variant of s which
assigns the domain element m to x , and assigns the same things
to variables other than x that s does.

Definition 7.11 (Satisfaction). Satisfaction of a formula A in
a structure M relative to a variable assignment s , in symbols:
M,s ⊨ A, is defined recursively as follows. (We write M,s ⊭ A to
mean “not M,s ⊨ A.”)

1. A ≡ ⊥: M,s ⊭ A.

2. A ≡ R (t1, . . . ,tn): M,s ⊨ A iff ⟨ValMs (t1), . . . ,ValMs (tn)⟩ ∈

CHAPTER 7. SEMANTICS OF FIRST-ORDER LOGIC 108

RM.

3. A ≡ t1 = t2: M,s ⊨ A iff ValMs (t1) = ValMs (t2).

4. A ≡ ¬B : M,s ⊨ A iff M,s ⊭ B .

5. A ≡ (B ∧C): M,s ⊨ A iff M,s ⊨ B and M,s ⊨ C .

6. A ≡ (B ∨C): M,s ⊨ A iff M,s ⊨ B or M,s ⊨ C (or both).

7. A ≡ (B →C): M,s ⊨ A iff M,s ⊭ B or M,s ⊨ C (or both).

8. A ≡ ∀x B : M,s ⊨ A iff for every element m ∈ |M |,
M,s [m/x] ⊨ B .

9. A ≡ ∃x B : M,s ⊨ A iff for at least one element m ∈ |M |,
M,s [m/x] ⊨ B .

The variable assignments are important in the last two
clauses. We cannot define satisfaction of ∀x B (x) by “for all
m ∈ |M |, M ⊨ B (m).” We cannot define satisfaction of ∃x B (x)
by “for at least one m ∈ |M |, M ⊨ B (m).” The reason is that
if m ∈ |M |, it is not a symbol of the language, and so B (m) is
not a formula (that is, B [m/x] is undefined). We also cannot
assume that we have constant symbols or terms available that
name every element of M, since there is nothing in the definition
of structures that requires it. In the standard language, the set of
constant symbols is countably infinite, so if |M | is not countable
there aren’t even enough constant symbols to name every object.

We solve this problem by introducing variable assignments,
which allow us to link variables directly with elements of the do-
main. Then instead of saying that, e.g., ∃x B (x) is satisfied in M
iff for at least one m ∈ |M |, we say it is satisfied in M relative to s
iff B (x) is satisfied relative to s [m/x] for at least one m ∈ |M |.

Example 7.12. Let L = {a,b , f ,R} where a and b are constant
symbols, f is a two-place function symbol, and R is a two-place
predicate symbol. Consider the structure M defined by:

CHAPTER 7. SEMANTICS OF FIRST-ORDER LOGIC 109

1. |M | = {1,2,3,4}

2. aM = 1

3. bM = 2

4. f M (x ,y) = x + y if x + y ≤ 3 and = 3 otherwise.

5. RM = {⟨1,1⟩, ⟨1,2⟩, ⟨2,3⟩, ⟨2,4⟩}

The function s (x) = 1 that assigns 1 ∈ |M | to every variable is a
variable assignment for M.

Then

ValMs (f (a,b)) = f M (ValMs (a),ValMs (b)).

Since a and b are constant symbols, ValMs (a) = aM = 1 and
ValMs (b) = bM = 2. So

ValMs (f (a,b)) = f M (1,2) = 1 + 2 = 3.

To compute the value of f (f (a,b),a) we have to consider

ValMs (f (f (a,b),a)) = f M (ValMs (f (a,b)),ValMs (a)) = f M (3,1) = 3,

since 3 + 1 > 3. Since s (x) = 1 and ValMs (x) = s (x), we also have

ValMs (f (f (a,b),x)) = f M (ValMs (f (a,b)),ValMs (x)) = f M (3,1) = 3,

An atomic formula R (t1,t2) is satisfied if the tuple of values of
its arguments, i.e., ⟨ValMs (t1),ValMs (t2)⟩, is an element of RM. So,
e.g., we have M,s ⊨ R (b , f (a,b)) since ⟨ValM (b),ValM (f (a,b))⟩ =
⟨2,3⟩ ∈ RM, but M,s ⊭ R (x , f (a,b)) since ⟨1,3⟩ ∉ RM [s].

To determine if a non-atomic formula A is satisfied, you apply
the clauses in the inductive definition that applies to the main con-
nective. For instance, the main connective in R (a,a)→ (R (b ,x) ∨
R (x ,b)) is the →, and

M,s ⊨ R (a,a) → (R (b ,x) ∨R (x ,b)) iff

CHAPTER 7. SEMANTICS OF FIRST-ORDER LOGIC 110

M,s ⊭ R (a,a) or M,s ⊨ R (b ,x) ∨R (x ,b)

Since M,s ⊨ R (a,a) (because ⟨1,1⟩ ∈ RM) we can’t yet determine
the answer and must first figure out if M,s ⊨ R (b ,x) ∨R (x ,b):

M,s ⊨ R (b ,x) ∨R (x ,b) iff

M,s ⊨ R (b ,x) or M,s ⊨ R (x ,b)

And this is the case, since M,s ⊨ R (x ,b) (because ⟨1,2⟩ ∈ RM).

Recall that an x -variant of s is a variable assignment that
differs from s at most in what it assigns to x . For every element
of |M |, there is an x -variant of s :

s1 = s [1/x], s2 = s [2/x],
s3 = s [3/x], s4 = s [4/x] .

So, e.g., s2(x) = 2 and s2(y) = s (y) = 1 for all variables y other
than x . These are all the x -variants of s for the structure M, since
|M | = {1,2,3,4}. Note, in particular, that s1 = s (s is always an
x -variant of itself).

To determine if an existentially quantified formula ∃x A(x) is
satisfied, we have to determine if M,s [m/x] ⊨ A(x) for at least
one m ∈ |M |. So,

M,s ⊨ ∃x (R (b ,x) ∨R (x ,b)),

since M,s [1/x] ⊨ R (b ,x) ∨R (x ,b) (s [3/x] would also fit the bill).
But,

M,s ⊭ ∃x (R (b ,x) ∧R (x ,b))
since, whichever m ∈ |M | we pick, M,s [m/x] ⊭ R (b ,x) ∧R (x ,b).

To determine if a universally quantified formula ∀x A(x) is
satisfied, we have to determine if M,s [m/x] ⊨ A(x) for all m ∈
|M |. So,

M,s ⊨ ∀x (R (x ,a) →R (a,x)),

CHAPTER 7. SEMANTICS OF FIRST-ORDER LOGIC 111

since M,s [m/x] ⊨ R (x ,a) → R (a,x) for all m ∈ |M |. For m = 1,
we have M,s [1/x] ⊨ R (a,x) so the consequent is true; for m = 2,
3, and 4, we have M,s [m/x] ⊭ R (x ,a), so the antecedent is false.
But,

M,s ⊭ ∀x (R (a,x) →R (x ,a))
since M,s [2/x] ⊭ R (a,x) → R (x ,a) (because M,s [2/x] ⊨ R (a,x)
and M,s [2/x] ⊭ R (x ,a)).

For a more complicated case, consider

∀x (R (a,x) → ∃y R (x ,y)).

Since M,s [3/x] ⊭ R (a,x) and M,s [4/x] ⊭ R (a,x), the inter-
esting cases where we have to worry about the consequent of
the conditional are only m = 1 and = 2. Does M,s [1/x] ⊨
∃y R (x ,y) hold? It does if there is at least one n ∈ |M | so
that M,s [1/x] [n/y] ⊨ R (x ,y). In fact, if we take n = 1, we
have s [1/x] [n/y] = s [1/y] = s . Since s (x) = 1, s (y) = 1, and
⟨1,1⟩ ∈ RM, the answer is yes.

To determine if M,s [2/x] ⊨ ∃y R (x ,y), we have to look
at the variable assignments s [2/x] [n/y]. Here, for n = 1,
this assignment is s2 = s [2/x], which does not satisfy R (x ,y)
(s2(x) = 2, s2(y) = 1, and ⟨2,1⟩ ∉ RM). However, consider
s [2/x] [3/y] = s2 [3/y]. M,s2 [3/y] ⊨ R (x ,y) since ⟨2,3⟩ ∈ RM,
and so M,s2 ⊨ ∃y R (x ,y).

So, for all n ∈ |M |, either M,s [m/x] ⊭ R (a,x) (if m = 3, 4) or
M,s [m/x] ⊨ ∃y R (x ,y) (if m = 1, 2), and so

M,s ⊨ ∀x (R (a,x) → ∃y R (x ,y)).

On the other hand,

M,s ⊭ ∃x (R (a,x) ∧ ∀y R (x ,y)).

We have M,s [m/x] ⊨ R (a,x) only for m = 1 and m = 2. But for
both of these values of m, there is in turn an n ∈ |M |, namely n =

4, so that M,s [m/x] [n/y] ⊭ R (x ,y) and so M,s [m/x] ⊭ ∀y R (x ,y)
for m = 1 and m = 2. In sum, there is no m ∈ |M | such that
M,s [m/x] ⊨ R (a,x) ∧ ∀y R (x ,y).

CHAPTER 7. SEMANTICS OF FIRST-ORDER LOGIC 112

7.5 Variable Assignments

A variable assignment s provides a value for every variable—and
there are infinitely many of them. This is of course not neces-
sary. We require variable assignments to assign values to all vari-
ables simply because it makes things a lot easier. The value of a
term t , and whether or not a formula A is satisfied in a structure
with respect to s , only depend on the assignments s makes to
the variables in t and the free variables of A. This is the content
of the next two propositions. To make the idea of “depends on”
precise, we show that any two variable assignments that agree on
all the variables in t give the same value, and that A is satisfied
relative to one iff it is satisfied relative to the other if two variable
assignments agree on all free variables of A.

Proposition 7.13. If the variables in a term t are among x1, . . . , xn ,
and s1(xi) = s2(xi) for i = 1, . . . , n, then ValMs1 (t) = ValMs2 (t).

Proof. By induction on the complexity of t . For the base case, t
can be a constant symbol or one of the variables x1, . . . , xn . If
t = c , then ValMs1 (t) = cM = ValMs2 (t). If t = xi , s1(xi) = s2(xi)
by the hypothesis of the proposition, and so ValMs1 (t) = s1(xi) =
s2(xi) = ValMs2 (t).

For the inductive step, assume that t = f (t1, . . . ,tk) and that
the claim holds for t1, . . . , tk . Then

ValMs1 (t) = ValMs1 (f (t1, . . . ,tk)) =
= f M (ValMs1 (t1), . . . ,ValMs1 (tk))

For j = 1, . . . , k , the variables of t j are among x1, . . . , xn . By
induction hypothesis, ValMs1 (t j) = ValMs2 (t j). So,

ValMs1 (t) = ValMs1 (f (t1, . . . ,tk)) =
= f M (ValMs1 (t1), . . . ,ValMs1 (tk)) =
= f M (ValMs2 (t1), . . . ,ValMs2 (tk)) =
= ValMs2 (f (t1, . . . ,tk)) = ValMs2 (t). □

CHAPTER 7. SEMANTICS OF FIRST-ORDER LOGIC 113

Proposition 7.14. If the free variables in A are among x1, . . . , xn ,
and s1(xi) = s2(xi) for i = 1, . . . , n, then M,s1 ⊨ A iff M,s2 ⊨ A.

Proof. We use induction on the complexity of A. For the base
case, where A is atomic, A can be: ⊥, R (t1, . . . ,tk) for a k -place
predicate R and terms t1, . . . , tk , or t1 = t2 for terms t1 and t2.

1. A ≡ ⊥: both M,s1 ⊭ A and M,s2 ⊭ A.

2. A ≡ R (t1, . . . ,tk): let M,s1 ⊨ A. Then

⟨ValMs1 (t1), . . . ,ValMs1 (tk)⟩ ∈ R
M .

For i = 1, . . . , k , ValMs1 (ti) = ValMs2 (ti) by Proposition 7.13.
So we also have ⟨ValMs2 (ti), . . . ,ValMs2 (tk)⟩ ∈ R

M.

3. A ≡ t1 = t2: suppose M,s1 ⊨ A. Then ValMs1 (t1) = ValMs1 (t2).
So,

ValMs2 (t1) = ValMs1 (t1) (by Proposition 7.13)

= ValMs1 (t2) (since M,s1 ⊨ t1 = t2)

= ValMs2 (t2) (by Proposition 7.13),

so M,s2 ⊨ t1 = t2.

Now assume M,s1 ⊨ B iff M,s2 ⊨ B for all formulas B less com-
plex than A. The induction step proceeds by cases determined by
the main operator of A. In each case, we only demonstrate the
forward direction of the biconditional; the proof of the reverse
direction is symmetrical. In all cases except those for the quanti-
fiers, we apply the induction hypothesis to sub-formulas B of A.
The free variables of B are among those of A. Thus, if s1 and s2
agree on the free variables of A, they also agree on those of B ,
and the induction hypothesis applies to B .

1. A ≡ ¬B : if M,s1 ⊨ A, then M,s1 ⊭ B , so by the induction
hypothesis, M,s2 ⊭ B , hence M,s2 ⊨ A.

CHAPTER 7. SEMANTICS OF FIRST-ORDER LOGIC 114

2. A ≡ B ∧C : exercise.

3. A ≡ B ∨ C : if M,s1 ⊨ A, then M,s1 ⊨ B or M,s1 ⊨ C . By
induction hypothesis, M,s2 ⊨ B or M,s2 ⊨ C , so M,s2 ⊨ A.

4. A ≡ B →C : exercise.

5. A ≡ ∃x B : if M,s1 ⊨ A, there is an m ∈ |M | so that
M,s1 [m/x] ⊨ B . Let s ′1 = s1 [m/x] and s ′2 = s2 [m/x]. The
free variables of B are among x1, . . . , xn , and x . s ′1(xi) =

s ′2(xi), since s ′1 and s ′2 are x -variants of s1 and s2, respec-
tively, and by hypothesis s1(xi) = s2(xi). s ′1(x) = s

′
2(x) = m

by the way we have defined s ′1 and s ′2. Then the induction hy-
pothesis applies to B and s ′1, s

′
2, so M,s ′2 ⊨ B . Hence, since

s ′2 = s2 [m/x], there is an m ∈ |M | such that M,s2 [m/x] ⊨ B ,
and so M,s2 ⊨ A.

6. A ≡ ∀x B : exercise.

By induction, we get that M,s1 ⊨ A iff M,s2 ⊨ A whenever the free
variables in A are among x1, . . . , xn and s1(xi) = s2(xi) for i = 1,
. . . , n. □

Sentences have no free variables, so any two variable assign-
ments assign the same things to all the (zero) free variables of any
sentence. The proposition just proved then means that whether
or not a sentence is satisfied in a structure relative to a variable
assignment is completely independent of the assignment. We’ll
record this fact. It justifies the definition of satisfaction of a sen-
tence in a structure (without mentioning a variable assignment)
that follows.

Corollary 7.15. If A is a sentence and s a variable assignment, then
M,s ⊨ A iff M,s ′ ⊨ A for every variable assignment s ′.

Proof. Let s ′ be any variable assignment. Since A is a sentence, it
has no free variables, and so every variable assignment s ′ trivially
assigns the same things to all free variables of A as does s . So the

CHAPTER 7. SEMANTICS OF FIRST-ORDER LOGIC 115

condition of Proposition 7.14 is satisfied, and we have M,s ⊨ A
iff M,s ′ ⊨ A. □

Definition 7.16. If A is a sentence, we say that a structure M
satisfies A, M ⊨ A, iff M,s ⊨ A for all variable assignments s .

If M ⊨ A, we also simply say that A is true in M.

Proposition 7.17. Let M be a structure, A be a sentence, and s a
variable assignment. M ⊨ A iff M,s ⊨ A.

Proof. Exercise. □

Proposition 7.18. Suppose A(x) only contains x free, and M is
a structure. Then:

1. M ⊨ ∃x A(x) iff M,s ⊨ A(x) for at least one variable assign-
ment s .

2. M ⊨ ∀x A(x) iff M,s ⊨ A(x) for all variable assignments s .

Proof. Exercise. □

7.6 Extensionality

Extensionality, sometimes called relevance, can be expressed in-
formally as follows: the only factors that bear upon the satisfac-
tion of formula A in a structure M relative to a variable assign-
ment s , are the size of the domain and the assignments made
by M and s to the elements of the language that actually appear
in A.

One immediate consequence of extensionality is that where
two structures M and M′ agree on all the elements of the lan-
guage appearing in a sentence A and have the same domain, M
and M′ must also agree on whether or not A itself is true.

CHAPTER 7. SEMANTICS OF FIRST-ORDER LOGIC 116

Proposition 7.19 (Extensionality). Let A be a formula, and M1

and M2 be structures with |M1 | = |M2 |, and s a variable assignment
on |M1 | = |M2 |. If cM1 = cM2 , RM1 = RM2 , and f M1 = f M2 for every
constant symbol c , relation symbol R, and function symbol f occurring
in A, then M1,s ⊨ A iff M2,s ⊨ A.

Proof. First prove (by induction on t) that for every term,
ValM1

s (t) = ValM2
s (t). Then prove the proposition by induction

on A, making use of the claim just proved for the induction basis
(where A is atomic). □

Corollary 7.20 (Extensionality for Sentences). Let A be a sen-
tence and M1, M2 as in Proposition 7.19. Then M1 ⊨ A iff M2 ⊨ A.

Proof. Follows from Proposition 7.19 by Corollary 7.15. □

Moreover, the value of a term, and whether or not a structure
satisfies a formula, only depend on the values of its subterms.

Proposition 7.21. Let M be a structure, t and t ′ terms, and s a
variable assignment. Then ValMs (t [t ′/x]) = ValM

s [ValMs (t ′)/x] (t).

Proof. By induction on t .

1. If t is a constant, say, t ≡ c , then t [t ′/x] = c , and ValMs (c) =
cM = ValM

s [ValMs (t ′)/x] (c).

2. If t is a variable other than x , say, t ≡ y , then t [t ′/x] = y ,
and ValMs (y) = ValM

s [ValMs (t ′)/x] (y) since s ∼x s [ValMs (t ′)/x].

3. If t ≡ x , then t [t ′/x] = t ′. But ValM
s [ValMs (t ′)/x] (x) = ValMs (t ′)

by definition of s [ValMs (t ′)/x].

4. If t ≡ f (t1, . . . ,tn) then we have:

ValMs (t [t ′/x]) =

CHAPTER 7. SEMANTICS OF FIRST-ORDER LOGIC 117

= ValMs (f (t1 [t ′/x], . . . ,tn [t ′/x]))
by definition of t [t ′/x]

= f M (ValMs (t1 [t ′/x]), . . . ,ValMs (tn [t ′/x]))
by definition of ValMs (f (. . .))

= f M (ValM
s [ValMs (t ′)/x] (t1), . . . ,ValM

s [ValMs (t ′)/x] (tn))

by induction hypothesis

= ValM
s [ValMs (t ′)/x] (t) by definition of ValM

s [ValMs (t ′)/x] (f (. . .)) □

Proposition 7.22. Let M be a structure, A a formula, t ′ a term, and
s a variable assignment. Then M,s ⊨ A[t ′/x] iff M,s [ValMs (t ′)/x] ⊨
A.

Proof. Exercise. □

The point of Propositions 7.21 and 7.22 is the following. Sup-
pose we have a term t or a formula A and some term t ′, and we
want to know the value of t [t ′/x] or whether or not A[t ′/x] is sat-
isfied in a structure M relative to a variable assignment s . Then
we can either perform the substitution first and then consider the
value or satisfaction relative to M and s , or we can first deter-
mine the value m = ValMs (t ′) of t ′ in M relative to s , change the
variable assignment to s [m/x] and then consider the value of t
in M and s [m/x], or whether M,s [m/x] ⊨ A. Propositions 7.21
and 7.22 guarantee that the answer will be the same, whichever
way we do it.

7.7 Semantic Notions

Given the definition of structures for first-order languages, we
can define some basic semantic properties of and relationships
between sentences. The simplest of these is the notion of validity
of a sentence. A sentence is valid if it is satisfied in every struc-
ture. Valid sentences are those that are satisfied regardless of how

CHAPTER 7. SEMANTICS OF FIRST-ORDER LOGIC 118

the non-logical symbols in it are interpreted. Valid sentences are
therefore also called logical truths—they are true, i.e., satisfied, in
any structure and hence their truth depends only on the logical
symbols occurring in them and their syntactic structure, but not
on the non-logical symbols or their interpretation.

Definition 7.23 (Validity). A sentence A is valid, ⊨ A, iff M ⊨ A
for every structure M.

Definition 7.24 (Entailment). A set of sentences 𝛤 entails a
sentence A, 𝛤 ⊨ A, iff for every structure M with M ⊨ 𝛤 , M ⊨ A.

Definition 7.25 (Satisfiability). A set of sentences 𝛤 is satisfi-
able if M ⊨ 𝛤 for some structure M. If 𝛤 is not satisfiable it is
called unsatisfiable.

Proposition 7.26. A sentence A is valid iff 𝛤 ⊨ A for every set of
sentences 𝛤 .

Proof. For the forward direction, let A be valid, and let 𝛤 be a
set of sentences. Let M be a structure so that M ⊨ 𝛤 . Since A is
valid, M ⊨ A, hence 𝛤 ⊨ A.

For the contrapositive of the reverse direction, let A be in-
valid, so there is a structure M with M ⊭ A. When 𝛤 = {⊤}, since
⊤ is valid, M ⊨ 𝛤 . Hence, there is a structure M so that M ⊨ 𝛤
but M ⊭ A, hence 𝛤 does not entail A. □

Proposition 7.27. 𝛤 ⊨ A iff 𝛤 ∪ {¬A} is unsatisfiable.

Proof. For the forward direction, suppose 𝛤 ⊨ A and suppose to
the contrary that there is a structure M so that M ⊨ 𝛤 ∪ {¬A}.
Since M ⊨ 𝛤 and 𝛤 ⊨ A, M ⊨ A. Also, since M ⊨ 𝛤 ∪ {¬A}, M ⊨

CHAPTER 7. SEMANTICS OF FIRST-ORDER LOGIC 119

¬A, so we have both M ⊨ A and M ⊭ A, a contradiction. Hence,
there can be no such structure M, so 𝛤 ∪ {¬A} is unsatisfiable.

For the reverse direction, suppose 𝛤 ∪ {¬A} is unsatisfiable.
So for every structure M, either M ⊭ 𝛤 or M ⊨ A. Hence, for
every structure M with M ⊨ 𝛤 , M ⊨ A, so 𝛤 ⊨ A. □

Proposition 7.28. If 𝛤 ⊆ 𝛤 ′ and 𝛤 ⊨ A, then 𝛤 ′ ⊨ A.

Proof. Suppose that 𝛤 ⊆ 𝛤 ′ and 𝛤 ⊨ A. Let M be a structure such
that M ⊨ 𝛤 ′; then M ⊨ 𝛤 , and since 𝛤 ⊨ A, we get that M ⊨ A.
Hence, whenever M ⊨ 𝛤 ′, M ⊨ A, so 𝛤 ′ ⊨ A. □

Theorem 7.29 (Semantic Deduction Theorem). 𝛤 ∪ {A} ⊨ B
iff 𝛤 ⊨ A→ B.

Proof. For the forward direction, let 𝛤 ∪ {A} ⊨ B and let M be
a structure so that M ⊨ 𝛤 . If M ⊨ A, then M ⊨ 𝛤 ∪ {A}, so since
𝛤 ∪ {A} entails B , we get M ⊨ B . Therefore, M ⊨ A → B , so
𝛤 ⊨ A→ B .

For the reverse direction, let 𝛤 ⊨ A→B and M be a structure
so that M ⊨ 𝛤 ∪ {A}. Then M ⊨ 𝛤 , so M ⊨ A → B , and since
M ⊨ A, M ⊨ B . Hence, whenever M ⊨ 𝛤 ∪ {A}, M ⊨ B , so
𝛤 ∪ {A} ⊨ B . □

Proposition 7.30. Let M be a structure, and A(x) a formula with
one free variable x, and t a closed term. Then:

1. A(t) ⊨ ∃x A(x)

2. ∀x A(x) ⊨ A(t)

Proof. 1. Suppose M ⊨ A(t). Let s be a variable assignment
with s (x) = ValM (t). Then M,s ⊨ A(t) since A(t) is
a sentence. By Proposition 7.22, M,s ⊨ A(x). By Propo-
sition 7.18, M ⊨ ∃x A(x).

2. Exercise. □

CHAPTER 7. SEMANTICS OF FIRST-ORDER LOGIC 120

Summary

The semantics for a first-order language is given by a structure
for that language. It consists of a domain and elements of that
domain are assigned to each constant symbol. Function symbols
are interpreted by functions and relation symbols by relation on
the domain. A function from the set of variables to the domain
is a variable assignment. The relation of satisfaction relates
structures, variable assignments and formulas; M,s ⊨ A is defined
by induction on the structure of A. M,s ⊨ A only depends on
the interpretation of the symbols actually occurring in A, and in
particular does not depend on s if A contains no free variables.
So if A is a sentence, M ⊨ A if M,s ⊨ A for any (or all) s .

The satisfaction relation is the basis for all semantic notions.
A sentence is valid, ⊨ A, if it is satisfied in every structure. A
sentence A is entailed by set of sentences 𝛤 , 𝛤 ⊨ A, iff M ⊨ A for
all M which satisfy every sentence in 𝛤 . A set 𝛤 is satisfiable iff
there is some structure that satisfies every sentence in 𝛤 , other-
wise unsatisfiable. These notions are interrelated, e.g., 𝛤 ⊨ A iff
𝛤 ∪ {¬A} is unsatisfiable.

Problems

Problem 7.1. Is N, the standard model of arithmetic, covered?
Explain.

Problem 7.2. Let L = {c , f ,A} with one constant symbol, one
one-place function symbol and one two-place predicate symbol,
and let the structure M be given by

1. |M | = {1,2,3}

2. cM = 3

3. f M (1) = 2, f M (2) = 3, f M (3) = 2

4. AM = {⟨1,2⟩, ⟨2,3⟩, ⟨3,3⟩}

CHAPTER 7. SEMANTICS OF FIRST-ORDER LOGIC 121

(a) Let s (v) = 1 for all variables v . Find out whether

M,s ⊨ ∃x (A(f (z),c) → ∀y (A(y ,x) ∨ A(f (y),x)))

Explain why or why not.
(b) Give a different structure and variable assignment in

which the formula is not satisfied.

Problem 7.3. Complete the proof of Proposition 7.14.

Problem 7.4. Prove Proposition 7.17

Problem 7.5. Prove Proposition 7.18.

Problem 7.6. Suppose L is a language without function sym-
bols. Given a structure M, c a constant symbol and a ∈ |M |,
define M [a/c] to be the structure that is just like M, except that
cM [a/c] = a. Define M | |= A for sentences A by:

1. A ≡ ⊥: not M | |= A.

2. A ≡ R (d1, . . . ,dn): M | |= A iff ⟨dM
1 , . . . ,dM

n ⟩ ∈ RM.

3. A ≡ d1 = d2: M | |= A iff dM
1 = dM

2 .

4. A ≡ ¬B : M | |= A iff not M | |= B .

5. A ≡ (B ∧C): M | |= A iff M | |= B and M | |= C .

6. A ≡ (B ∨C): M | |= A iff M | |= B or M | |= C (or both).

7. A ≡ (B→C): M | |= A iff not M | |= B or M | |= C (or both).

8. A ≡ ∀x B : M | |= A iff for all a ∈ |M |, M [a/c] | |= B [c/x], if
c does not occur in B .

9. A ≡ ∃x B : M | |= A iff there is an a ∈ |M | such that
M [a/c] | |= B [c/x], if c does not occur in B .

CHAPTER 7. SEMANTICS OF FIRST-ORDER LOGIC 122

Let x1, . . . , xn be all free variables in A, c1, . . . , cn constant sym-
bols not in A, a1, . . . , an ∈ |M |, and s (xi) = ai .

Show that M,s ⊨ A iff M [a1/c1, . . . ,an/cn] | |=
A[c1/x1] . . . [cn/xn].

(This problem shows that it is possible to give a semantics for
first-order logic that makes do without variable assignments.)

Problem 7.7. Suppose that f is a function symbol not in A(x ,y).
Show that there is a structure M such that M ⊨ ∀x ∃y A(x ,y) iff
there is an M′ such that M′ ⊨ ∀x A(x , f (x)).

(This problem is a special case of what’s known as Skolem’s
Theorem; ∀x A(x , f (x)) is called a Skolem normal form of
∀x ∃y A(x ,y).)

Problem 7.8. Carry out the proof of Proposition 7.19 in detail.

Problem 7.9. Prove Proposition 7.22

Problem 7.10. 1. Show that 𝛤 ⊨ ⊥ iff 𝛤 is unsatisfiable.

2. Show that 𝛤 ∪ {A} ⊨ ⊥ iff 𝛤 ⊨ ¬A.

3. Suppose c does not occur in A or 𝛤 . Show that 𝛤 ⊨ ∀x A iff
𝛤 ⊨ A[c/x].

Problem 7.11. Complete the proof of Proposition 7.30.

CHAPTER 8

Theories and
Their Models
8.1 Introduction

The development of the axiomatic method is a significant
achievement in the history of science, and is of special impor-
tance in the history of mathematics. An axiomatic development
of a field involves the clarification of many questions: What is the
field about? What are the most fundamental concepts? How are
they related? Can all the concepts of the field be defined in terms
of these fundamental concepts? What laws do, and must, these
concepts obey?

The axiomatic method and logic were made for each other.
Formal logic provides the tools for formulating axiomatic theo-
ries, for proving theorems from the axioms of the theory in a
precisely specified way, for studying the properties of all systems
satisfying the axioms in a systematic way.

Definition 8.1. A set of sentences 𝛤 is closed iff, whenever 𝛤 ⊨ A
then A ∈ 𝛤 . The closure of a set of sentences 𝛤 is {A : 𝛤 ⊨ A}.

We say that 𝛤 is axiomatized by a set of sentences 𝛥 if 𝛤 is the
closure of 𝛥.

123

CHAPTER 8. THEORIES AND THEIR MODELS 124

We can think of an axiomatic theory as the set of sentences
that is axiomatized by its set of axioms 𝛥. In other words, when
we have a first-order language which contains non-logical sym-
bols for the primitives of the axiomatically developed science we
wish to study, together with a set of sentences that express the
fundamental laws of the science, we can think of the theory as
represented by all the sentences in this language that are entailed
by the axioms. This ranges from simple examples with only a
single primitive and simple axioms, such as the theory of partial
orders, to complex theories such as Newtonian mechanics.

The important logical facts that make this formal approach
to the axiomatic method so important are the following. Suppose
𝛤 is an axiom system for a theory, i.e., a set of sentences.

1. We can state precisely when an axiom system captures an
intended class of structures. That is, if we are interested
in a certain class of structures, we will successfully capture
that class by an axiom system 𝛤 iff the structures are exactly
those M such that M ⊨ 𝛤 .

2. We may fail in this respect because there are M such that
M ⊨ 𝛤 , but M is not one of the structures we intend. This
may lead us to add axioms which are not true in M.

3. If we are successful at least in the respect that 𝛤 is true
in all the intended structures, then a sentence A is true in
all intended structures whenever 𝛤 ⊨ A. Thus we can use
logical tools (such as derivation methods) to show that sen-
tences are true in all intended structures simply by showing
that they are entailed by the axioms.

4. Sometimes we don’t have intended structures in mind, but
instead start from the axioms themselves: we begin with
some primitives that we want to satisfy certain laws which
we codify in an axiom system. One thing that we would
like to verify right away is that the axioms do not contradict
each other: if they do, there can be no concepts that obey

CHAPTER 8. THEORIES AND THEIR MODELS 125

these laws, and we have tried to set up an incoherent theory.
We can verify that this doesn’t happen by finding a model
of 𝛤 . And if there are models of our theory, we can use
logical methods to investigate them, and we can also use
logical methods to construct models.

5. The independence of the axioms is likewise an important
question. It may happen that one of the axioms is actu-
ally a consequence of the others, and so is redundant. We
can prove that an axiom A in 𝛤 is redundant by proving
𝛤 \ {A} ⊨ A. We can also prove that an axiom is not redun-
dant by showing that (𝛤 \ {A}) ∪ {¬A} is satisfiable. For
instance, this is how it was shown that the parallel postulate
is independent of the other axioms of geometry.

6. Another important question is that of definability of con-
cepts in a theory: The choice of the language determines
what the models of a theory consist of. But not every aspect
of a theory must be represented separately in its models.
For instance, every ordering ≤ determines a corresponding
strict ordering <—given one, we can define the other. So it
is not necessary that a model of a theory involving such an
order must also contain the corresponding strict ordering.
When is it the case, in general, that one relation can be
defined in terms of others? When is it impossible to define
a relation in terms of others (and hence must add it to the
primitives of the language)?

8.2 Expressing Properties of Structures

It is often useful and important to express conditions on func-
tions and relations, or more generally, that the functions and re-
lations in a structure satisfy these conditions. For instance, we
would like to have ways of distinguishing those structures for a
language which “capture” what we want the predicate symbols
to “mean” from those that do not. Of course we’re completely

CHAPTER 8. THEORIES AND THEIR MODELS 126

free to specify which structures we “intend,” e.g., we can specify
that the interpretation of the predicate symbol ≤ must be an or-
dering, or that we are only interested in interpretations of L in
which the domain consists of sets and ∈ is interpreted by the “is
an element of” relation. But can we do this with sentences of the
language? In other words, which conditions on a structure M can
we express by a sentence (or perhaps a set of sentences) in the
language of M? There are some conditions that we will not be
able to express. For instance, there is no sentence of LA which is
only true in a structure M if |M | = N. We cannot express “the do-
main contains only natural numbers.” But there are “structural
properties” of structures that we perhaps can express. Which
properties of structures can we express by sentences? Or, to put
it another way, which collections of structures can we describe as
those making a sentence (or set of sentences) true?

Definition 8.2 (Model of a set). Let 𝛤 be a set of sentences in
a language L. We say that a structure M is a model of 𝛤 if M ⊨ A
for all A ∈ 𝛤 .

Example 8.3. The sentence ∀x x ≤ x is true in M iff ≤M is a
reflexive relation. The sentence ∀x ∀y ((x ≤ y ∧ y ≤ x)→x = y) is
true in M iff ≤M is anti-symmetric. The sentence ∀x ∀y ∀z ((x ≤
y ∧ y ≤ z) → x ≤ z) is true in M iff ≤M is transitive. Thus, the
models of

{ ∀x x ≤ x ,
∀x ∀y ((x ≤ y ∧ y ≤ x) → x = y),
∀x ∀y ∀z ((x ≤ y ∧ y ≤ z) → x ≤ z) }

are exactly those structures in which ≤M is reflexive, anti-
symmetric, and transitive, i.e., a partial order. Hence, we can
take them as axioms for the first-order theory of partial orders.

CHAPTER 8. THEORIES AND THEIR MODELS 127

8.3 Examples of First-Order Theories

Example 8.4. The theory of strict linear orders in the lan-
guage L< is axiomatized by the set

{ ∀x ¬x < x ,

∀x ∀y ((x < y ∨ y < x) ∨ x = y),
∀x ∀y ∀z ((x < y ∧ y < z) → x < z) }

It completely captures the intended structures: every strict linear
order is a model of this axiom system, and vice versa, if R is a
linear order on a set X , then the structure M with |M | = X and
<M = R is a model of this theory.

Example 8.5. The theory of groups in the language 1 (constant
symbol), · (two-place function symbol) is axiomatized by

∀x (x · 1) = x
∀x ∀y ∀z (x · (y · z)) = ((x · y) · z)
∀x ∃y (x · y) = 1

Example 8.6. The theory of Peano arithmetic is axiomatized by
the following sentences in the language of arithmetic LA.

∀x ∀y (x ′ = y ′ → x = y)
∀x 0 ≠ x ′

∀x (x + 0) = x
∀x ∀y (x + y ′) = (x + y)′

∀x (x × 0) = 0
∀x ∀y (x × y ′) = ((x × y) + x)
∀x ∀y (x < y ↔∃z (z ′ + x) = y)

plus all sentences of the form

(A(0) ∧ ∀x (A(x) → A(x ′))) → ∀x A(x)

CHAPTER 8. THEORIES AND THEIR MODELS 128

Since there are infinitely many sentences of the latter form, this
axiom system is infinite. The latter form is called the induction
schema. (Actually, the induction schema is a bit more complicated
than we let on here.)

The last axiom is an explicit definition of <.

Example 8.7. The theory of pure sets plays an important role
in the foundations (and in the philosophy) of mathematics. A set
is pure if all its elements are also pure sets. The empty set counts
therefore as pure, but a set that has something as an element that
is not a set would not be pure. So the pure sets are those that are
formed just from the empty set and no “urelements,” i.e., objects
that are not themselves sets.

The following might be considered as an axiom system for a
theory of pure sets:

∃x ¬∃y y ∈ x
∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y)
∀x ∀y ∃z ∀u (u ∈ z ↔ (u = x ∨ u = y))
∀x ∃y ∀z (z ∈ y ↔∃u (z ∈ u ∧ u ∈ x))

plus all sentences of the form

∃x ∀y (y ∈ x ↔ A(y))

The first axiom says that there is a set with no elements (i.e., ∅
exists); the second says that sets are extensional; the third that
for any sets X and Y , the set {X ,Y } exists; the fourth that for
any set X , the set ∪X exists, where ∪X is the union of all the
elements of X .

The sentences mentioned last are collectively called the naive
comprehension scheme. It essentially says that for every A(x), the
set {x : A(x)} exists—so at first glance a true, useful, and perhaps
even necessary axiom. It is called “naive” because, as it turns out,
it makes this theory unsatisfiable: if you take A(y) to be ¬y ∈ y ,
you get the sentence

∃x ∀y (y ∈ x ↔¬y ∈ y)

CHAPTER 8. THEORIES AND THEIR MODELS 129

and this sentence is not satisfied in any structure.

Example 8.8. In the area of mereology, the relation of parthood is
a fundamental relation. Just like theories of sets, there are theo-
ries of parthood that axiomatize various conceptions (sometimes
conflicting) of this relation.

The language of mereology contains a single two-place pred-
icate symbol P , and P (x ,y) “means” that x is a part of y . When
we have this interpretation in mind, a structure for this language
is called a parthood structure. Of course, not every structure for a
single two-place predicate will really deserve this name. To have
a chance of capturing “parthood,” PM must satisfy some condi-
tions, which we can lay down as axioms for a theory of parthood.
For instance, parthood is a partial order on objects: every object
is a part (albeit an improper part) of itself; no two different objects
can be parts of each other; a part of a part of an object is itself
part of that object. Note that in this sense “is a part of” resembles
“is a subset of,” but does not resemble “is an element of” which
is neither reflexive nor transitive.

∀x P (x ,x)
∀x ∀y ((P (x ,y) ∧ P (y ,x)) → x = y)
∀x ∀y ∀z ((P (x ,y) ∧ P (y ,z)) → P (x ,z))

Moreover, any two objects have a mereological sum (an object
that has these two objects as parts, and is minimal in this respect).

∀x ∀y ∃z ∀u (P (z ,u) ↔ (P (x ,u) ∧ P (y ,u)))

These are only some of the basic principles of parthood con-
sidered by metaphysicians. Further principles, however, quickly
become hard to formulate or write down without first introducing
some defined relations. For instance, most metaphysicians inter-
ested in mereology also view the following as a valid principle:
whenever an object x has a proper part y , it also has a part z that
has no parts in common with y , and so that the fusion of y and
z is x .

CHAPTER 8. THEORIES AND THEIR MODELS 130

8.4 Expressing Relations in a Structure

One main use formulas can be put to is to express properties and
relations in a structure M in terms of the primitives of the lan-
guage L of M. By this we mean the following: the domain of M
is a set of objects. The constant symbols, function symbols, and
predicate symbols are interpreted in M by some objects in|M |,
functions on |M |, and relations on |M |. For instance, if A2

0 is in

L, then M assigns to it a relation R = A2
0

M. Then the formula
A2

0(v1,v2) expresses that very relation, in the following sense: if a
variable assignment s maps v1 to a ∈ |M | and v2 to b ∈ |M |, then

Rab iff M,s ⊨ A2
0(v1,v2).

Note that we have to involve variable assignments here: we can’t
just say “Rab iff M ⊨ A2

0(a,b)” because a and b are not symbols
of our language: they are elements of |M |.

Since we don’t just have atomic formulas, but can combine
them using the logical connectives and the quantifiers, more com-
plex formulas can define other relations which aren’t directly built
into M. We’re interested in how to do that, and specifically, which
relations we can define in a structure.

Definition 8.9. LetA(v1, . . . ,vn) be a formula of L in which only
v1,. . . , vn occur free, and let M be a structure for L. A(v1, . . . ,vn)
expresses the relation R ⊆ |M |n iff

Ra1 . . . an iff M,s ⊨ A(v1, . . . ,vn)

for any variable assignment s with s (vi) = ai (i = 1, . . . ,n).

Example 8.10. In the standard model of arithmetic N, the for-
mula v1 < v2 ∨ v1 = v2 expresses the ≤ relation on N. The
formula v2 = v ′1 expresses the successor relation, i.e., the relation
R ⊆ N2 where Rnm holds if m is the successor of n. The for-
mula v1 = v ′2 expresses the predecessor relation. The formulas
∃v3 (v3 ≠ 0 ∧ v2 = (v1 + v3)) and ∃v3 (v1 + v3′) = v2 both express

CHAPTER 8. THEORIES AND THEIR MODELS 131

the < relation. This means that the predicate symbol < is actually
superfluous in the language of arithmetic; it can be defined.

This idea is not just interesting in specific structures, but gen-
erally whenever we use a language to describe an intended model
or models, i.e., when we consider theories. These theories often
only contain a few predicate symbols as basic symbols, but in the
domain they are used to describe often many other relations play
an important role. If these other relations can be systematically
expressed by the relations that interpret the basic predicate sym-
bols of the language, we say we can define them in the language.

8.5 The Theory of Sets

Almost all of mathematics can be developed in the theory of
sets. Developing mathematics in this theory involves a number
of things. First, it requires a set of axioms for the relation ∈. A
number of different axiom systems have been developed, some-
times with conflicting properties of ∈. The axiom system known
as ZFC, Zermelo-Fraenkel set theory with the axiom of choice
stands out: it is by far the most widely used and studied, because
it turns out that its axioms suffice to prove almost all the things
mathematicians expect to be able to prove. But before that can
be established, it first is necessary to make clear how we can even
express all the things mathematicians would like to express. For
starters, the language contains no constant symbols or function
symbols, so it seems at first glance unclear that we can talk about
particular sets (such as ∅ or N), can talk about operations on sets
(such as X ∪Y and ℘(X)), let alone other constructions which
involve things other than sets, such as relations and functions.

To begin with, “is an element of” is not the only relation we
are interested in: “is a subset of” seems almost as important. But
we can define “is a subset of” in terms of “is an element of.” To
do this, we have to find a formula A(x ,y) in the language of set
theory which is satisfied by a pair of sets ⟨X ,Y ⟩ iff X ⊆ Y . But X

CHAPTER 8. THEORIES AND THEIR MODELS 132

is a subset of Y just in case all elements of X are also elements
ofY . So we can define ⊆ by the formula

∀z (z ∈ x → z ∈ y)

Now, whenever we want to use the relation ⊆ in a formula, we
could instead use that formula (with x and y suitably replaced,
and the bound variable z renamed if necessary). For instance,
extensionality of sets means that if any sets x and y are contained
in each other, then x and y must be the same set. This can be
expressed by ∀x ∀y ((x ⊆ y ∧ y ⊆ x) → x = y), or, if we replace ⊆
by the above definition, by

∀x ∀y ((∀z (z ∈ x → z ∈ y) ∧ ∀z (z ∈ y → z ∈ x)) → x = y).

This is in fact one of the axioms of ZFC, the “axiom of exten-
sionality.”

There is no constant symbol for ∅, but we can express “x
is empty” by ¬∃y y ∈ x . Then “∅ exists” becomes the sen-
tence ∃x ¬∃y y ∈ x . This is another axiom of ZFC. (Note that
the axiom of extensionality implies that there is only one empty
set.) Whenever we want to talk about ∅ in the language of set
theory, we would write this as “there is a set that’s empty and
. . . ” As an example, to express the fact that ∅ is a subset of every
set, we could write

∃x (¬∃y y ∈ x ∧ ∀z x ⊆ z)

where, of course, x ⊆ z would in turn have to be replaced by its
definition.

To talk about operations on sets, such as X ∪Y and ℘(X),
we have to use a similar trick. There are no function symbols
in the language of set theory, but we can express the functional
relations X ∪Y = Z and ℘(X) =Y by

∀u ((u ∈ x ∨ u ∈ y) ↔ u ∈ z)
∀u (u ⊆ x ↔ u ∈ y)

CHAPTER 8. THEORIES AND THEIR MODELS 133

since the elements of X ∪Y are exactly the sets that are either
elements of X or elements of Y , and the elements of ℘(X) are
exactly the subsets of X . However, this doesn’t allow us to use
x ∪ y or ℘(x) as if they were terms: we can only use the entire
formulas that define the relations X ∪Y = Z and ℘(X) = Y . In
fact, we do not know that these relations are ever satisfied, i.e.,
we do not know that unions and power sets always exist. For
instance, the sentence ∀x ∃y ℘(x) = y is another axiom of ZFC
(the power set axiom).

Now what about talk of ordered pairs or functions? Here we
have to explain how we can think of ordered pairs and functions
as special kinds of sets. One way to define the ordered pair ⟨x ,y⟩
is as the set {{x}, {x ,y}}. But like before, we cannot introduce
a function symbol that names this set; we can only define the
relation ⟨x ,y⟩ = z , i.e., {{x}, {x ,y}} = z :

∀u (u ∈ z ↔ (∀v (v ∈ u ↔ v = x) ∨ ∀v (v ∈ u ↔ (v = x ∨ v = y))))

This says that the elements u of z are exactly those sets which
either have x as its only element or have x and y as its only
elements (in other words, those sets that are either identical to
{x} or identical to {x ,y}). Once we have this, we can say further
things, e.g., that X ×Y = Z :

∀z (z ∈ Z ↔∃x ∃y (x ∈ X ∧ y ∈Y ∧ ⟨x ,y⟩ = z))

A function f : X →Y can be thought of as the relation f (x) =
y , i.e., as the set of pairs {⟨x ,y⟩ : f (x) = y}. We can then say that
a set f is a function from X to Y if (a) it is a relation ⊆ X ×Y ,
(b) it is total, i.e., for all x ∈ X there is some y ∈ Y such that
⟨x ,y⟩ ∈ f and (c) it is functional, i.e., whenever ⟨x ,y⟩, ⟨x ,y ′⟩ ∈ f ,
y = y ′ (because values of functions must be unique). So “f is a
function from X toY ” can be written as:

∀u (u ∈ f →∃x ∃y (x ∈ X ∧ y ∈Y ∧ ⟨x ,y⟩ = u)) ∧
∀x (x ∈ X → (∃y (y ∈Y ∧ maps(f ,x ,y)) ∧

(∀y ∀y ′ ((maps(f ,x ,y) ∧ maps(f ,x ,y ′)) → y = y ′)))

CHAPTER 8. THEORIES AND THEIR MODELS 134

where maps(f ,x ,y) abbreviates ∃v (v ∈ f ∧ ⟨x ,y⟩ = v) (this for-
mula expresses “f (x) = y”).

It is now also not hard to express that f : X →Y is injective,
for instance:

f : X →Y ∧ ∀x ∀x ′ ((x ∈ X ∧ x ′ ∈ X ∧
∃y (maps(f ,x ,y) ∧ maps(f ,x ′,y))) → x = x ′)

A function f : X →Y is injective iff, whenever f maps x ,x ′ ∈ X
to a single y , x = x ′. If we abbreviate this formula as inj(f ,X ,Y),
we’re already in a position to state in the language of set theory
something as non-trivial as Cantor’s theorem: there is no injective
function from ℘(X) to X :

∀X ∀Y (℘(X) =Y →¬∃f inj(f ,Y,X))

One might think that set theory requires another axiom that
guarantees the existence of a set for every defining property. If
A(x) is a formula of set theory with the variable x free, we can
consider the sentence

∃y ∀x (x ∈ y ↔ A(x)).

This sentence states that there is a set y whose elements are all
and only those x that satisfy A(x). This schema is called the
“comprehension principle.” It looks very useful; unfortunately it
is inconsistent. Take A(x) ≡ ¬x ∈ x , then the comprehension
principle states

∃y ∀x (x ∈ y ↔ x ∉ x),

i.e., it states the existence of a set of all sets that are not elements
of themselves. No such set can exist—this is Russell’s Paradox.
ZFC, in fact, contains a restricted—and consistent—version of
this principle, the separation principle:

∀z ∃y ∀x (x ∈ y ↔ (x ∈ z ∧ A(x)).

CHAPTER 8. THEORIES AND THEIR MODELS 135

8.6 Expressing the Size of Structures

There are some properties of structures we can express even with-
out using the non-logical symbols of a language. For instance,
there are sentences which are true in a structure iff the domain of
the structure has at least, at most, or exactly a certain number n
of elements.

Proposition 8.11. The sentence

A≥n ≡ ∃x1 ∃x2 . . . ∃xn
(x1 ≠ x2 ∧ x1 ≠ x3 ∧ x1 ≠ x4 ∧ · · · ∧ x1 ≠ xn ∧

x2 ≠ x3 ∧ x2 ≠ x4 ∧ · · · ∧ x2 ≠ xn ∧
...

xn−1 ≠ xn)

is true in a structure M iff |M | contains at least n elements. Conse-
quently, M ⊨ ¬A≥n+1 iff |M | contains at most n elements.

Proposition 8.12. The sentence

A=n ≡ ∃x1 ∃x2 . . . ∃xn
(x1 ≠ x2 ∧ x1 ≠ x3 ∧ x1 ≠ x4 ∧ · · · ∧ x1 ≠ xn ∧

x2 ≠ x3 ∧ x2 ≠ x4 ∧ · · · ∧ x2 ≠ xn ∧
...

xn−1 ≠ xn ∧
∀y (y = x1 ∨ · · · ∨ y = xn))

is true in a structure M iff |M | contains exactly n elements.

CHAPTER 8. THEORIES AND THEIR MODELS 136

Proposition 8.13. A structure is infinite iff it is a model of

{A≥1,A≥2,A≥3, . . . }.

There is no single purely logical sentence which is true in M iff
|M | is infinite. However, one can give sentences with non-logical
predicate symbols which only have infinite models (although not
every infinite structure is a model of them). The property of being
a finite structure, and the property of being a uncountable struc-
ture cannot even be expressed with an infinite set of sentences.
These facts follow from the compactness and Löwenheim-Skolem
theorems.

Summary

Proof systems provide purely syntactic methods for characteriz-
ing consequence and compatibility between sentences. Natural
deduction is one such proof system. A derivation in it consists
of a tree formulas. The topmost formulas in a derivation are as-
sumptions. All other formulas, for the derivation to be correct,
must be correctly justified by one of a number of inference rules.
These come in pairs; an introduction and an elimination rule for
each connective and quantifier. For instance, if a formula A is
justified by a →Elim rule, the preceding formulas (the premises)
must be B → A and B (for some B). Some inference rules also
allow assumptions to be discharged. For instance, if A→B is in-
ferred from B using →Intro, any occurrences of A as assumptions
in the derivation leading to the premise B may be discharged, and
is given a label that is also recorded at the inference.

If there is a derivation with end formulaA and all assumptions
are discharged, we say A is a theorem and write ⊢ A. If all undis-
charged assumptions are in some set 𝛤 , we say A is derivable
from 𝛤 and write 𝛤 ⊢ A. If 𝛤 ⊢ ⊥ we say 𝛤 is inconsistent, oth-
erwise consistent. These notions are interrelated, e.g., 𝛤 ⊢ A iff
𝛤∪{¬A} is inconsistent. They are also related to the correspond-
ing semantic notions, e.g., if 𝛤 ⊢ A then 𝛤 ⊨ A. This property

CHAPTER 8. THEORIES AND THEIR MODELS 137

of proof systems—what can be derived from 𝛤 is guaranteed to
be entailed by 𝛤—is called soundness. The soundness theo-
rem is proved by induction on the length of derivations, showing
that each individual inference preserves entailment of its conclu-
sion from open assumptions provided its premises are entailed
by their undischarged assumptions.

Problems

Problem 8.1. Find formulas in LA which define the following
relations:

1. n is between i and j ;

2. n evenly divides m (i.e., m is a multiple of n);

3. n is a prime number (i.e., no number other than 1 and n
evenly divides n).

Problem 8.2. Suppose the formula A(v1,v2) expresses the rela-
tion R ⊆ |M |2 in a structure M. Find formulas that express the
following relations:

1. the inverse R−1 of R;

2. the relative product R | R;

Can you find a way to express R+, the transitive closure of R?

Problem 8.3. Let L be the language containing a 2-place predi-
cate symbol < only (no other constant symbols, function symbols
or predicate symbols— except of course =). Let N be the struc-
ture such that |N | = N, and <N = {⟨n,m⟩ : n < m}. Prove the
following:

1. {0} is definable in N;

2. {1} is definable in N;

CHAPTER 8. THEORIES AND THEIR MODELS 138

3. {2} is definable in N;

4. for each n ∈ N, the set {n} is definable in N;

5. every finite subset of |N | is definable in N;

6. every co-finite subset of |N | is definable in N (where X ⊆ N
is co-finite iff N \ X is finite).

Problem 8.4. Show that the comprehension principle is incon-
sistent by giving a derivation that shows

∃y ∀x (x ∈ y ↔ x ∉ x) ⊢ ⊥.

It may help to first show (A→¬A) ∧ (¬A→ A) ⊢ ⊥.

CHAPTER 9

Derivation
Systems
9.1 Introduction

Logics commonly have both a semantics and a derivation system.
The semantics concerns concepts such as truth, satisfiability, va-
lidity, and entailment. The purpose of derivation systems is to
provide a purely syntactic method of establishing entailment and
validity. They are purely syntactic in the sense that a derivation
in such a system is a finite syntactic object, usually a sequence
(or other finite arrangement) of sentences or formulas. Good
derivation systems have the property that any given sequence or
arrangement of sentences or formulas can be verified mechani-
cally to be “correct.”

The simplest (and historically first) derivation systems for
first-order logic were axiomatic. A sequence of formulas counts
as a derivation in such a system if each individual formula in it
is either among a fixed set of “axioms” or follows from formulas
coming before it in the sequence by one of a fixed number of “in-
ference rules”—and it can be mechanically verified if a formula
is an axiom and whether it follows correctly from other formulas
by one of the inference rules. Axiomatic derivation systems are
easy to describe—and also easy to handle meta-theoretically—

139

CHAPTER 9. DERIVATION SYSTEMS 140

but derivations in them are hard to read and understand, and
are also hard to produce.

Other derivation systems have been developed with the aim
of making it easier to construct derivations or easier to under-
stand derivations once they are complete. Examples are natural
deduction, truth trees, also known as tableaux proofs, and the se-
quent calculus. Some derivation systems are designed especially
with mechanization in mind, e.g., the resolution method is easy
to implement in software (but its derivations are essentially im-
possible to understand). Most of these other derivation systems
represent derivations as trees of formulas rather than sequences.
This makes it easier to see which parts of a derivation depend on
which other parts.

So for a given logic, such as first-order logic, the different
derivation systems will give different explications of what it is for
a sentence to be a theorem and what it means for a sentence to be
derivable from some others. However that is done (via axiomatic
derivations, natural deductions, sequent derivations, truth trees,
resolution refutations), we want these relations to match the se-
mantic notions of validity and entailment. Let’s write ⊢ A for “A is
a theorem” and “𝛤 ⊢ A” for “A is derivable from 𝛤 .” However
⊢ is defined, we want it to match up with ⊨, that is:

1. ⊢ A if and only if ⊨ A

2. 𝛤 ⊢ A if and only if 𝛤 ⊨ A

The “only if” direction of the above is called soundness. A deriva-
tion system is sound if derivability guarantees entailment (or va-
lidity). Every decent derivation system has to be sound; unsound
derivation systems are not useful at all. After all, the entire pur-
pose of a derivation is to provide a syntactic guarantee of validity
or entailment. We’ll prove soundness for the derivation systems
we present.

The converse “if” direction is also important: it is called com-
pleteness. A complete derivation system is strong enough to show

CHAPTER 9. DERIVATION SYSTEMS 141

that A is a theorem whenever A is valid, and that 𝛤 ⊢ A when-
ever 𝛤 ⊨ A. Completeness is harder to establish, and some logics
have no complete derivation systems. First-order logic does. Kurt
Gödel was the first one to prove completeness for a derivation
system of first-order logic in his 1929 dissertation.

Another concept that is connected to derivation systems is
that of consistency. A set of sentences is called inconsistent if any-
thing whatsoever can be derived from it, and consistent other-
wise. Inconsistency is the syntactic counterpart to unsatisfiablity:
like unsatisfiable sets, inconsistent sets of sentences do not make
good theories, they are defective in a fundamental way. Consis-
tent sets of sentences may not be true or useful, but at least they
pass that minimal threshold of logical usefulness. For different
derivation systems the specific definition of consistency of sets of
sentences might differ, but like ⊢, we want consistency to coincide
with its semantic counterpart, satisfiability. We want it to always
be the case that 𝛤 is consistent if and only if it is satisfiable. Here,
the “if” direction amounts to completeness (consistency guaran-
tees satisfiability), and the “only if” direction amounts to sound-
ness (satisfiability guarantees consistency). In fact, for classical
first-order logic, the two versions of soundness and completeness
are equivalent.

9.2 The Sequent Calculus

While many derivation systems operate with arrangements of sen-
tences, the sequent calculus operates with sequents. A sequent is
an expression of the form

A1, . . . ,Am ⇒ B1, . . . ,Bm ,

that is a pair of sequences of sentences, separated by the sequent
symbol ⇒. Either sequence may be empty. A derivation in the se-
quent calculus is a tree of sequents, where the topmost sequents
are of a special form (they are called “initial sequents” or “ax-
ioms”) and every other sequent follows from the sequents imme-

CHAPTER 9. DERIVATION SYSTEMS 142

diately above it by one of the rules of inference. The rules of in-
ference either manipulate the sentences in the sequents (adding,
removing, or rearranging them on either the left or the right), or
they introduce a complex formula in the conclusion of the rule.
For instance, the ∧L rule allows the inference from A,𝛤 ⇒ 𝛥 to
A∧B ,𝛤 ⇒ 𝛥, and the →R allows the inference from A,𝛤 ⇒ 𝛥,B
to 𝛤 ⇒ 𝛥,A→B , for any 𝛤 , 𝛥, A, and B . (In particular, 𝛤 and 𝛥

may be empty.)
The ⊢ relation based on the sequent calculus is defined as

follows: 𝛤 ⊢ A iff there is some sequence 𝛤0 such that every A in
𝛤0 is in 𝛤 and there is a derivation with the sequent 𝛤0 ⇒ A at its
root. A is a theorem in the sequent calculus if the sequent ⇒ A
has a derivation. For instance, here is a derivation that shows
that ⊢ (A ∧ B) → A:

A ⇒ A ∧LA ∧ B ⇒ A →R⇒ (A ∧ B) → A

A set 𝛤 is inconsistent in the sequent calculus if there is
a derivation of 𝛤0 ⇒ (where every A ∈ 𝛤0 is in 𝛤 and the right
side of the sequent is empty). Using the rule WR, any sentence
can be derived from an inconsistent set.

The sequent calculus was invented in the 1930s by Gerhard
Gentzen. Because of its systematic and symmetric design, it is
a very useful formalism for developing a theory of derivations.
It is relatively easy to find derivations in the sequent calculus,
but these derivations are often hard to read and their connection
to proofs are sometimes not easy to see. It has proved to be a
very elegant approach to derivation systems, however, and many
logics have sequent calculus systems.

9.3 Natural Deduction

Natural deduction is a derivation system intended to mirror ac-
tual reasoning (especially the kind of regimented reasoning em-

CHAPTER 9. DERIVATION SYSTEMS 143

ployed by mathematicians). Actual reasoning proceeds by a num-
ber of “natural” patterns. For instance, proof by cases allows us
to establish a conclusion on the basis of a disjunctive premise,
by establishing that the conclusion follows from either of the dis-
juncts. Indirect proof allows us to establish a conclusion by show-
ing that its negation leads to a contradiction. Conditional proof
establishes a conditional claim “if . . . then . . . ” by showing that
the consequent follows from the antecedent. Natural deduction
is a formalization of some of these natural inferences. Each of
the logical connectives and quantifiers comes with two rules, an
introduction and an elimination rule, and they each correspond
to one such natural inference pattern. For instance, →Intro cor-
responds to conditional proof, and ∨Elim to proof by cases. A
particularly simple rule is ∧Elim which allows the inference from
A ∧ B to A (or B).

One feature that distinguishes natural deduction from other
derivation systems is its use of assumptions. A derivation in nat-
ural deduction is a tree of formulas. A single formula stands
at the root of the tree of formulas, and the “leaves” of the tree
are formulas from which the conclusion is derived. In natural
deduction, some leaf formulas play a role inside the derivation
but are “used up” by the time the derivation reaches the conclu-
sion. This corresponds to the practice, in actual reasoning, of
introducing hypotheses which only remain in effect for a short
while. For instance, in a proof by cases, we assume the truth of
each of the disjuncts; in conditional proof, we assume the truth
of the antecedent; in indirect proof, we assume the truth of the
negation of the conclusion. This way of introducing hypotheti-
cal assumptions and then doing away with them in the service of
establishing an intermediate step is a hallmark of natural deduc-
tion. The formulas at the leaves of a natural deduction derivation
are called assumptions, and some of the rules of inference may
“discharge” them. For instance, if we have a derivation of B from
some assumptions which include A, then the →Intro rule allows
us to infer A→ B and discharge any assumption of the form A.
(To keep track of which assumptions are discharged at which in-

CHAPTER 9. DERIVATION SYSTEMS 144

ferences, we label the inference and the assumptions it discharges
with a number.) The assumptions that remain undischarged at
the end of the derivation are together sufficient for the truth of the
conclusion, and so a derivation establishes that its undischarged
assumptions entail its conclusion.

The relation 𝛤 ⊢ A based on natural deduction holds iff there
is a derivation in whichA is the last sentence in the tree, and every
leaf which is undischarged is in 𝛤 . A is a theorem in natural de-
duction iff there is a derivation in which A is the last sentence and
all assumptions are discharged. For instance, here is a derivation
that shows that ⊢ (A ∧ B) → A:

[A ∧ B]1
∧ElimA

1 →Intro(A ∧ B) → A

The label 1 indicates that the assumption A ∧ B is discharged at
the →Intro inference.

A set 𝛤 is inconsistent iff 𝛤 ⊢ ⊥ in natural deduction. The
rule ⊥I makes it so that from an inconsistent set, any sentence
can be derived.

Natural deduction systems were developed by Gerhard
Gentzen and Stanisław Jaśkowski in the 1930s, and later devel-
oped by Dag Prawitz and Frederic Fitch. Because its inferences
mirror natural methods of proof, it is favored by philosophers.
The versions developed by Fitch are often used in introductory
logic textbooks. In the philosophy of logic, the rules of natural
deduction have sometimes been taken to give the meanings of
the logical operators (“proof-theoretic semantics”).

9.4 Tableaux

While many derivation systems operate with arrangements of sen-
tences, tableaux operate with signed formulas. A signed formula
is a pair consisting of a truth value sign (T or F) and a sentence

TA or F A.

CHAPTER 9. DERIVATION SYSTEMS 145

A tableau consists of signed formulas arranged in a downward-
branching tree. It begins with a number of assumptions and con-
tinues with signed formulas which result from one of the signed
formulas above it by applying one of the rules of inference. Each
rule allows us to add one or more signed formulas to the end
of a branch, or two signed formulas side by side—in this case a
branch splits into two, with the two added signed formulas form-
ing the ends of the two branches.

A rule applied to a complex signed formula results in the
addition of signed formulas which are immediate sub-formulas.
They come in pairs, one rule for each of the two signs. For in-
stance, the ∧T rule applies to TA ∧ B , and allows the addition
of both the two signed formulas TA and TB to the end of any
branch containing TA ∧ B , and the rule A ∧ BF allows a branch
to be split by adding F A and F B side-by-side. A tableau is closed
if every one of its branches contains a matching pair of signed
formulas TA and F A.

The ⊢ relation based on tableaux is defined as follows: 𝛤 ⊢ A
iff there is some finite set 𝛤0 = {B1, . . . ,Bn} ⊆ 𝛤 such that there
is a closed tableau for the assumptions

{F A,TB1, . . . ,TBn}

For instance, here is a closed tableau that shows that ⊢ (A∧B)→A:

1.
2.
3.
4.
5.

F (A ∧ B) → A
TA ∧ B
F A
TA
TB
⊗

Assumption
→F 1
→F 1
→T 2
→T 2

A set 𝛤 is inconsistent in the tableau calculus if there is a
closed tableau for assumptions

{TB1, . . . ,TBn}

CHAPTER 9. DERIVATION SYSTEMS 146

for some Bi ∈ 𝛤 .
Tableaux were invented in the 1950s independently by Ev-

ert Beth and Jaakko Hintikka, and simplified and popularized
by Raymond Smullyan. They are very easy to use, since con-
structing a tableau is a very systematic procedure. Because of
the systematic nature of tableaux, they also lend themselves to
implementation by computer. However, a tableau is often hard
to read and their connection to proofs are sometimes not easy to
see. The approach is also quite general, and many different logics
have tableau systems. Tableaux also help us to find structures that
satisfy given (sets of) sentences: if the set is satisfiable, it won’t
have a closed tableau, i.e., any tableau will have an open branch.
The satisfying structure can be “read off” an open branch, pro-
vided every rule it is possible to apply has been applied on that
branch. There is also a very close connection to the sequent cal-
culus: essentially, a closed tableau is a condensed derivation in
the sequent calculus, written upside-down.

9.5 Axiomatic Derivations

Axiomatic derivations are the oldest and simplest logical deriva-
tion systems. Its derivations are simply sequences of sentences.
A sequence of sentences counts as a correct derivation if every
sentence A in it satisfies one of the following conditions:

1. A is an axiom, or

2. A is an element of a given set 𝛤 of sentences, or

3. A is justified by a rule of inference.

To be an axiom, A has to have the form of one of a number of fixed
sentence schemas. There are many sets of axiom schemas that
provide a satisfactory (sound and complete) derivation system for
first-order logic. Some are organized according to the connectives
they govern, e.g., the schemas

A→ (B → A) B → (B ∨C) (B ∧C) → B

CHAPTER 9. DERIVATION SYSTEMS 147

are common axioms that govern →, ∨ and ∧. Some axiom sys-
tems aim at a minimal number of axioms. Depending on the
connectives that are taken as primitives, it is even possible to
find axiom systems that consist of a single axiom.

A rule of inference is a conditional statement that gives a
sufficient condition for a sentence in a derivation to be justified.
Modus ponens is one very common such rule: it says that if A
and A→ B are already justified, then B is justified. This means
that a line in a derivation containing the sentence B is justified,
provided that both A and A→ B (for some sentence A) appear
in the derivation before B .

The ⊢ relation based on axiomatic derivations is defined as
follows: 𝛤 ⊢ A iff there is a derivation with the sentence A as
its last formula (and 𝛤 is taken as the set of sentences in that
derivation which are justified by (2) above). A is a theorem if A
has a derivation where 𝛤 is empty, i.e., every sentence in the
derivation is justfied either by (1) or (3). For instance, here is
a derivation that shows that ⊢ A→ (B → (B ∨ A)):

1. B → (B ∨ A)
2. (B → (B ∨ A)) → (A→ (B → (B ∨ A)))
3. A→ (B → (B ∨ A))

The sentence on line 1 is of the form of the axiom A→ (A ∨ B)
(with the roles of A and B reversed). The sentence on line 2 is of
the form of the axiom A→(B→A). Thus, both lines are justified.
Line 3 is justified by modus ponens: if we abbreviate it as D , then
line 2 has the form C →D , where C is B → (B ∨ A), i.e., line 1.

A set 𝛤 is inconsistent if 𝛤 ⊢ ⊥. A complete axiom system
will also prove that ⊥→ A for any A, and so if 𝛤 is inconsistent,
then 𝛤 ⊢ A for any A.

Systems of axiomatic derivations for logic were first given by
Gottlob Frege in his 1879 Begriffsschrift, which for this reason is
often considered the first work of modern logic. They were per-
fected in Alfred North Whitehead and Bertrand Russell’s Prin-
cipia Mathematica and by David Hilbert and his students in the

CHAPTER 9. DERIVATION SYSTEMS 148

1920s. They are thus often called “Frege systems” or “Hilbert
systems.” They are very versatile in that it is often easy to find
an axiomatic system for a logic. Because derivations have a very
simple structure and only one or two inference rules, it is also rel-
atively easy to prove things about them. However, they are very
hard to use in practice, i.e., it is difficult to find and write proofs.

CHAPTER 10

The Sequent
Calculus
10.1 Rules and Derivations

For the following, let 𝛤, 𝛥,𝛱 ,𝛬 represent finite sequences of sen-
tences.

Definition 10.1 (Sequent). A sequent is an expression of the
form

𝛤 ⇒ 𝛥

where 𝛤 and 𝛥 are finite (possibly empty) sequences of sentences
of the language L. 𝛤 is called the antecedent, while 𝛥 is the succe-
dent.

The intuitive idea behind a sequent is: if all of the sen-
tences in the antecedent hold, then at least one of the sen-
tences in the succedent holds. That is, if 𝛤 = ⟨A1, . . . ,Am⟩ and
𝛥 = ⟨B1, . . . ,Bn⟩, then 𝛤 ⇒ 𝛥 holds iff

(A1 ∧ · · · ∧ Am) → (B1 ∨ · · · ∨ Bn)

holds. There are two special cases: where 𝛤 is empty and when
𝛥 is empty. When 𝛤 is empty, i.e., m = 0, ⇒ 𝛥 holds iff B1∨· · ·∨

149

CHAPTER 10. THE SEQUENT CALCULUS 150

Bn holds. When 𝛥 is empty, i.e., n = 0, 𝛤 ⇒ holds iff ¬(A1 ∧
· · · ∧ Am) does. We say a sequent is valid iff the corresponding
sentence is valid.

If 𝛤 is a sequence of sentences, we write 𝛤,A for the result
of appending A to the right end of 𝛤 (and A,𝛤 for the result of
appending A to the left end of 𝛤). If 𝛥 is a sequence of sentences
also, then 𝛤, 𝛥 is the concatenation of the two sequences.

Definition 10.2 (Initial Sequent). An initial sequent is a se-
quent of one of the following forms:

1. A ⇒ A

2. ⊥ ⇒

for any sentence A in the language.

Derivations in the sequent calculus are certain trees of se-
quents, where the topmost sequents are initial sequents, and if a
sequent stands below one or two other sequents, it must follow
correctly by a rule of inference. The rules for LK are divided
into two main types: logical rules and structural rules. The log-
ical rules are named for the main operator of the sentence con-
taining A and/or B in the lower sequent. Each one comes in two
versions, one for inferring a sequent with the sentence containing
the logical operator on the left, and one with the sentence on the
right.

10.2 Propositional Rules

Rules for ¬

𝛤 ⇒ 𝛥,A ¬L¬A,𝛤 ⇒ 𝛥

A,𝛤 ⇒ 𝛥 ¬R
𝛤 ⇒ 𝛥,¬A

Rules for ∧

CHAPTER 10. THE SEQUENT CALCULUS 151

A,𝛤 ⇒ 𝛥 ∧LA ∧ B ,𝛤 ⇒ 𝛥

B ,𝛤 ⇒ 𝛥 ∧LA ∧ B ,𝛤 ⇒ 𝛥

𝛤 ⇒ 𝛥,A 𝛤 ⇒ 𝛥,B ∧R
𝛤 ⇒ 𝛥,A ∧ B

Rules for ∨

A,𝛤 ⇒ 𝛥 B ,𝛤 ⇒ 𝛥 ∨LA ∨ B ,𝛤 ⇒ 𝛥

𝛤 ⇒ 𝛥,A ∨R
𝛤 ⇒ 𝛥,A ∨ B
𝛤 ⇒ 𝛥,B ∨R
𝛤 ⇒ 𝛥,A ∨ B

Rules for →

𝛤 ⇒ 𝛥,A B ,𝛱 ⇒ 𝛬 →LA→ B ,𝛤,𝛱 ⇒ 𝛥,𝛬

A,𝛤 ⇒ 𝛥,B →R
𝛤 ⇒ 𝛥,A→ B

10.3 Quantifier Rules

Rules for ∀

A(t),𝛤 ⇒ 𝛥
∀L∀x A(x),𝛤 ⇒ 𝛥

𝛤 ⇒ 𝛥,A(a)
∀R

𝛤 ⇒ 𝛥,∀x A(x)

In ∀L, t is a closed term (i.e., one without variables). In ∀R,
a is a constant symbol which must not occur anywhere in the
lower sequent of the ∀R rule. We call a the eigenvariable of the
∀R inference.1

Rules for ∃

1We use the term “eigenvariable” even though a in the above rule is a con-
stant symbol. This has historical reasons.

CHAPTER 10. THE SEQUENT CALCULUS 152

A(a),𝛤 ⇒ 𝛥
∃L∃x A(x),𝛤 ⇒ 𝛥

𝛤 ⇒ 𝛥,A(t)
∃R

𝛤 ⇒ 𝛥,∃x A(x)

Again, t is a closed term, and a is a constant symbol which
does not occur in the lower sequent of the ∃L rule. We call a the
eigenvariable of the ∃L inference.

The condition that an eigenvariable not occur in the lower
sequent of the ∀R or ∃L inference is called the eigenvariable con-
dition.

Recall the convention that when A is a formula with the vari-
able x free, we indicate this by writing A(x). In the same context,
A(t) then is short for A[t/x]. So we could also write the ∃R rule
as:

𝛤 ⇒ 𝛥,A[t/x]
∃R

𝛤 ⇒ 𝛥,∃x A

Note that t may already occur inA, e.g., Amight be P (t ,x). Thus,
inferring 𝛤 ⇒ 𝛥,∃x P (t ,x) from 𝛤 ⇒ 𝛥,P (t ,t) is a correct appli-
cation of ∃R—you may “replace” one or more, and not necessar-
ily all, occurrences of t in the premise by the bound variable x .
However, the eigenvariable conditions in ∀R and ∃L require that
the constant symbol a does not occur in A. So, you cannot cor-
rectly infer 𝛤 ⇒ 𝛥,∀x P (a,x) from 𝛤 ⇒ 𝛥,P (a,a) using ∀R.

In ∃R and ∀L there are no restrictions on the term t . On
the other hand, in the ∃L and ∀R rules, the eigenvariable condi-
tion requires that the constant symbol a does not occur anywhere
outside of A(a) in the upper sequent. It is necessary to ensure
that the system is sound, i.e., only derives sequents that are valid.
Without this condition, the following would be allowed:

A(a) ⇒ A(a)
*∃L∃x A(x) ⇒ A(a)

∀R∃x A(x) ⇒ ∀x A(x)

A(a) ⇒ A(a)
*∀RA(a) ⇒ ∀x A(x)
∃L∃x A(x) ⇒ ∀x A(x)

However, ∃x A(x) ⇒ ∀x A(x) is not valid.

CHAPTER 10. THE SEQUENT CALCULUS 153

10.4 Structural Rules

We also need a few rules that allow us to rearrange sentences in
the left and right side of a sequent. Since the logical rules require
that the sentences in the premise which the rule acts upon stand
either to the far left or to the far right, we need an “exchange”
rule that allows us to move sentences to the right position. It’s
also important sometimes to be able to combine two identical
sentences into one, and to add a sentence on either side.

Weakening

𝛤 ⇒ 𝛥 WLA,𝛤 ⇒ 𝛥

𝛤 ⇒ 𝛥 WR
𝛤 ⇒ 𝛥,A

Contraction

A,A,𝛤 ⇒ 𝛥
CLA,𝛤 ⇒ 𝛥

𝛤 ⇒ 𝛥,A,A
CR

𝛤 ⇒ 𝛥,A

Exchange

𝛤,A,B ,𝛱 ⇒ 𝛥
XL

𝛤,B ,A,𝛱 ⇒ 𝛥

𝛤 ⇒ 𝛥,A,B , 𝛬
XR

𝛤 ⇒ 𝛥,B ,A, 𝛬

A series of weakening, contraction, and exchange inferences
will often be indicated by double inference lines.

The following rule, called “cut,” is not strictly speaking nec-
essary, but makes it a lot easier to reuse and combine deriva-
tions.

𝛤 ⇒ 𝛥,A A,𝛱 ⇒ 𝛬
Cut

𝛤,𝛱 ⇒ 𝛥,𝛬

CHAPTER 10. THE SEQUENT CALCULUS 154

10.5 Derivations

We’ve said what an initial sequent looks like, and we’ve given
the rules of inference. Derivations in the sequent calculus are
inductively generated from these: each derivation either is an
initial sequent on its own, or consists of one or two derivations
followed by an inference.

Definition 10.3 (LK derivation). An LK-derivation of a se-
quent S is a finite tree of sequents satisfying the following condi-
tions:

1. The topmost sequents of the tree are initial sequents.

2. The bottommost sequent of the tree is S .

3. Every sequent in the tree except S is a premise of a correct
application of an inference rule whose conclusion stands
directly below that sequent in the tree.

We then say that S is the end-sequent of the derivation and that S
is derivable in LK (or LK-derivable).

Example 10.4. Every initial sequent, e.g., C ⇒ C is a deriva-
tion. We can obtain a new derivation from this by applying, say,
the WL rule,

𝛤 ⇒ 𝛥 WLA,𝛤 ⇒ 𝛥

The rule, however, is meant to be general: we can replace the A
in the rule with any sentence, e.g., also with D . If the premise
matches our initial sequent C ⇒ C , that means that both 𝛤 and
𝛥 are just C , and the conclusion would then be D ,C ⇒ C . So,
the following is a derivation:

C ⇒ C WLD ,C ⇒ C

CHAPTER 10. THE SEQUENT CALCULUS 155

We can now apply another rule, say XL, which allows us to switch
two sentences on the left. So, the following is also a correct
derivation:

C ⇒ C WLD ,C ⇒ C
XLC ,D ⇒ C

In this application of the rule, which was given as

𝛤,A,B ,𝛱 ⇒ 𝛥
XL

𝛤,B ,A,𝛱 ⇒ 𝛥,

both 𝛤 and 𝛱 were empty, 𝛥 is C , and the roles of A and B are
played by D and C , respectively. In much the same way, we also
see that

D ⇒ D WLC ,D ⇒ D

is a derivation. Now we can take these two derivations, and com-
bine them using ∧R. That rule was

𝛤 ⇒ 𝛥,A 𝛤 ⇒ 𝛥,B ∧R
𝛤 ⇒ 𝛥,A ∧ B

In our case, the premises must match the last sequents of the
derivations ending in the premises. That means that 𝛤 is C ,D , 𝛥
is empty, A is C and B is D . So the conclusion, if the inference
should be correct, is C ,D ⇒ C ∧D .

C ⇒ C WLD ,C ⇒ C
XLC ,D ⇒ C

D ⇒ D WLC ,D ⇒ D ∧RC ,D ⇒ C ∧D

Of course, we can also reverse the premises, then A would be D
and B would be C .

D ⇒ D WLC ,D ⇒ D

C ⇒ C WLD ,C ⇒ C
XLC ,D ⇒ C ∧RC ,D ⇒ D ∧C

CHAPTER 10. THE SEQUENT CALCULUS 156

10.6 Examples of Derivations

Example 10.5. Give an LK-derivation for the sequent A ∧B ⇒
A.

We begin by writing the desired end-sequent at the bottom of
the derivation.

A ∧ B ⇒ A

Next, we need to figure out what kind of inference could have
a lower sequent of this form. This could be a structural rule,
but it is a good idea to start by looking for a logical rule. The
only logical connective occurring in the lower sequent is ∧, so
we’re looking for an ∧ rule, and since the ∧ symbol occurs in the
antecedent, we’re looking at the ∧L rule.

∧LA ∧ B ⇒ A

There are two options for what could have been the upper sequent
of the ∧L inference: we could have an upper sequent of A ⇒ A,
or of B ⇒ A. Clearly, A ⇒ A is an initial sequent (which is a
good thing), while B ⇒ A is not derivable in general. We fill in
the upper sequent:

A ⇒ A ∧LA ∧ B ⇒ A

We now have a correct LK-derivation of the sequent A ∧B ⇒ A.

Example 10.6. Give an LK-derivation for the sequent ¬A∨B ⇒
A→ B .

Begin by writing the desired end-sequent at the bottom of the
derivation.

¬A ∨ B ⇒ A→ B

To find a logical rule that could give us this end-sequent, we look
at the logical connectives in the end-sequent: ¬, ∨, and →. We
only care at the moment about ∨ and → because they are main

CHAPTER 10. THE SEQUENT CALCULUS 157

operators of sentences in the end-sequent, while ¬ is inside the
scope of another connective, so we will take care of it later. Our
options for logical rules for the final inference are therefore the
∨L rule and the →R rule. We could pick either rule, really, but
let’s pick the →R rule (if for no reason other than it allows us
to put off splitting into two branches). According to the form of
→R inferences which can yield the lower sequent, this must look
like:

A,¬A ∨ B ⇒ B →R¬A ∨ B ⇒ A→ B

If we move ¬A ∨ B to the outside of the antecedent, we can
apply the ∨L rule. According to the schema, this must split into
two upper sequents as follows:

¬A,A ⇒ B B ,A ⇒ B ∨L¬A ∨ B ,A ⇒ B
XRA,¬A ∨ B ⇒ B →R¬A ∨ B ⇒ A→ B

Remember that we are trying to wind our way up to initial se-
quents; we seem to be pretty close! The right branch is just one
weakening and one exchange away from an initial sequent and
then it is done:

¬A,A ⇒ B

B ⇒ B WLA,B ⇒ B
XLB ,A ⇒ B ∨L¬A ∨ B ,A ⇒ B

XRA,¬A ∨ B ⇒ B →R¬A ∨ B ⇒ A→ B

Now looking at the left branch, the only logical connective
in any sentence is the ¬ symbol in the antecedent sentences, so
we’re looking at an instance of the ¬L rule.

CHAPTER 10. THE SEQUENT CALCULUS 158

A ⇒ B ,A ¬L¬A,A ⇒ B

B ⇒ B WLA,B ⇒ B
XLB ,A ⇒ B ∨L¬A ∨ B ,A ⇒ B

XRA,¬A ∨ B ⇒ B →R¬A ∨ B ⇒ A→ B

Similarly to how we finished off the right branch, we are just
one weakening and one exchange away from finishing off this
left branch as well.

A ⇒ A WRA ⇒ A,B
XRA ⇒ B ,A ¬L¬A,A ⇒ B

B ⇒ B WLA,B ⇒ B
XLB ,A ⇒ B ∨L¬A ∨ B ,A ⇒ B

XRA,¬A ∨ B ⇒ B →R¬A ∨ B ⇒ A→ B

Example 10.7. Give an LK-derivation of the sequent ¬A ∨
¬B ⇒ ¬(A ∧ B)

Using the techniques from above, we start by writing the de-
sired end-sequent at the bottom.

¬A ∨ ¬B ⇒ ¬(A ∧ B)

The available main connectives of sentences in the end-sequent
are the ∨ symbol and the ¬ symbol. It would work to apply either
the ∨L or the ¬R rule here, but we start with the ¬R rule because
it avoids splitting up into two branches for a moment:

A ∧ B ,¬A ∨ ¬B ⇒ ¬R¬A ∨ ¬B ⇒ ¬(A ∧ B)

Now we have a choice of whether to look at the ∧L or the ∨L
rule. Let’s see what happens when we apply the ∧L rule: we have
a choice to start with either the sequent A,¬A ∨ B ⇒ or the
sequent B ,¬A ∨ B ⇒ . Since the derivation is symmetric with
regards to A and B , let’s go with the former:

CHAPTER 10. THE SEQUENT CALCULUS 159

A,¬A ∨ ¬B ⇒ ∧LA ∧ B ,¬A ∨ ¬B ⇒ ¬R¬A ∨ ¬B ⇒ ¬(A ∧ B)

Continuing to fill in the derivation, we see that we run into a
problem:

A ⇒ A ¬L¬A,A ⇒
?A ⇒ B ¬L¬B ,A ⇒ ∨L¬A ∨ ¬B ,A ⇒

XLA,¬A ∨ ¬B ⇒ ∧LA ∧ B ,¬A ∨ ¬B ⇒ ¬R¬A ∨ ¬B ⇒ ¬(A ∧ B)

The top of the right branch cannot be reduced any further, and
it cannot be brought by way of structural inferences to an initial
sequent, so this is not the right path to take. So clearly, it was a
mistake to apply the ∧L rule above. Going back to what we had
before and carrying out the ∨L rule instead, we get

¬A,A ∧ B ⇒ ¬B ,A ∧ B ⇒ ∨L¬A ∨ ¬B ,A ∧ B ⇒
XLA ∧ B ,¬A ∨ ¬B ⇒ ¬R¬A ∨ ¬B ⇒ ¬(A ∧ B)

Completing each branch as we’ve done before, we get

A ⇒ A ∧LA ∧ B ⇒ A ¬L¬A,A ∧ B ⇒

B ⇒ B ∧LA ∧ B ⇒ B ¬L¬B ,A ∧ B ⇒ ∨L¬A ∨ ¬B ,A ∧ B ⇒
XLA ∧ B ,¬A ∨ ¬B ⇒ ¬R¬A ∨ ¬B ⇒ ¬(A ∧ B)

(We could have carried out the ∧ rules lower than the ¬ rules in
these steps and still obtained a correct derivation).

CHAPTER 10. THE SEQUENT CALCULUS 160

Example 10.8. So far we haven’t used the contraction rule, but
it is sometimes required. Here’s an example where that happens.
Suppose we want to prove ⇒ A∨¬A. Applying ∨R backwards
would give us one of these two derivations:

⇒ A ∨R⇒ A ∨ ¬A

A ⇒ ¬R⇒ ¬A ∨R⇒ A ∨ ¬A

Neither of these of course ends in an initial sequent. The trick
is to realize that the contraction rule allows us to combine two
copies of a sentence into one—and when we’re searching for a
proof, i.e., going from bottom to top, we can keep a copy of
A ∨ ¬A in the premise, e.g.,

⇒ A ∨ ¬A,A ∨R⇒ A ∨ ¬A,A ∨ ¬A
CR⇒ A ∨ ¬A

Now we can apply ∨R a second time, and also get ¬A, which
leads to a complete derivation.

A ⇒ A ¬R⇒ A,¬A ∨R⇒ A,A ∨ ¬A
XR⇒ A ∨ ¬A,A ∨R⇒ A ∨ ¬A,A ∨ ¬A

CR⇒ A ∨ ¬A

10.7 Derivations with Quantifiers

Example 10.9. Give an LK-derivation of the sequent
∃x ¬A(x) ⇒ ¬∀x A(x).

When dealing with quantifiers, we have to make sure not to
violate the eigenvariable condition, and sometimes this requires
us to play around with the order of carrying out certain infer-
ences. In general, it helps to try and take care of rules subject

CHAPTER 10. THE SEQUENT CALCULUS 161

to the eigenvariable condition first (they will be lower down in
the finished proof). Also, it is a good idea to try and look ahead
and try to guess what the initial sequent might look like. In our
case, it will have to be something like A(a) ⇒ A(a). That means
that when we are “reversing” the quantifier rules, we will have to
pick the same term—what we will call a—for both the ∀ and the
∃ rule. If we picked different terms for each rule, we would end
up with something like A(a) ⇒ A(b), which, of course, is not
derivable.

Starting as usual, we write

∃x ¬A(x) ⇒ ¬∀x A(x)

We could either carry out the ∃L rule or the ¬R rule. Since the
∃L rule is subject to the eigenvariable condition, it’s a good idea
to take care of it sooner rather than later, so we’ll do that one
first.

¬A(a) ⇒ ¬∀x A(x)
∃L∃x ¬A(x) ⇒ ¬∀x A(x)

Applying the ¬L and ¬R rules backwards, we get

∀x A(x) ⇒ A(a)
¬L¬A(a),∀x A(x) ⇒

XL∀x A(x),¬A(a) ⇒
¬R¬A(a) ⇒ ¬∀xA(x)
∃L∃x¬A(x) ⇒ ¬∀xA(x)

At this point, our only option is to carry out the ∀L rule. Since
this rule is not subject to the eigenvariable restriction, we’re in the
clear. Remember, we want to try and obtain an initial sequent (of
the form A(a) ⇒ A(a)), so we should choose a as our argument
for A when we apply the rule.

CHAPTER 10. THE SEQUENT CALCULUS 162

A(a) ⇒ A(a)
∀L∀x A(x) ⇒ A(a)
¬L¬A(a),∀x A(x) ⇒

XL∀x A(x),¬A(a) ⇒
¬R¬A(a) ⇒ ¬∀x A(x)
∃L∃x ¬A(x) ⇒ ¬∀x A(x)

It is important, especially when dealing with quantifiers, to dou-
ble check at this point that the eigenvariable condition has not
been violated. Since the only rule we applied that is subject to
the eigenvariable condition was ∃L, and the eigenvariable a does
not occur in its lower sequent (the end-sequent), this is a correct
derivation.

10.8 Proof-Theoretic Notions

Just as we’ve defined a number of important semantic notions
(validity, entailment, satisfiabilty), we now define corresponding
proof-theoretic notions. These are not defined by appeal to satisfac-
tion of sentences in structures, but by appeal to the derivability
or non-derivability of certain sequents. It was an important dis-
covery that these notions coincide. That they do is the content
of the soundness and completeness theorem.

Definition 10.10 (Theorems). A sentenceA is a theorem if there
is a derivation in LK of the sequent ⇒ A. We write ⊢ A if A is
a theorem and ⊬ A if it is not.

Definition 10.11 (Derivability). A sentence A is derivable from
a set of sentences 𝛤 , 𝛤 ⊢ A, iff there is a finite subset 𝛤0 ⊆ 𝛤

and a sequence 𝛤 ′
0 of the sentences in 𝛤0 such that LK derives

𝛤 ′
0 ⇒ A. If A is not derivable from 𝛤 we write 𝛤 ⊬ A.

Because of the contraction, weakening, and exchange rules,
the order and number of sentences in 𝛤 ′

0 does not matter: if a

CHAPTER 10. THE SEQUENT CALCULUS 163

sequent 𝛤 ′
0 ⇒ A is derivable, then so is 𝛤 ′′

0 ⇒ A for any 𝛤 ′′
0

that contains the same sentences as 𝛤 ′
0 . For instance, if 𝛤0 =

{B ,C } then both 𝛤 ′
0 = ⟨B ,B ,C ⟩ and 𝛤 ′′

0 = ⟨C ,C ,B⟩ are sequences
containing just the sentences in 𝛤0. If a sequent containing one
is derivable, so is the other, e.g.:

B ,B ,C ⇒ A
CLB ,C ⇒ A
XLC ,B ⇒ A
WLC ,C ,B ⇒ A

From now on we’ll say that if 𝛤0 is a finite set of sentences then
𝛤0 ⇒ A is any sequent where the antecedent is a sequence of
sentences in 𝛤0 and tacitly include contractions, exchanges, and
weakenings if necessary.

Definition 10.12 (Consistency). A set of sentences 𝛤 is incon-
sistent iff there is a finite subset 𝛤0 ⊆ 𝛤 such that LK derives
𝛤0 ⇒ . If 𝛤 is not inconsistent, i.e., if for every finite 𝛤0 ⊆ 𝛤 ,
LK does not derive 𝛤0 ⇒ , we say it is consistent.

Proposition 10.13 (Reflexivity). If A ∈ 𝛤 , then 𝛤 ⊢ A.

Proof. The initial sequent A ⇒ A is derivable, and {A} ⊆ 𝛤 . □

Proposition 10.14 (Monotony). If 𝛤 ⊆ 𝛥 and 𝛤 ⊢ A, then 𝛥 ⊢ A.

Proof. Suppose 𝛤 ⊢ A, i.e., there is a finite 𝛤0 ⊆ 𝛤 such that
𝛤0 ⇒ A is derivable. Since 𝛤 ⊆ 𝛥, then 𝛤0 is also a finite subset
of 𝛥. The derivation of 𝛤0 ⇒ A thus also shows 𝛥 ⊢ A. □

CHAPTER 10. THE SEQUENT CALCULUS 164

Proposition 10.15 (Transitivity). If 𝛤 ⊢ A and {A} ∪ 𝛥 ⊢ B,
then 𝛤 ∪ 𝛥 ⊢ B.

Proof. If 𝛤 ⊢ A, there is a finite 𝛤0 ⊆ 𝛤 and a derivation 𝜋0 of
𝛤0 ⇒ A. If {A} ∪ 𝛥 ⊢ B , then for some finite subset 𝛥0 ⊆ 𝛥,
there is a derivation 𝜋1 of A, 𝛥0 ⇒ B . Consider the following
derivation:

𝜋0

𝛤0 ⇒ A

𝜋1

A, 𝛥0 ⇒ B
Cut

𝛤0, 𝛥0 ⇒ B

Since 𝛤0 ∪ 𝛥0 ⊆ 𝛤 ∪ 𝛥, this shows 𝛤 ∪ 𝛥 ⊢ B . □

Note that this means that in particular if 𝛤 ⊢ A and A ⊢ B ,
then 𝛤 ⊢ B . It follows also that if A1, . . . ,An ⊢ B and 𝛤 ⊢ Ai for
each i , then 𝛤 ⊢ B .

Proposition 10.16. 𝛤 is inconsistent iff 𝛤 ⊢ A for every sentence A.

Proof. Exercise. □

Proposition 10.17 (Compactness). 1. If 𝛤 ⊢ A then there is
a finite subset 𝛤0 ⊆ 𝛤 such that 𝛤0 ⊢ A.

2. If every finite subset of 𝛤 is consistent, then 𝛤 is consistent.

Proof. 1. If 𝛤 ⊢ A, then there is a finite subset 𝛤0 ⊆ 𝛤 such
that the sequent 𝛤0 ⇒ A has a derivation. Consequently,
𝛤0 ⊢ A.

2. If 𝛤 is inconsistent, there is a finite subset 𝛤0 ⊆ 𝛤 such that
LK derives 𝛤0 ⇒ . But then 𝛤0 is a finite subset of 𝛤 that
is inconsistent. □

CHAPTER 10. THE SEQUENT CALCULUS 165

10.9 Derivability and Consistency

We will now establish a number of properties of the derivability
relation. They are independently interesting, but each will play
a role in the proof of the completeness theorem.

Proposition 10.18. If 𝛤 ⊢ A and 𝛤 ∪ {A} is inconsistent, then 𝛤 is
inconsistent.

Proof. There are finite 𝛤0 and 𝛤1 ⊆ 𝛤 such that LK derives 𝛤0 ⇒
A and A,𝛤1 ⇒ . Let the LK-derivation of 𝛤0 ⇒ A be 𝜋0 and
the LK-derivation of 𝛤1,A ⇒ be 𝜋1. We can then derive

𝜋0

𝛤0 ⇒ A

𝜋1

A,𝛤1 ⇒
Cut

𝛤0,𝛤1 ⇒

Since 𝛤0 ⊆ 𝛤 and 𝛤1 ⊆ 𝛤 , 𝛤0 ∪ 𝛤1 ⊆ 𝛤 , hence 𝛤 is inconsis-
tent. □

Proposition 10.19. 𝛤 ⊢ A iff 𝛤 ∪ {¬A} is inconsistent.

Proof. First suppose 𝛤 ⊢ A, i.e., there is a derivation 𝜋0 of 𝛤 ⇒ A.
By adding a ¬L rule, we obtain a derivation of ¬A,𝛤 ⇒ , i.e.,
𝛤 ∪ {¬A} is inconsistent.

If 𝛤∪{¬A} is inconsistent, there is a derivation 𝜋1 of ¬A,𝛤 ⇒
. The following is a derivation of 𝛤 ⇒ A:

A ⇒ A ¬R⇒ A,¬A

𝜋1

¬A,𝛤 ⇒
Cut

𝛤 ⇒ A □

CHAPTER 10. THE SEQUENT CALCULUS 166

Proposition 10.20. If 𝛤 ⊢ A and ¬A ∈ 𝛤 , then 𝛤 is inconsistent.

Proof. Suppose 𝛤 ⊢ A and ¬A ∈ 𝛤 . Then there is a derivation 𝜋

of a sequent 𝛤0 ⇒ A. The sequent ¬A,𝛤0 ⇒ is also derivable:

𝜋

𝛤0 ⇒ A

A ⇒ A ¬L¬A,A ⇒
XLA,¬A ⇒
Cut

𝛤,¬A ⇒

Since ¬A ∈ 𝛤 and 𝛤0 ⊆ 𝛤 , this shows that 𝛤 is inconsistent. □

Proposition 10.21. If 𝛤 ∪ {A} and 𝛤 ∪ {¬A} are both inconsistent,
then 𝛤 is inconsistent.

Proof. There are finite sets 𝛤0 ⊆ 𝛤 and 𝛤1 ⊆ 𝛤 and LK-
derivations 𝜋0 and 𝜋1 of A,𝛤0 ⇒ and ¬A,𝛤1 ⇒ , respectively.
We can then derive

𝜋0

A,𝛤0 ⇒ ¬R
𝛤0 ⇒ ¬A

𝜋1

¬A,𝛤1 ⇒
Cut

𝛤0,𝛤1 ⇒

Since 𝛤0 ⊆ 𝛤 and 𝛤1 ⊆ 𝛤 , 𝛤0 ∪𝛤1 ⊆ 𝛤 . Hence 𝛤 is inconsistent.□

10.10 Derivability and the Propositional
Connectives

We establish that the derivability relation ⊢ of the sequent calcu-
lus is strong enough to establish some basic facts involving the
propositional connectives, such as thatA∧B ⊢ A andA,A→B ⊢ B
(modus ponens). These facts are needed for the proof of the com-
pleteness theorem.

CHAPTER 10. THE SEQUENT CALCULUS 167

Proposition 10.22. 1. Both A ∧ B ⊢ A and A ∧ B ⊢ B.

2. A,B ⊢ A ∧ B.

Proof. 1. Both sequents A ∧ B ⇒ A and A ∧ B ⇒ B are deriv-
able:

A ⇒ A ∧LA ∧ B ⇒ A
B ⇒ B ∧LA ∧ B ⇒ B

2. Here is a derivation of the sequent A,B ⇒ A ∧ B :

A ⇒ A B ⇒ B ∧RA,B ⇒ A ∧ B □

Proposition 10.23. 1. A ∨ B ,¬A,¬B is inconsistent.

2. Both A ⊢ A ∨ B and B ⊢ A ∨ B.

Proof. 1. We give a derivation of the sequent A∨B ,¬A,¬B ⇒:

A ⇒ A ¬L¬A,A ⇒
A,¬A,¬B ⇒

B ⇒ B ¬L¬B ,B ⇒
B ,¬A,¬B ⇒ ∨LA ∨ B ,¬A,¬B ⇒

(Recall that double inference lines indicate several weaken-
ing, contraction, and exchange inferences.)

2. Both sequents A ⇒ A∨B and B ⇒ A∨B have derivations:

A ⇒ A ∨RA ⇒ A ∨ B
B ⇒ B ∨RB ⇒ A ∨ B □

CHAPTER 10. THE SEQUENT CALCULUS 168

Proposition 10.24. 1. A,A→ B ⊢ B.

2. Both ¬A ⊢ A→ B and B ⊢ A→ B.

Proof. 1. The sequent A→ B ,A ⇒ B is derivable:

A ⇒ A B ⇒ B →LA→ B ,A ⇒ B

2. Both sequents ¬A ⇒ A→B and B ⇒ A→B are derivable:

A ⇒ A ¬L¬A,A ⇒
XLA,¬A ⇒

WRA,¬A ⇒ B →R¬A ⇒ A→ B

B ⇒ B WLA,B ⇒ B →RB ⇒ A→ B □

10.11 Derivability and the Quantifiers

The completeness theorem also requires that the sequent calculus
rules rules yield the facts about ⊢ established in this section.

Theorem 10.25. If c is a constant not occurring in 𝛤 or A(x) and
𝛤 ⊢ A(c), then 𝛤 ⊢ ∀x A(x).

Proof. Let 𝜋0 be an LK-derivation of 𝛤0 ⇒ A(c) for some finite
𝛤0 ⊆ 𝛤 . By adding a ∀R inference, we obtain a derivation of
𝛤0 ⇒ ∀x A(x), since c does not occur in 𝛤 or A(x) and thus the
eigenvariable condition is satisfied. □

Proposition 10.26. 1. A(t) ⊢ ∃x A(x).

2. ∀x A(x) ⊢ A(t).

Proof. 1. The sequent A(t) ⇒ ∃x A(x) is derivable:

CHAPTER 10. THE SEQUENT CALCULUS 169

A(t) ⇒ A(t)
∃R

A(t) ⇒ ∃x A(x)

2. The sequent ∀x A(x) ⇒ A(t) is derivable:

A(t) ⇒ A(t)
∀L∀x A(x) ⇒ A(t) □

10.12 Soundness

A derivation system, such as the sequent calculus, is sound if
it cannot derive things that do not actually hold. Soundness is
thus a kind of guaranteed safety property for derivation systems.
Depending on which proof theoretic property is in question, we
would like to know for instance, that

1. every derivable A is valid;

2. if a sentence is derivable from some others, it is also a
consequence of them;

3. if a set of sentences is inconsistent, it is unsatisfiable.

These are important properties of a derivation system. If any of
them do not hold, the derivation system is deficient—it would
derive too much. Consequently, establishing the soundness of a
derivation system is of the utmost importance.

Because all these proof-theoretic properties are defined via
derivability in the sequent calculus of certain sequents, prov-
ing (1)–(3) above requires proving something about the seman-
tic properties of derivable sequents. We will first define what it
means for a sequent to be valid, and then show that every deriv-
able sequent is valid. (1)–(3) then follow as corollaries from this
result.

CHAPTER 10. THE SEQUENT CALCULUS 170

Definition 10.27. A structure M satisfies a sequent 𝛤 ⇒ 𝛥 iff
either M ⊭ A for some A ∈ 𝛤 or M ⊨ A for some A ∈ 𝛥.

A sequent is valid iff every structure M satisfies it.

Theorem 10.28 (Soundness). If LK derives 𝛩 ⇒ 𝛯 , then 𝛩 ⇒
𝛯 is valid.

Proof. Let 𝜋 be a derivation of 𝛩 ⇒ 𝛯 . We proceed by induction
on the number of inferences n in 𝜋.

If the number of inferences is 0, then 𝜋 consists only of an
initial sequent. Every initial sequent A ⇒ A is obviously valid,
since for every M, either M ⊭ A or M ⊨ A.

If the number of inferences is greater than 0, we distinguish
cases according to the type of the lowermost inference. By induc-
tion hypothesis, we can assume that the premises of that inference
are valid, since the number of inferences in the derivation of any
premise is smaller than n.

First, we consider the possible inferences with only one
premise.

1. The last inference is a weakening. Then 𝛩 ⇒ 𝛯 is either
A,𝛤 ⇒ 𝛥 (if the last inference is WL) or 𝛤 ⇒ 𝛥,A (if it’s
WR), and the derivation ends in one of

𝛤 ⇒ 𝛥 WLA,𝛤 ⇒ 𝛥

𝛤 ⇒ 𝛥 WR
𝛤 ⇒ 𝛥,A

By induction hypothesis, 𝛤 ⇒ 𝛥 is valid, i.e., for every
structure M, either there is some C ∈ 𝛤 such that M ⊭ C
or there is some C ∈ 𝛥 such that M ⊨ C .

If M ⊭ C for someC ∈ 𝛤 , thenC ∈ 𝛩 as well since 𝛩 = A,𝛤 ,
and so M ⊭ C for some C ∈ 𝛩. Similarly, if M ⊨ C for some

CHAPTER 10. THE SEQUENT CALCULUS 171

C ∈ 𝛥, as C ∈ 𝛯 , M ⊨ C for some C ∈ 𝛯 . Consequently,
𝛩 ⇒ 𝛯 is valid.

2. The last inference is ¬L: Then the premise of the last in-
ference is 𝛤 ⇒ 𝛥,A and the conclusion is ¬A,𝛤 ⇒ 𝛥, i.e.,
the derivation ends in

𝛤 ⇒ 𝛥,A ¬L¬A,𝛤 ⇒ 𝛥

and 𝛩 = ¬A,𝛤 while 𝛯 = 𝛥.

The induction hypothesis tells us that 𝛤 ⇒ 𝛥,A is valid,
i.e., for every M, either (a) for some C ∈ 𝛤 , M ⊭ C , or (b)
for some C ∈ 𝛥, M ⊨ C , or (c) M ⊨ A. We want to show
that 𝛩 ⇒ 𝛯 is also valid. Let M be a structure. If (a) holds,
then there is C ∈ 𝛤 so that M ⊭ C , but C ∈ 𝛩 as well. If
(b) holds, there is C ∈ 𝛥 such that M ⊨ C , but C ∈ 𝛯 as
well. Finally, if M ⊨ A, then M ⊭ ¬A. Since ¬A ∈ 𝛩, there
is C ∈ 𝛩 such that M ⊭ C . Consequently, 𝛩 ⇒ 𝛯 is valid.

3. The last inference is ¬R: Exercise.

4. The last inference is ∧L: There are two variants: A∧B may
be inferred on the left from A or from B on the left side of
the premise. In the first case, the 𝜋 ends in

A,𝛤 ⇒ 𝛥 ∧LA ∧ B ,𝛤 ⇒ 𝛥

and 𝛩 = A ∧ B ,𝛤 while 𝛯 = 𝛥. Consider a structure M.
Since by induction hypothesis, A,𝛤 ⇒ 𝛥 is valid, (a) M ⊭ A,
(b) M ⊭ C for someC ∈ 𝛤 , or (c) M ⊨ C for someC ∈ 𝛥. In

CHAPTER 10. THE SEQUENT CALCULUS 172

case (a), M ⊭ A∧B , so there is C ∈ 𝛩 (namely, A∧B) such
that M ⊭ C . In case (b), there is C ∈ 𝛤 such that M ⊭ C ,
and C ∈ 𝛩 as well. In case (c), there is C ∈ 𝛥 such that
M ⊨ C , and C ∈ 𝛯 as well since 𝛯 = 𝛥. So in each case,
M satisfies A ∧B ,𝛤 ⇒ 𝛥. Since M was arbitrary, 𝛤 ⇒ 𝛥 is
valid. The case where A ∧ B is inferred from B is handled
the same, changing A to B .

5. The last inference is ∨R: There are two variants: A∨B may
be inferred on the right from A or from B on the right side
of the premise. In the first case, 𝜋 ends in

𝛤 ⇒ 𝛥,A ∨R
𝛤 ⇒ 𝛥,A ∨ B

Now 𝛩 = 𝛤 and 𝛯 = 𝛥,A ∨ B . Consider a structure M.
Since 𝛤 ⇒ 𝛥,A is valid, (a) M ⊨ A, (b) M ⊭ C for some
C ∈ 𝛤 , or (c) M ⊨ C for someC ∈ 𝛥. In case (a), M ⊨ A∨B .
In case (b), there is C ∈ 𝛤 such that M ⊭ C . In case (c),
there is C ∈ 𝛥 such that M ⊨ C . So in each case, M satisfies
𝛤 ⇒ 𝛥,A ∨ B , i.e., 𝛩 ⇒ 𝛯 . Since M was arbitrary, 𝛩 ⇒ 𝛯

is valid. The case where A∨B is inferred from B is handled
the same, changing A to B .

6. The last inference is →R: Then 𝜋 ends in

A,𝛤 ⇒ 𝛥,B →R
𝛤 ⇒ 𝛥,A→ B

Again, the induction hypothesis says that the premise is
valid; we want to show that the conclusion is valid as well.
Let M be arbitrary. Since A,𝛤 ⇒ 𝛥,B is valid, at least one

CHAPTER 10. THE SEQUENT CALCULUS 173

of the following cases obtains: (a) M ⊭ A, (b) M ⊨ B , (c)
M ⊭ C for some C ∈ 𝛤 , or (d) M ⊨ C for some C ∈ 𝛥. In
cases (a) and (b), M ⊨ A→B and so there is a C ∈ 𝛥,A→B
such that M ⊨ C . In case (c), for some C ∈ 𝛤 , M ⊭ C . In
case (d), for some C ∈ 𝛥, M ⊨ C . In each case, M satisfies
𝛤 ⇒ 𝛥,A→ B . Since M was arbitrary, 𝛤 ⇒ 𝛥,A→ B is
valid.

7. The last inference is ∀L: Then there is a formula A(x) and
a closed term t such that 𝜋 ends in

A(t),𝛤 ⇒ 𝛥
∀L∀x A(x),𝛤 ⇒ 𝛥

We want to show that the conclusion ∀x A(x),𝛤 ⇒ 𝛥 is
valid. Consider a structure M. Since the premise A(t),𝛤 ⇒
𝛥 is valid, (a) M ⊭ A(t), (b) M ⊭ C for some C ∈ 𝛤 , or
(c) M ⊨ C for some C ∈ 𝛥. In case (a), by Proposition 7.30,
if M ⊨ ∀x A(x), then M ⊨ A(t). Since M ⊭ A(t), M ⊭

∀x A(x) . In case (b) and (c), M also satisfies ∀x A(x),𝛤 ⇒
𝛥. Since M was arbitrary, ∀x A(x),𝛤 ⇒ 𝛥 is valid.

8. The last inference is ∃R: Exercise.

9. The last inference is ∀R: Then there is a formula A(x) and
a constant symbol a such that 𝜋 ends in

𝛤 ⇒ 𝛥,A(a)
∀R

𝛤 ⇒ 𝛥,∀x A(x)

where the eigenvariable condition is satisfied, i.e., a does
not occur in A(x), 𝛤 , or 𝛥. By induction hypothesis, the

CHAPTER 10. THE SEQUENT CALCULUS 174

premise of the last inference is valid. We have to show that
the conclusion is valid as well, i.e., that for any structure M,
(a) M ⊨ ∀x A(x), (b) M ⊭ C for some C ∈ 𝛤 , or (c) M ⊨ C
for some C ∈ 𝛥.

Suppose M is an arbitrary structure. If (b) or (c) holds, we
are done, so suppose neither holds: for all C ∈ 𝛤 , M ⊨ C ,
and for all C ∈ 𝛥, M ⊭ C . We have to show that (a) holds,
i.e., M ⊨ ∀x A(x). By Proposition 7.18, if suffices to show
that M,s ⊨ A(x) for all variable assignments s . So let s be an
arbitrary variable assignment. Consider the structure M′

which is just like M except aM′
= s (x). By Corollary 7.20,

for any C ∈ 𝛤 , M′ ⊨ C since a does not occur in 𝛤 , and
for any C ∈ 𝛥, M′ ⊭ C . But the premise is valid, so M′ ⊨
A(a). By Proposition 7.17, M′,s ⊨ A(a), since A(a) is a
sentence. Now s ∼x s with s (x) = ValM

′
s (a), since we’ve

defined M′ in just this way. So Proposition 7.22 applies,
and we get M′,s ⊨ A(x). Since a does not occur in A(x),
by Proposition 7.19, M,s ⊨ A(x). Since s was arbitrary,
we’ve completed the proof that M,s ⊨ A(x) for all variable
assignments.

10. The last inference is ∃L: Exercise.

Now let’s consider the possible inferences with two premises.

1. The last inference is a cut: then 𝜋 ends in

𝛤 ⇒ 𝛥,A A,𝛱 ⇒ 𝛬
Cut

𝛤,𝛱 ⇒ 𝛥,𝛬

Let M be a structure. By induction hypothesis, the premises
are valid, so M satisfies both premises. We distinguish two
cases: (a) M ⊭ A and (b) M ⊨ A. In case (a), in order for M
to satisfy the left premise, it must satisfy 𝛤 ⇒ 𝛥. But then

CHAPTER 10. THE SEQUENT CALCULUS 175

it also satisfies the conclusion. In case (b), in order for M
to satisfy the right premise, it must satisfy 𝛱 \ 𝛬. Again,
M satisfies the conclusion.

2. The last inference is ∧R. Then 𝜋 ends in

𝛤 ⇒ 𝛥,A 𝛤 ⇒ 𝛥,B ∧R
𝛤 ⇒ 𝛥,A ∧ B

Consider a structure M. If M satisfies 𝛤 ⇒ 𝛥, we are
done. So suppose it doesn’t. Since 𝛤 ⇒ 𝛥,A is valid by
induction hypothesis, M ⊨ A. Similarly, since 𝛤 ⇒ 𝛥,B is
valid, M ⊨ B . But then M ⊨ A ∧ B .

3. The last inference is ∨L: Exercise.

4. The last inference is →L. Then 𝜋 ends in

𝛤 ⇒ 𝛥,A B ,𝛱 ⇒ 𝛬 →LA→ B ,𝛤,𝛱 ⇒ 𝛥,𝛬

Again, consider a structure M and suppose M doesn’t sat-
isfy 𝛤,𝛱 ⇒ 𝛥,𝛬. We have to show that M ⊭ A→ B . If M
doesn’t satisfy 𝛤,𝛱 ⇒ 𝛥,𝛬, it satisfies neither 𝛤 ⇒ 𝛥 nor
𝛱 ⇒ 𝛬. Since, 𝛤 ⇒ 𝛥,A is valid, we have M ⊨ A. Since
B ,𝛱 ⇒ 𝛬 is valid, we have M ⊭ B . But then M ⊭ A→ B ,
which is what we wanted to show. □

Corollary 10.29. If ⊢ A then A is valid.

CHAPTER 10. THE SEQUENT CALCULUS 176

Corollary 10.30. If 𝛤 ⊢ A then 𝛤 ⊨ A.

Proof. If 𝛤 ⊢ A then for some finite subset 𝛤0 ⊆ 𝛤 , there is
a derivation of 𝛤0 ⇒ A. By Theorem 10.28, every structure M
either makes some B ∈ 𝛤0 false or makes A true. Hence, if M ⊨ 𝛤
then also M ⊨ A. □

Corollary 10.31. If 𝛤 is satisfiable, then it is consistent.

Proof. We prove the contrapositive. Suppose that 𝛤 is not consis-
tent. Then there is a finite 𝛤0 ⊆ 𝛤 and a derivation of 𝛤0 ⇒ . By
Theorem 10.28, 𝛤0 ⇒ is valid. In other words, for every struc-
ture M, there is C ∈ 𝛤0 so that M ⊭ C , and since 𝛤0 ⊆ 𝛤 , that C
is also in 𝛤 . Thus, no M satisfies 𝛤 , and 𝛤 is not satisfiable. □

10.13 Derivations with Identity predicate

Derivations with identity predicate require additional initial se-
quents and inference rules.

Definition 10.32 (Initial sequents for =). If t is a closed term,
then ⇒ t = t is an initial sequent.

The rules for = are (t1 and t2 are closed terms):

t1 = t2,𝛤 ⇒ 𝛥,A(t1)
=

t1 = t2,𝛤 ⇒ 𝛥,A(t2)
t1 = t2,𝛤 ⇒ 𝛥,A(t2)

=
t1 = t2,𝛤 ⇒ 𝛥,A(t1)

Example 10.33. If s and t are closed terms, then s = t ,A(s) ⊢
A(t):

A(s) ⇒ A(s)
WL

s = t ,A(s) ⇒ A(s)
=

s = t ,A(s) ⇒ A(t)

CHAPTER 10. THE SEQUENT CALCULUS 177

This may be familiar as the principle of substitutability of iden-
ticals, or Leibniz’ Law.

LK proves that = is symmetric and transitive:

⇒ t1 = t1 WLt1 = t2 ⇒ t1 = t1 =
t1 = t2 ⇒ t2 = t1

t1 = t2 ⇒ t1 = t2 WLt2 = t3,t1 = t2 ⇒ t1 = t2 =
t2 = t3,t1 = t2 ⇒ t1 = t3 XLt1 = t2,t2 = t3 ⇒ t1 = t3

In the derivation on the left, the formula x = t1 is our A(x). On
the right, we take A(x) to be t1 = x .

10.14 Soundness with Identity predicate

Proposition 10.34. LK with initial sequents and rules for identity
is sound.

Proof. Initial sequents of the form ⇒ t = t are valid, since for
every structure M, M ⊨ t = t . (Note that we assume the term t to
be closed, i.e., it contains no variables, so variable assignments
are irrelevant).

Suppose the last inference in a derivation is =. Then the
premise is t1 = t2,𝛤 ⇒ 𝛥,A(t1) and the conclusion is t1 = t2,𝛤 ⇒
𝛥,A(t2). Consider a structure M. We need to show that the
conclusion is valid, i.e., if M ⊨ t1 = t2 and M ⊨ 𝛤 , then either
M ⊨ C for some C ∈ 𝛥 or M ⊨ A(t2).

By induction hypothesis, the premise is valid. This means
that if M ⊨ t1 = t2 and M ⊨ 𝛤 either (a) for some C ∈ 𝛥, M ⊨
C or (b) M ⊨ A(t1). In case (a) we are done. Consider case
(b). Let s be a variable assignment with s (x) = ValM (t1). By
Proposition 7.17, M,s ⊨ A(t1). Since s ∼x s , by Proposition 7.22,
M,s ⊨ A(x). since M ⊨ t1 = t2, we have ValM (t1) = ValM (t2), and
hence s (x) = ValM (t2). By applying Proposition 7.22 again, we
also have M,s ⊨ A(t2). By Proposition 7.17, M ⊨ A(t2). □

CHAPTER 10. THE SEQUENT CALCULUS 178

Summary

Proof systems provide purely syntactic methods for characteriz-
ing consequence and compatibility between sentences. The se-
quent calculus is one such proof system. A derivation in it
consists of a tree of sequents (a sequent 𝛤 ⇒ 𝛥 consists of two
sequences of formulas separated by ⇒). The topmost sequents
in a derivation are initial sequents of the form A ⇒ A. All other
sequents, for the derivation to be correct, must be correctly jus-
tified by one of a number of inference rules. These come in
pairs; a rule for operating on the left and on the right side of
a sequent for each connective and quantifier. For instance, if a
sequent 𝛤 ⇒ 𝛥,A→B is justified by the →R rule, the preceding
sequent (the premise) must be A,𝛤 ⇒ 𝛥,B . Some rules also
allow the order or number of sentences in a sequent to be manip-
ulated, e.g., the XR rule allows two formulas on the right side of
a sequent to be switched.

If there is a derivation of the sequent ⇒ A, we say A is a
theorem and write ⊢ A. If there is a derivation of 𝛤0 ⇒ A where
every B in 𝛤0 is in 𝛤 , we say A is derivable from 𝛤 and write
𝛤 ⊢ A. If there is a derivation of 𝛤0 ⇒ where every B in 𝛤0

is in 𝛤 , we say 𝛤 is inconsistent, otherwise consistent. These
notions are interrelated, e.g., 𝛤 ⊢ A iff 𝛤 ∪ {¬A} is inconsistent.
They are also related to the corresponding semantic notions, e.g.,
if 𝛤 ⊢ A then 𝛤 ⊨ A. This property of proof systems—what can
be derived from 𝛤 is guaranteed to be entailed by 𝛤—is called
soundness. The soundness theorem is proved by induction on
the length of derivations, showing that each individual inference
preserves validity of the conclusion sequent provided the premise
sequents are valid.

Problems

Problem 10.1. Give derivations of the following sequents:

1. A ∧ (B ∧C) ⇒ (A ∧ B) ∧C .

CHAPTER 10. THE SEQUENT CALCULUS 179

2. A ∨ (B ∨C) ⇒ (A ∨ B) ∨C .

3. A→ (B →C) ⇒ B → (A→C).

4. A ⇒ ¬¬A.

Problem 10.2. Give derivations of the following sequents:

1. (A ∨ B) →C ⇒ A→C .

2. (A→C) ∧ (B →C) ⇒ (A ∨ B) →C .

3. ⇒ ¬(A ∧ ¬A).

4. B → A ⇒ ¬A→¬B .

5. ⇒ (A→¬A) → ¬A.

6. ⇒ ¬(A→ B) → ¬B .

7. A→C ⇒ ¬(A ∧ ¬C).

8. A ∧ ¬C ⇒ ¬(A→C).

9. A ∨ B ,¬B ⇒ A.

10. ¬A ∨ ¬B ⇒ ¬(A ∧ B).

11. ⇒ (¬A ∧ ¬B) → ¬(A ∨ B).

12. ⇒ ¬(A ∨ B) → (¬A ∧ ¬B).

Problem 10.3. Give derivations of the following sequents:

1. ¬(A→ B) ⇒ A.

2. ¬(A ∧ B) ⇒ ¬A ∨ ¬B .

3. A→ B ⇒ ¬A ∨ B .

4. ⇒ ¬¬A→ A.

5. A→ B ,¬A→ B ⇒ B .

CHAPTER 10. THE SEQUENT CALCULUS 180

6. (A ∧ B) →C ⇒ (A→C) ∨ (B →C).

7. (A→ B) → A ⇒ A.

8. ⇒ (A→ B) ∨ (B →C).

(These all require the CR rule.)

Problem 10.4. Give derivations of the following sequents:

1. ⇒ (∀x A(x) ∧ ∀y B (y)) → ∀z (A(z) ∧ B (z)).

2. ⇒ (∃x A(x) ∨ ∃y B (y)) → ∃z (A(z) ∨ B (z)).

3. ∀x (A(x) → B) ⇒ ∃y A(y) → B .

4. ∀x ¬A(x) ⇒ ¬∃x A(x).

5. ⇒ ¬∃x A(x) → ∀x ¬A(x).

6. ⇒ ¬∃x ∀y ((A(x ,y) → ¬A(y ,y)) ∧ (¬A(y ,y) → A(x ,y))).

Problem 10.5. Give derivations of the following sequents:

1. ⇒ ¬∀x A(x) → ∃x ¬A(x).

2. (∀x A(x) → B) ⇒ ∃y (A(y) → B).

3. ⇒ ∃x (A(x) → ∀y A(y)).

(These all require the CR rule.)

Problem 10.6. Prove Proposition 10.16

Problem 10.7. Prove that 𝛤 ⊢ ¬A iff 𝛤 ∪ {A} is inconsistent.

Problem 10.8. Complete the proof of Theorem 10.28.

Problem 10.9. Give derivations of the following sequents:

1. ⇒ ∀x ∀y ((x = y ∧ A(x)) → A(y))

2. ∃x A(x) ∧ ∀y ∀z ((A(y) ∧ A(z)) → y = z) ⇒ ∃x (A(x) ∧
∀y (A(y) → y = x))

CHAPTER 11

Natural
Deduction
11.1 Rules and Derivations

Natural deduction systems are meant to closely parallel the infor-
mal reasoning used in mathematical proof (hence it is somewhat
“natural”). Natural deduction proofs begin with assumptions. In-
ference rules are then applied. Assumptions are “discharged” by
the ¬Intro, →Intro, ∨Elim and ∃Elim inference rules, and the
label of the discharged assumption is placed beside the inference
for clarity.

Definition 11.1 (Assumption). An assumption is any sentence
in the topmost position of any branch.

Derivations in natural deduction are certain trees of sen-
tences, where the topmost sentences are assumptions, and if
a sentence stands below one, two, or three other sequents, it
must follow correctly by a rule of inference. The sentences at
the top of the inference are called the premises and the sentence
below the conclusion of the inference. The rules come in pairs, an
introduction and an elimination rule for each logical operator.
They introduce a logical operator in the conclusion or remove

181

CHAPTER 11. NATURAL DEDUCTION 182

a logical operator from a premise of the rule. Some of the rules
allow an assumption of a certain type to be discharged. To indi-
cate which assumption is discharged by which inference, we also
assign labels to both the assumption and the inference. This is
indicated by writing the assumption as “[A]n .”

It is customary to consider rules for all the logical operators
∧, ∨, →, ¬, and ⊥, even if some of those are defined.

11.2 Propositional Rules

Rules for ∧

A B ∧IntroA ∧ B

A ∧ B ∧ElimA

A ∧ B ∧ElimB

Rules for ∨

A ∨IntroA ∨ B
B ∨IntroA ∨ B A ∨ B

[A]n

C

[B]n

Cn ∨ElimC

Rules for →

[A]n

Bn →IntroA→ B

A→ B A →ElimB

Rules for ¬

CHAPTER 11. NATURAL DEDUCTION 183

[A]n

⊥n ¬Intro¬A

¬A A ¬Elim⊥

Rules for ⊥

⊥ ⊥IA

[¬A]n

⊥n ⊥CA

Note that ¬Intro and ⊥C are very similar: The difference is
that ¬Intro derives a negated sentence ¬A but ⊥C a positive sen-
tence A.

Whenever a rule indicates that some assumption may be dis-
charged, we take this to be a permission, but not a requirement.
E.g., in the →Intro rule, we may discharge any number of assump-
tions of the form A in the derivation of the premise B , including
zero.

11.3 Quantifier Rules

Rules for ∀

A(a)
∀Intro∀x A(x)

∀x A(x)
∀ElimA(t)

In the rules for ∀, t is a closed term (a term that does not
contain any variables), and a is a constant symbol which does
not occur in the conclusion ∀x A(x), or in any assumption which

CHAPTER 11. NATURAL DEDUCTION 184

is undischarged in the derivation ending with the premise A(a).
We call a the eigenvariable of the ∀Intro inference.1

Rules for ∃

A(t)
∃Intro∃x A(x) ∃x A(x)

[A(a)]n

C
n ∃ElimC

Again, t is a closed term, and a is a constant which does
not occur in the premise ∃x A(x), in the conclusion C , or any
assumption which is undischarged in the derivations ending with
the two premises (other than the assumptions A(a)). We call a
the eigenvariable of the ∃Elim inference.

The condition that an eigenvariable neither occur in the
premises nor in any assumption that is undischarged in the
derivations leading to the premises for the ∀Intro or ∃Elim in-
ference is called the eigenvariable condition.

Recall the convention that when A is a formula with the vari-
able x free, we indicate this by writing A(x). In the same context,
A(t) then is short for A[t/x]. So we could also write the ∃Intro
rule as:

A[t/x]
∃Intro∃x A

Note that t may already occur in A, e.g., A might be P (t ,x).
Thus, inferring ∃x P (t ,x) from P (t ,t) is a correct application
of ∃Intro—you may “replace” one or more, and not necessar-
ily all, occurrences of t in the premise by the bound variable x .
However, the eigenvariable conditions in ∀Intro and ∃Elim re-
quire that the constant symbol a does not occur in A. So, you
cannot correctly infer ∀x P (a,x) from P (a,a) using ∀Intro.

1We use the term “eigenvariable” even though a in the above rule is a
constant. This has historical reasons.

CHAPTER 11. NATURAL DEDUCTION 185

In ∃Intro and ∀Elim there are no restrictions, and the term t
can be anything, so we do not have to worry about any conditions.
On the other hand, in the ∃Elim and ∀Intro rules, the eigenvari-
able condition requires that the constant symbol a does not occur
anywhere in the conclusion or in an undischarged assumption.
The condition is necessary to ensure that the system is sound,
i.e., only derives sentences from undischarged assumptions from
which they follow. Without this condition, the following would
be allowed:

∃x A(x)
[A(a)]1

*∀Intro∀x A(x)
∃Elim∀x A(x)

However, ∃x A(x) ⊭ ∀x A(x).
As the elimination rules for quantifiers only allow substituting

closed terms for variables, it follows that any formula that can be
derived from a set of sentences is itself a sentence.

11.4 Derivations

We’ve said what an assumption is, and we’ve given the rules of
inference. Derivations in natural deduction are inductively gen-
erated from these: each derivation either is an assumption on its
own, or consists of one, two, or three derivations followed by a
correct inference.

Definition 11.2 (Derivation). A derivation of a sentence A
from assumptions 𝛤 is a finite tree of sentences satisfying the
following conditions:

1. The topmost sentences of the tree are either in 𝛤 or are
discharged by an inference in the tree.

2. The bottommost sentence of the tree is A.

3. Every sentence in the tree except the sentence A at the bot-

CHAPTER 11. NATURAL DEDUCTION 186

tom is a premise of a correct application of an inference
rule whose conclusion stands directly below that sentence
in the tree.

We then say that A is the conclusion of the derivation and 𝛤 its
undischarged assumptions.

If a derivation of A from 𝛤 exists, we say that A is derivable
from 𝛤 , or in symbols: 𝛤 ⊢ A. If there is a derivation of A in
which every assumption is discharged, we write ⊢ A.

Example 11.3. Every assumption on its own is a derivation. So,
e.g., A by itself is a derivation, and so is B by itself. We can
obtain a new derivation from these by applying, say, the ∧Intro
rule,

A B ∧IntroA ∧ B

These rules are meant to be general: we can replace the A and B
in it with any sentences, e.g., by C and D . Then the conclusion
would be C ∧D , and so

C D ∧IntroC ∧D

is a correct derivation. Of course, we can also switch the assump-
tions, so that D plays the role of A and C that of B . Thus,

D C ∧IntroD ∧C

is also a correct derivation.
We can now apply another rule, say, →Intro, which allows

us to conclude a conditional and allows us to discharge any as-
sumption that is identical to the antecedent of that conditional.
So both of the following would be correct derivations:

[C]1 D
∧IntroC ∧D

1 →Intro
C → (C ∧D)

C [D]1
∧IntroC ∧D

1 →Intro
D → (C ∧D)

CHAPTER 11. NATURAL DEDUCTION 187

They show, respectively, that D ⊢ C→(C ∧D) and C ⊢ D→(C ∧
D).

Remember that discharging of assumptions is a permission,
not a requirement: we don’t have to discharge the assumptions.
In particular, we can apply a rule even if the assumptions are
not present in the derivation. For instance, the following is legal,
even though there is no assumption A to be discharged:

B
1 →IntroA→ B

11.5 Examples of Derivations

Example 11.4. Let’s give a derivation of the sentence (A∧B)→
A.

We begin by writing the desired conclusion at the bottom of
the derivation.

(A ∧ B) → A

Next, we need to figure out what kind of inference could result
in a sentence of this form. The main operator of the conclusion
is →, so we’ll try to arrive at the conclusion using the →Intro
rule. It is best to write down the assumptions involved and label
the inference rules as you progress, so it is easy to see whether
all assumptions have been discharged at the end of the proof.

[A ∧ B]1

A
1 →Intro(A ∧ B) → A

We now need to fill in the steps from the assumption A ∧ B
to A. Since we only have one connective to deal with, ∧, we must
use the ∧ elim rule. This gives us the following proof:

CHAPTER 11. NATURAL DEDUCTION 188

[A ∧ B]1
∧ElimA

1 →Intro(A ∧ B) → A

We now have a correct derivation of (A ∧ B) → A.

Example 11.5. Now let’s give a derivation of (¬A∨B)→(A→B).
We begin by writing the desired conclusion at the bottom of

the derivation.

(¬A ∨ B) → (A→ B)

To find a logical rule that could give us this conclusion, we look at
the logical connectives in the conclusion: ¬, ∨, and →. We only
care at the moment about the first occurrence of → because it is
the main operator of the sentence in the end-sequent, while ¬, ∨
and the second occurrence of → are inside the scope of another
connective, so we will take care of those later. We therefore start
with the →Intro rule. A correct application must look like this:

[¬A ∨ B]1

A→ B
1 →Intro(¬A ∨ B) → (A→ B)

This leaves us with two possibilities to continue. Either we can
keep working from the bottom up and look for another applica-
tion of the →Intro rule, or we can work from the top down and
apply a ∨Elim rule. Let us apply the latter. We will use the as-
sumption ¬A ∨ B as the leftmost premise of ∨Elim. For a valid
application of ∨Elim, the other two premises must be identical
to the conclusion A→ B , but each may be derived in turn from
another assumption, namely one of the two disjuncts of ¬A ∨ B .
So our derivation will look like this:

CHAPTER 11. NATURAL DEDUCTION 189

[¬A ∨ B]1

[¬A]2

A→ B

[B]2

A→ B
2 ∨ElimA→ B

1 →Intro(¬A ∨ B) → (A→ B)

In each of the two branches on the right, we want to derive
A→ B , which is best done using →Intro.

[¬A ∨ B]1

[¬A]2, [A]3

B
3 →IntroA→ B

[B]2, [A]4

B
4 →IntroA→ B

2 ∨ElimA→ B
1 →Intro(¬A ∨ B) → (A→ B)

For the two missing parts of the derivation, we need deriva-
tions of B from ¬A and A in the middle, and from A and B on the
left. Let’s take the former first. ¬A and A are the two premises of
¬Elim:

[¬A]2 [A]3
¬Elim⊥

B

By using ⊥I , we can obtain B as a conclusion and complete the
branch.

[¬A ∨ B]1

[¬A]2 [A]3
⊥Intro⊥ ⊥IB

3 →IntroA→ B

[B]2, [A]4

B
4 →IntroA→ B

2 ∨ElimA→ B
1 →Intro(¬A ∨ B) → (A→ B)

CHAPTER 11. NATURAL DEDUCTION 190

Let’s now look at the rightmost branch. Here it’s important
to realize that the definition of derivation allows assumptions to be
discharged but does not require them to be. In other words, if we
can derive B from one of the assumptions A and B without using
the other, that’s ok. And to derive B from B is trivial: B by itself
is such a derivation, and no inferences are needed. So we can
simply delete the assumption A.

[¬A ∨ B]1

[¬A]2 [A]3
¬Elim⊥ ⊥IB

3 →IntroA→ B
[B]2

→IntroA→ B
2 ∨ElimA→ B

1 →Intro(¬A ∨ B) → (A→ B)

Note that in the finished derivation, the rightmost →Intro infer-
ence does not actually discharge any assumptions.

Example 11.6. So far we have not needed the ⊥C rule. It is
special in that it allows us to discharge an assumption that isn’t a
sub-formula of the conclusion of the rule. It is closely related to
the ⊥I rule. In fact, the ⊥I rule is a special case of the ⊥C rule—
there is a logic called “intuitionistic logic” in which only ⊥I is
allowed. The ⊥C rule is a last resort when nothing else works. For
instance, suppose we want to derive A ∨ ¬A. Our usual strategy
would be to attempt to derive A∨¬A using ∨Intro. But this would
require us to derive either A or ¬A from no assumptions, and this
can’t be done. ⊥C to the rescue!

[¬(A ∨ ¬A)]1

⊥
1 ⊥CA ∨ ¬A

Now we’re looking for a derivation of ⊥ from ¬(A ∨ ¬A). Since
⊥ is the conclusion of ¬Elim we might try that:

CHAPTER 11. NATURAL DEDUCTION 191

[¬(A ∨ ¬A)]1

¬A

[¬(A ∨ ¬A)]1

A ¬Elim⊥
1 ⊥CA ∨ ¬A

Our strategy for finding a derivation of ¬A calls for an application
of ¬Intro:

[¬(A ∨ ¬A)]1, [A]2

⊥
2 ¬Intro¬A

[¬(A ∨ ¬A)]1

A ¬Elim⊥
1 ⊥CA ∨ ¬A

Here, we can get ⊥ easily by applying ¬Elim to the assumption
¬(A ∨ ¬A) and A ∨ ¬A which follows from our new assumption
A by ∨Intro:

[¬(A ∨ ¬A)]1
[A]2

∨IntroA ∨ ¬A
¬Elim⊥

2 ¬Intro¬A

[¬(A ∨ ¬A)]1

A ¬Elim⊥
1 ⊥CA ∨ ¬A

On the right side we use the same strategy, except we get A by ⊥C :

[¬(A ∨ ¬A)]1
[A]2

∨IntroA ∨ ¬A
¬Elim⊥

2 ¬Intro¬A

[¬(A ∨ ¬A)]1
[¬A]3

∨IntroA ∨ ¬A
¬Elim⊥

3 ⊥CA ¬Elim⊥
1 ⊥CA ∨ ¬A

CHAPTER 11. NATURAL DEDUCTION 192

11.6 Derivations with Quantifiers

Example 11.7. When dealing with quantifiers, we have to make
sure not to violate the eigenvariable condition, and sometimes
this requires us to play around with the order of carrying out
certain inferences. In general, it helps to try and take care of rules
subject to the eigenvariable condition first (they will be lower
down in the finished proof).

Let’s see how we’d give a derivation of the formula ∃x ¬A(x)→
¬∀x A(x). Starting as usual, we write

∃x ¬A(x) → ¬∀x A(x)

We start by writing down what it would take to justify that last
step using the →Intro rule.

[∃x ¬A(x)]1

¬∀x A(x)
1 →Intro∃x ¬A(x) → ¬∀x A(x)

Since there is no obvious rule to apply to ¬∀x A(x), we will pro-
ceed by setting up the derivation so we can use the ∃Elim rule.
Here we must pay attention to the eigenvariable condition, and
choose a constant that does not appear in ∃x A(x) or any assump-
tions that it depends on. (Since no constant symbols appear,
however, any choice will do fine.)

[∃x ¬A(x)]1

[¬A(a)]2

¬∀x A(x)
2 ∃Elim¬∀x A(x)

1 →Intro∃x ¬A(x) → ¬∀x A(x)

In order to derive ¬∀x A(x), we will attempt to use the ¬Intro
rule: this requires that we derive a contradiction, possibly using

CHAPTER 11. NATURAL DEDUCTION 193

∀x A(x) as an additional assumption. Of course, this contradic-
tion may involve the assumption ¬A(a) which will be discharged
by the ∃Elim inference. We can set it up as follows:

[∃x ¬A(x)]1

[¬A(a)]2, [∀x A(x)]3

⊥
3 ¬Intro¬∀x A(x)

2 ∃Elim¬∀x A(x)
1 →Intro∃x ¬A(x) → ¬∀x A(x)

It looks like we are close to getting a contradiction. The easiest
rule to apply is the ∀Elim, which has no eigenvariable conditions.
Since we can use any term we want to replace the universally
quantified x , it makes the most sense to continue using a so we
can reach a contradiction.

[∃x ¬A(x)]1

[¬A(a)]2
[∀x A(x)]3

∀ElimA(a)
¬Elim⊥

3 ¬Intro¬∀x A(x)
2 ∃Elim¬∀x A(x)

1 →Intro∃x ¬A(x) → ¬∀x A(x)

It is important, especially when dealing with quantifiers, to
double check at this point that the eigenvariable condition has
not been violated. Since the only rule we applied that is subject
to the eigenvariable condition was ∃Elim, and the eigenvariable a
does not occur in any assumptions it depends on, this is a correct
derivation.

Example 11.8. Sometimes we may derive a formula from other
formulas. In these cases, we may have undischarged assumptions.
It is important to keep track of our assumptions as well as the end
goal.

CHAPTER 11. NATURAL DEDUCTION 194

Let’s see how we’d give a derivation of the formula ∃x C (x ,b)
from the assumptions ∃x (A(x) ∧B (x)) and ∀x (B (x) →C (x ,b)).
Starting as usual, we write the conclusion at the bottom.

∃x C (x ,b)

We have two premises to work with. To use the first, i.e., try
to find a derivation of ∃x C (x ,b) from ∃x (A(x) ∧B (x)) we would
use the ∃Elim rule. Since it has an eigenvariable condition, we
will apply that rule first. We get the following:

∃x (A(x) ∧ B (x))

[A(a) ∧ B (a)]1

∃x C (x ,b)
1 ∃Elim∃x C (x ,b)

The two assumptions we are working with share B . It may be
useful at this point to apply ∧Elim to separate out B (a).

∃x (A(x) ∧ B (x))

[A(a) ∧ B (a)]1
∧ElimB (a)

∃x C (x ,b)
1 ∃Elim∃x C (x ,b)

The second assumption we have to work with is ∀x (B (x) →
C (x ,b)). Since there is no eigenvariable condition we can instan-
tiate x with the constant symbol a using ∀Elim to get B (a) →
C (a,b). We now have both B (a) → C (a,b) and B (a). Our next
move should be a straightforward application of the →Elim rule.

CHAPTER 11. NATURAL DEDUCTION 195

∃x (A(x) ∧ B (x))

∀x (B (x) →C (x ,b))
∀ElimB (a) →C (a,b)

[A(a) ∧ B (a)]1
∧ElimB (a)

→ElimC (a,b)

∃x C (x ,b)
1 ∃Elim∃x C (x ,b)

We are so close! One application of ∃Intro and we have reached
our goal.

∃x (A(x) ∧ B (x))

∀x (B (x) →C (x ,b))
∀ElimB (a) →C (a,b)

[A(a) ∧ B (a)]1
∧ElimB (a)

→ElimC (a,b)
∃Intro∃x C (x ,b)

1 ∃Elim∃x C (x ,b)

Since we ensured at each step that the eigenvariable conditions
were not violated, we can be confident that this is a correct deriva-
tion.

Example 11.9. Give a derivation of the formula ¬∀x A(x) from
the assumptions ∀x A(x) → ∃y B (y) and ¬∃y B (y). Starting as
usual, we write the target formula at the bottom.

¬∀x A(x)

The last line of the derivation is a negation, so let’s try using
¬Intro. This will require that we figure out how to derive a con-
tradiction.

[∀x A(x)]1

⊥
1 ¬Intro¬∀x A(x)

CHAPTER 11. NATURAL DEDUCTION 196

So far so good. We can use ∀Elim but it’s not obvious if that will
help us get to our goal. Instead, let’s use one of our assumptions.
∀x A(x) → ∃y B (y) together with ∀x A(x) will allow us to use the
→Elim rule.

∀x A(x) → ∃y B (y) [∀x A(x)]1
→Elim∃y B (y)

⊥
1 ¬Intro¬∀x A(x)

We now have one final assumption to work with, and it looks like
this will help us reach a contradiction by using ¬Elim.

¬∃y B (y)
∀x A(x) → ∃y B (y) [∀x A(x)]1

→Elim∃y B (y)
¬Elim⊥

1 ¬Intro¬∀x A(x)

11.7 Proof-Theoretic Notions

Just as we’ve defined a number of important semantic notions
(validity, entailment, satisfiability), we now define corresponding
proof-theoretic notions. These are not defined by appeal to satisfac-
tion of sentences in structures, but by appeal to the derivability
or non-derivability of certain sentences from others. It was an
important discovery that these notions coincide. That they do is
the content of the soundness and completeness theorems.

Definition 11.10 (Theorems). A sentenceA is a theorem if there
is a derivation of A in natural deduction in which all assumptions
are discharged. We write ⊢ A if A is a theorem and ⊬ A if it is not.

CHAPTER 11. NATURAL DEDUCTION 197

Definition 11.11 (Derivability). A sentence A is derivable from
a set of sentences 𝛤 , 𝛤 ⊢ A, if there is a derivation with conclu-
sion A and in which every assumption is either discharged or is
in 𝛤 . If A is not derivable from 𝛤 we write 𝛤 ⊬ A.

Definition 11.12 (Consistency). A set of sentences 𝛤 is incon-
sistent iff 𝛤 ⊢ ⊥. If 𝛤 is not inconsistent, i.e., if 𝛤 ⊬ ⊥, we say it is
consistent.

Proposition 11.13 (Reflexivity). If A ∈ 𝛤 , then 𝛤 ⊢ A.

Proof. The assumption A by itself is a derivation of A where every
undischarged assumption (i.e., A) is in 𝛤 . □

Proposition 11.14 (Monotony). If 𝛤 ⊆ 𝛥 and 𝛤 ⊢ A, then 𝛥 ⊢ A.

Proof. Any derivation of A from 𝛤 is also a derivation of A
from 𝛥. □

Proposition 11.15 (Transitivity). If 𝛤 ⊢ A and {A} ∪ 𝛥 ⊢ B,
then 𝛤 ∪ 𝛥 ⊢ B.

Proof. If 𝛤 ⊢ A, there is a derivation 𝛿0 of A with all undischarged
assumptions in 𝛤 . If {A} ∪ 𝛥 ⊢ B , then there is a derivation 𝛿1

of B with all undischarged assumptions in {A}∪𝛥. Now consider:

𝛥, [A]1

𝛿1

B
1 →IntroA→ B

𝛤

𝛿0

A →ElimB

CHAPTER 11. NATURAL DEDUCTION 198

The undischarged assumptions are now all among 𝛤 ∪ 𝛥, so this
shows 𝛤 ∪ 𝛥 ⊢ B . □

When 𝛤 = {A1,A2, . . . ,Ak } is a finite set we may use the sim-
plified notation A1,A2, . . . ,Ak ⊢ B for 𝛤 ⊢ B , in particular A ⊢ B
means that {A} ⊢ B .

Note that if 𝛤 ⊢ A and A ⊢ B , then 𝛤 ⊢ B . It follows also that
if A1, . . . ,An ⊢ B and 𝛤 ⊢ Ai for each i , then 𝛤 ⊢ B .

Proposition 11.16. The following are equivalent.

1. 𝛤 is inconsistent.

2. 𝛤 ⊢ A for every sentence A.

3. 𝛤 ⊢ A and 𝛤 ⊢ ¬A for some sentence A.

Proof. Exercise. □

Proposition 11.17 (Compactness). 1. If 𝛤 ⊢ A then there is
a finite subset 𝛤0 ⊆ 𝛤 such that 𝛤0 ⊢ A.

2. If every finite subset of 𝛤 is consistent, then 𝛤 is consistent.

Proof. 1. If 𝛤 ⊢ A, then there is a derivation 𝛿 of A from 𝛤 .
Let 𝛤0 be the set of undischarged assumptions of 𝛿. Since
any derivation is finite, 𝛤0 can only contain finitely many
sentences. So, 𝛿 is a derivation of A from a finite 𝛤0 ⊆ 𝛤 .

2. This is the contrapositive of (1) for the special case A ≡ ⊥.
□

11.8 Derivability and Consistency

We will now establish a number of properties of the derivability
relation. They are independently interesting, but each will play
a role in the proof of the completeness theorem.

CHAPTER 11. NATURAL DEDUCTION 199

Proposition 11.18. If 𝛤 ⊢ A and 𝛤 ∪ {A} is inconsistent, then 𝛤 is
inconsistent.

Proof. Let the derivation of A from 𝛤 be 𝛿1 and the derivation
of ⊥ from 𝛤 ∪ {A} be 𝛿2. We can then derive:

𝛤, [A]1

𝛿2

⊥
1 ¬Intro¬A

𝛤

𝛿1

A ¬Elim⊥

In the new derivation, the assumption A is discharged, so it is
a derivation from 𝛤 . □

Proposition 11.19. 𝛤 ⊢ A iff 𝛤 ∪ {¬A} is inconsistent.

Proof. First suppose 𝛤 ⊢ A, i.e., there is a derivation 𝛿0 of A from
undischarged assumptions 𝛤 . We obtain a derivation of ⊥ from
𝛤 ∪ {¬A} as follows:

¬A

𝛤

𝛿0

A ¬Elim⊥

Now assume 𝛤 ∪ {¬A} is inconsistent, and let 𝛿1 be the
corresponding derivation of ⊥ from undischarged assumptions
in 𝛤 ∪ {¬A}. We obtain a derivation of A from 𝛤 alone by us-
ing ⊥C :

𝛤, [¬A]1

𝛿1

⊥
1 ⊥CA □

CHAPTER 11. NATURAL DEDUCTION 200

Proposition 11.20. If 𝛤 ⊢ A and ¬A ∈ 𝛤 , then 𝛤 is inconsistent.

Proof. Suppose 𝛤 ⊢ A and ¬A ∈ 𝛤 . Then there is a derivation 𝛿

of A from 𝛤 . Consider this simple application of the ¬Elim rule:

¬A

𝛤

𝛿

A ¬Elim⊥

Since ¬A ∈ 𝛤 , all undischarged assumptions are in 𝛤 , this shows
that 𝛤 ⊢ ⊥. □

Proposition 11.21. If 𝛤 ∪ {A} and 𝛤 ∪ {¬A} are both inconsistent,
then 𝛤 is inconsistent.

Proof. There are derivations 𝛿1 and 𝛿2 of ⊥ from 𝛤 ∪ {A} and ⊥
from 𝛤 ∪ {¬A}, respectively. We can then derive

𝛤, [¬A]2

𝛿2

⊥
2 ¬Intro¬¬A

𝛤, [A]1

𝛿1

⊥
1 ¬Intro¬A ¬Elim⊥

Since the assumptions A and ¬A are discharged, this is a deriva-
tion of ⊥ from 𝛤 alone. Hence 𝛤 is inconsistent. □

11.9 Derivability and the Propositional
Connectives

We establish that the derivability relation ⊢ of natural deduction
is strong enough to establish some basic facts involving the propo-
sitional connectives, such as that A ∧ B ⊢ A and A,A → B ⊢ B
(modus ponens). These facts are needed for the proof of the
completeness theorem.

CHAPTER 11. NATURAL DEDUCTION 201

Proposition 11.22. 1. Both A ∧ B ⊢ A and A ∧ B ⊢ B

2. A,B ⊢ A ∧ B.

Proof. 1. We can derive both

A ∧ B ∧ElimA
A ∧ B ∧ElimB

2. We can derive:

A B ∧IntroA ∧ B □

Proposition 11.23. 1. A ∨ B ,¬A,¬B is inconsistent.

2. Both A ⊢ A ∨ B and B ⊢ A ∨ B.

Proof. 1. Consider the following derivation:

A ∨ B
¬A [A]1

¬Elim⊥
¬B [B]1

¬Elim⊥
1 ∨Elim⊥

This is a derivation of ⊥ from undischarged assumptions
A ∨ B , ¬A, and ¬B .

2. We can derive both

A ∨IntroA ∨ B
B ∨IntroA ∨ B □

Proposition 11.24. 1. A,A→ B ⊢ B.

2. Both ¬A ⊢ A→ B and B ⊢ A→ B.

Proof. 1. We can derive:

A→ B A →ElimB

CHAPTER 11. NATURAL DEDUCTION 202

2. This is shown by the following two derivations:

¬A [A]1
¬Elim⊥ ⊥IB

1 →IntroA→ B
B →IntroA→ B

Note that →Intro may, but does not have to, discharge the
assumption A. □

11.10 Derivability and the Quantifiers

The completeness theorem also requires that the natural deduc-
tion rules yield the facts about ⊢ established in this section.

Theorem 11.25. If c is a constant not occurring in 𝛤 or A(x) and
𝛤 ⊢ A(c), then 𝛤 ⊢ ∀x A(x).

Proof. Let 𝛿 be a derivation of A(c) from 𝛤 . By adding a ∀Intro
inference, we obtain a derivation of ∀x A(x). Since c does not
occur in 𝛤 or A(x), the eigenvariable condition is satisfied. □

Proposition 11.26. 1. A(t) ⊢ ∃x A(x).

2. ∀x A(x) ⊢ A(t).

Proof. 1. The following is a derivation of ∃x A(x) from A(t):

A(t)
∃Intro∃x A(x)

2. The following is a derivation of A(t) from ∀x A(x):

∀x A(x)
∀ElimA(t) □

CHAPTER 11. NATURAL DEDUCTION 203

11.11 Soundness

A derivation system, such as natural deduction, is sound if it
cannot derive things that do not actually follow. Soundness is
thus a kind of guaranteed safety property for derivation systems.
Depending on which proof theoretic property is in question, we
would like to know for instance, that

1. every derivable sentence is valid;

2. if a sentence is derivable from some others, it is also a
consequence of them;

3. if a set of sentences is inconsistent, it is unsatisfiable.

These are important properties of a derivation system. If any of
them do not hold, the derivation system is deficient—it would
derive too much. Consequently, establishing the soundness of a
derivation system is of the utmost importance.

Theorem 11.27 (Soundness). If A is derivable from the undis-
charged assumptions 𝛤 , then 𝛤 ⊨ A.

Proof. Let 𝛿 be a derivation of A. We proceed by induction on
the number of inferences in 𝛿.

For the induction basis we show the claim if the number of
inferences is 0. In this case, 𝛿 consists only of a single sentence A,
i.e., an assumption. That assumption is undischarged, since as-
sumptions can only be discharged by inferences, and there are
no inferences. So, any structure M that satisfies all of the undis-
charged assumptions of the proof also satisfies A.

Now for the inductive step. Suppose that 𝛿 contains n in-
ferences. The premise(s) of the lowermost inference are derived
using sub-derivations, each of which contains fewer than n infer-
ences. We assume the induction hypothesis: The premises of the
lowermost inference follow from the undischarged assumptions
of the sub-derivations ending in those premises. We have to show

CHAPTER 11. NATURAL DEDUCTION 204

that the conclusion A follows from the undischarged assumptions
of the entire proof.

We distinguish cases according to the type of the lowermost
inference. First, we consider the possible inferences with only
one premise.

1. Suppose that the last inference is ¬Intro: The derivation
has the form

𝛤, [A]n

𝛿1

⊥n ¬Intro¬A

By inductive hypothesis, ⊥ follows from the undischarged
assumptions 𝛤 ∪ {A} of 𝛿1. Consider a structure M. We
need to show that, if M ⊨ 𝛤 , then M ⊨ ¬A. Suppose for
reductio that M ⊨ 𝛤 , but M ⊭ ¬A, i.e., M ⊨ A. This would
mean that M ⊨ 𝛤 ∪ {A}. This is contrary to our inductive
hypothesis. So, M ⊨ ¬A.

2. The last inference is ∧Elim: There are two variants: A or
B may be inferred from the premise A ∧ B . Consider the
first case. The derivation 𝛿 looks like this:

𝛤

𝛿1

A ∧ B ∧ElimA

By inductive hypothesis, A ∧ B follows from the undis-
charged assumptions 𝛤 of 𝛿1. Consider a structure M. We
need to show that, if M ⊨ 𝛤 , then M ⊨ A. Suppose M ⊨ 𝛤 .
By our inductive hypothesis (𝛤 ⊨ A ∧ B), we know that
M ⊨ A ∧ B . By definition, M ⊨ A ∧ B iff M ⊨ A and M ⊨ B .

CHAPTER 11. NATURAL DEDUCTION 205

(The case where B is inferred from A ∧ B is handled simi-
larly.)

3. The last inference is ∨Intro: There are two variants: A ∨
B may be inferred from the premise A or the premise B .
Consider the first case. The derivation has the form

𝛤

𝛿1

A ∨IntroA ∨ B

By inductive hypothesis, A follows from the undischarged
assumptions 𝛤 of 𝛿1. Consider a structure M. We need to
show that, if M ⊨ 𝛤 , then M ⊨ A ∨B . Suppose M ⊨ 𝛤 ; then
M ⊨ A since 𝛤 ⊨ A (the inductive hypothesis). So it must
also be the case that M ⊨ A ∨ B . (The case where A ∨ B is
inferred from B is handled similarly.)

4. The last inference is →Intro: A → B is inferred from a
subproof with assumption A and conclusion B , i.e.,

𝛤, [A]n

𝛿1

Bn →IntroA→ B

By inductive hypothesis, B follows from the undischarged
assumptions of 𝛿1, i.e., 𝛤∪{A} ⊨ B . Consider a structure M.
The undischarged assumptions of 𝛿 are just 𝛤 , since A is
discharged at the last inference. So we need to show that
𝛤 ⊨ A→B . For reductio, suppose that for some structure M,
M ⊨ 𝛤 but M ⊭ A → B . So, M ⊨ A and M ⊭ B . But by
hypothesis, B is a consequence of 𝛤 ∪ {A}, i.e., M ⊨ B ,
which is a contradiction. So, 𝛤 ⊨ A→ B .

CHAPTER 11. NATURAL DEDUCTION 206

5. The last inference is ⊥I : Here, 𝛿 ends in

𝛤

𝛿1

⊥ ⊥IA

By induction hypothesis, 𝛤 ⊨ ⊥. We have to show that
𝛤 ⊨ A. Suppose not; then for some M we have M ⊨ 𝛤 and
M ⊭ A. But we always have M ⊭ ⊥, so this would mean that
𝛤 ⊭ ⊥, contrary to the induction hypothesis.

6. The last inference is ⊥C : Exercise.

7. The last inference is ∀Intro: Then 𝛿 has the form

𝛤

𝛿1

A(a)
∀Intro∀x A(x)

The premise A(a) is a consequence of the undischarged
assumptions 𝛤 by induction hypothesis. Consider some
structure, M, such that M ⊨ 𝛤 . We need to show that M ⊨
∀x A(x). Since ∀x A(x) is a sentence, this means we have
to show that for every variable assignment s , M,s ⊨ A(x)
(Proposition 7.18). Since 𝛤 consists entirely of sentences,
M,s ⊨ B for all B ∈ 𝛤 by Definition 7.11. Let M′ be like
M except that aM′

= s (x). Since a does not occur in 𝛤 ,
M′ ⊨ 𝛤 by Corollary 7.20. Since 𝛤 ⊨ A(a), M′ ⊨ A(a).
Since A(a) is a sentence, M′,s ⊨ A(a) by Proposition 7.17.
M′,s ⊨ A(x) iff M′ ⊨ A(a) by Proposition 7.22 (recall that
A(a) is just A(x) [a/x]). So, M′,s ⊨ A(x). Since a does not
occur in A(x), by Proposition 7.19, M,s ⊨ A(x). But s was
an arbitrary variable assignment, so M ⊨ ∀x A(x).

CHAPTER 11. NATURAL DEDUCTION 207

8. The last inference is ∃Intro: Exercise.

9. The last inference is ∀Elim: Exercise.

Now let’s consider the possible inferences with several
premises: ∨Elim, ∧Intro, →Elim, and ∃Elim.

1. The last inference is ∧Intro. A ∧ B is inferred from the
premises A and B and 𝛿 has the form

𝛤1

𝛿1

A

𝛤2

𝛿2

B ∧IntroA ∧ B

By induction hypothesis, A follows from the undischarged
assumptions 𝛤1 of 𝛿1 and B follows from the undischarged
assumptions 𝛤2 of 𝛿2. The undischarged assumptions of 𝛿
are 𝛤1∪𝛤2, so we have to show that 𝛤1∪𝛤2 ⊨ A∧B . Consider
a structure M with M ⊨ 𝛤1 ∪ 𝛤2. Since M ⊨ 𝛤1, it must be
the case that M ⊨ A as 𝛤1 ⊨ A, and since M ⊨ 𝛤2, M ⊨ B
since 𝛤2 ⊨ B . Together, M ⊨ A ∧ B .

2. The last inference is ∨Elim: Exercise.

3. The last inference is →Elim. B is inferred from the
premises A→ B and A. The derivation 𝛿 looks like this:

𝛤1

𝛿1

A→ B

𝛤2

𝛿2

A →ElimB

By induction hypothesis, A → B follows from the undis-
charged assumptions 𝛤1 of 𝛿1 and A follows from the undis-
charged assumptions 𝛤2 of 𝛿2. Consider a structure M. We

CHAPTER 11. NATURAL DEDUCTION 208

need to show that, if M ⊨ 𝛤1 ∪ 𝛤2, then M ⊨ B . Suppose
M ⊨ 𝛤1∪𝛤2. Since 𝛤1 ⊨ A→B , M ⊨ A→B . Since 𝛤2 ⊨ A, we
have M ⊨ A. This means that M ⊨ B (For if M ⊭ B , since
M ⊨ A, we’d have M ⊭ A→ B , contradicting M ⊨ A→ B).

4. The last inference is ¬Elim: Exercise.

5. The last inference is ∃Elim: Exercise. □

Corollary 11.28. If ⊢ A, then A is valid.

Corollary 11.29. If 𝛤 is satisfiable, then it is consistent.

Proof. We prove the contrapositive. Suppose that 𝛤 is not con-
sistent. Then 𝛤 ⊢ ⊥, i.e., there is a derivation of ⊥ from undis-
charged assumptions in 𝛤 . By Theorem 11.27, any structure M
that satisfies 𝛤 must satisfy ⊥. Since M ⊭ ⊥ for every structure M,
no M can satisfy 𝛤 , i.e., 𝛤 is not satisfiable. □

11.12 Derivations with Identity predicate

Derivations with identity predicate require additional inference
rules.

=Introt = t

t1 = t2 A(t1)
=ElimA(t2)

t1 = t2 A(t2)
=ElimA(t1)

In the above rules, t , t1, and t2 are closed terms. The =Intro
rule allows us to derive any identity statement of the form t = t
outright, from no assumptions.

Example 11.30. If s and t are closed terms, then A(s),s = t ⊢
A(t):

CHAPTER 11. NATURAL DEDUCTION 209

s = t A(s)
=ElimA(t)

This may be familiar as the “principle of substitutability of iden-
ticals,” or Leibniz’ Law.

Example 11.31. We derive the sentence

∀x ∀y ((A(x) ∧ A(y)) → x = y)

from the sentence

∃x ∀y (A(y) → y = x)

We develop the derivation backwards:

∃x ∀y (A(y) → y = x) [A(a) ∧ A(b)]1

a = b
1 →Intro((A(a) ∧ A(b)) → a = b)

∀Intro∀y ((A(a) ∧ A(y)) → a = y)
∀Intro∀x ∀y ((A(x) ∧ A(y)) → x = y)

We’ll now have to use the main assumption: since it is an existen-
tial formula, we use ∃Elim to derive the intermediary conclusion
a = b .

∃x ∀y (A(y) → y = x)

[∀y (A(y) → y = c)]2

[A(a) ∧ A(b)]1

a = b
2 ∃Elima = b

1 →Intro((A(a) ∧ A(b)) → a = b)
∀Intro∀y ((A(a) ∧ A(y)) → a = y)
∀Intro∀x ∀y ((A(x) ∧ A(y)) → x = y)

CHAPTER 11. NATURAL DEDUCTION 210

The sub-derivation on the top right is completed by using its
assumptions to show that a = c and b = c . This requires two
separate derivations. The derivation for a = c is as follows:

[∀y (A(y) → y = c)]2
∀ElimA(a) → a = c

[A(a) ∧ A(b)]1
∧ElimA(a)

→Elima = c

From a = c and b = c we derive a = b by =Elim.

11.13 Soundness with Identity predicate

Proposition 11.32. Natural deduction with rules for = is sound.

Proof. Any formula of the form t = t is valid, since for every
structure M, M ⊨ t = t . (Note that we assume the term t to be
closed, i.e., it contains no variables, so variable assignments are
irrelevant).

Suppose the last inference in a derivation is =Elim, i.e., the
derivation has the following form:

𝛤1

𝛿1

t1 = t2

𝛤2

𝛿2

A(t1)
=ElimA(t2)

The premises t1 = t2 and A(t1) are derived from undischarged
assumptions 𝛤1 and 𝛤2, respectively. We want to show that A(t2)
follows from 𝛤1 ∪ 𝛤2. Consider a structure M with M ⊨ 𝛤1 ∪ 𝛤2.
By induction hypothesis, M ⊨ A(t1) and M ⊨ t1 = t2. There-
fore, ValM (t1) = ValM (t2). Let s be any variable assignment, and
m = ValM (t1) = ValM (t2). By Proposition 7.22, M,s ⊨ A(t1) iff
M,s [m/x] ⊨ A(x) iff M,s ⊨ A(t2). Since M ⊨ A(t1), we have
M ⊨ A(t2). □

CHAPTER 11. NATURAL DEDUCTION 211

Summary

Proof systems provide purely syntactic methods for characteriz-
ing consequence and compatibility between sentences. Natural
deduction is one such proof system. A derivation in it consists
of a tree formulas. The topmost formulas in a derivation are as-
sumptions. All other formulas, for the derivation to be correct,
must be correctly justified by one of a number of inference rules.
These come in pairs; an introduction and an elimination rule for
each connective and quantifier. For instance, if a formula A is
justified by a →Elim rule, the preceding formulas (the premises)
must be B → A and B (for some B). Some inference rules also
allow assumptions to be discharged. For instance, if A→B is in-
ferred from B using →Intro, any occurrences of A as assumptions
in the derivation leading to the premise B may be discharged, and
is given a label that is also recorded at the inference.

If there is a derivation with end formulaA and all assumptions
are discharged, we say A is a theorem and write ⊢ A. If all undis-
charged assumptions are in some set 𝛤 , we say A is derivable
from 𝛤 and write 𝛤 ⊢ A. If 𝛤 ⊢ ⊥ we say 𝛤 is inconsistent, oth-
erwise consistent. These notions are interrelated, e.g., 𝛤 ⊢ A iff
𝛤∪{¬A} is inconsistent. They are also related to the correspond-
ing semantic notions, e.g., if 𝛤 ⊢ A then 𝛤 ⊨ A. This property
of proof systems—what can be derived from 𝛤 is guaranteed to
be entailed by 𝛤—is called soundness. The soundness theo-
rem is proved by induction on the length of derivations, showing
that each individual inference preserves entailment of its conclu-
sion from open assumptions provided its premises are entailed
by their undischarged assumptions.

Problems

Problem 11.1. Give derivations that show the following:

1. A ∧ (B ∧C) ⊢ (A ∧ B) ∧C .

CHAPTER 11. NATURAL DEDUCTION 212

2. A ∨ (B ∨C) ⊢ (A ∨ B) ∨C .

3. A→ (B →C) ⊢ B → (A→C).

4. A ⊢ ¬¬A.

Problem 11.2. Give derivations that show the following:

1. (A ∨ B) →C ⊢ A→C .

2. (A→C) ∧ (B →C) ⊢ (A ∨ B) →C .

3. ⊢ ¬(A ∧ ¬A).

4. B → A ⊢ ¬A→¬B .

5. ⊢ (A→¬A) → ¬A.

6. ⊢ ¬(A→ B) → ¬B .

7. A→C ⊢ ¬(A ∧ ¬C).

8. A ∧ ¬C ⊢ ¬(A→C).

9. A ∨ B ,¬B ⊢ A.

10. ¬A ∨ ¬B ⊢ ¬(A ∧ B).

11. ⊢ (¬A ∧ ¬B) → ¬(A ∨ B).

12. ⊢ ¬(A ∨ B) → (¬A ∧ ¬B).

Problem 11.3. Give derivations that show the following:

1. ¬(A→ B) ⊢ A.

2. ¬(A ∧ B) ⊢ ¬A ∨ ¬B .

3. A→ B ⊢ ¬A ∨ B .

4. ⊢ ¬¬A→ A.

5. A→ B ,¬A→ B ⊢ B .

CHAPTER 11. NATURAL DEDUCTION 213

6. (A ∧ B) →C ⊢ (A→C) ∨ (B →C).

7. (A→ B) → A ⊢ A.

8. ⊢ (A→ B) ∨ (B →C).

(These all require the ⊥C rule.)

Problem 11.4. Give derivations that show the following:

1. ⊢ (∀x A(x) ∧ ∀y B (y)) → ∀z (A(z) ∧ B (z)).

2. ⊢ (∃x A(x) ∨ ∃y B (y)) → ∃z (A(z) ∨ B (z)).

3. ∀x (A(x) → B) ⊢ ∃y A(y) → B .

4. ∀x ¬A(x) ⊢ ¬∃x A(x).

5. ⊢ ¬∃x A(x) → ∀x ¬A(x).

6. ⊢ ¬∃x ∀y ((A(x ,y) → ¬A(y ,y)) ∧ (¬A(y ,y) → A(x ,y))).

Problem 11.5. Give derivations that show the following:

1. ⊢ ¬∀x A(x) → ∃x ¬A(x).

2. (∀x A(x) → B) ⊢ ∃y (A(y) → B).

3. ⊢ ∃x (A(x) → ∀y A(y)).

(These all require the ⊥C rule.)

Problem 11.6. Prove Proposition 11.16

Problem 11.7. Prove that 𝛤 ⊢ ¬A iff 𝛤 ∪ {A} is inconsistent.

Problem 11.8. Complete the proof of Theorem 11.27.

Problem 11.9. Prove that = is both symmetric and transitive,
i.e., give derivations of ∀x ∀y (x = y → y = x) and ∀x ∀y ∀z ((x =

y ∧ y = z) → x = z)

CHAPTER 11. NATURAL DEDUCTION 214

Problem 11.10. Give derivations of the following formulas:

1. ∀x ∀y ((x = y ∧ A(x)) → A(y))

2. ∃x A(x) ∧ ∀y ∀z ((A(y) ∧ A(z)) → y = z) → ∃x (A(x) ∧
∀y (A(y) → y = x))

CHAPTER 12

The
Completeness
Theorem
12.1 Introduction

The completeness theorem is one of the most fundamental re-
sults about logic. It comes in two formulations, the equivalence
of which we’ll prove. In its first formulation it says something fun-
damental about the relationship between semantic consequence
and our derivation system: if a sentence A follows from some sen-
tences 𝛤 , then there is also a derivation that establishes 𝛤 ⊢ A.
Thus, the derivation system is as strong as it can possibly be
without proving things that don’t actually follow.

In its second formulation, it can be stated as a model exis-
tence result: every consistent set of sentences is satisfiable. Con-
sistency is a proof-theoretic notion: it says that our derivation
system is unable to produce certain derivations. But who’s to
say that just because there are no derivations of a certain sort
from 𝛤 , it’s guaranteed that there is a structure M? Before the
completeness theorem was first proved—in fact before we had the

215

CHAPTER 12. THE COMPLETENESS THEOREM 216

derivation systems we now do—the great German mathematician
David Hilbert held the view that consistency of mathematical the-
ories guarantees the existence of the objects they are about. He
put it as follows in a letter to Gottlob Frege:

If the arbitrarily given axioms do not contradict one
another with all their consequences, then they are
true and the things defined by the axioms exist. This
is for me the criterion of truth and existence.

Frege vehemently disagreed. The second formulation of the com-
pleteness theorem shows that Hilbert was right in at least the
sense that if the axioms are consistent, then some structure exists
that makes them all true.

These aren’t the only reasons the completeness theorem—or
rather, its proof—is important. It has a number of important con-
sequences, some of which we’ll discuss separately. For instance,
since any derivation that shows 𝛤 ⊢ A is finite and so can only
use finitely many of the sentences in 𝛤 , it follows by the com-
pleteness theorem that if A is a consequence of 𝛤 , it is already
a consequence of a finite subset of 𝛤 . This is called compactness.
Equivalently, if every finite subset of 𝛤 is consistent, then 𝛤 itself
must be consistent.

Although the compactness theorem follows from the com-
pleteness theorem via the detour through derivations, it is also
possible to use the the proof of the completeness theorem to estab-
lish it directly. For what the proof does is take a set of sentences
with a certain property—consistency—and constructs a structure
out of this set that has certain properties (in this case, that it sat-
isfies the set). Almost the very same construction can be used
to directly establish compactness, by starting from “finitely sat-
isfiable” sets of sentences instead of consistent ones. The con-
struction also yields other consequences, e.g., that any satisfiable
set of sentences has a finite or countably infinite model. (This
result is called the Löwenheim-Skolem theorem.) In general, the
construction of structures from sets of sentences is used often in
logic, and sometimes even in philosophy.

CHAPTER 12. THE COMPLETENESS THEOREM 217

12.2 Outline of the Proof

The proof of the completeness theorem is a bit complex, and
upon first reading it, it is easy to get lost. So let us outline the
proof. The first step is a shift of perspective, that allows us to see
a route to a proof. When completeness is thought of as “whenever
𝛤 ⊨ A then 𝛤 ⊢ A,” it may be hard to even come up with an idea:
for to show that 𝛤 ⊢ A we have to find a derivation, and it does
not look like the hypothesis that 𝛤 ⊨ A helps us for this in any
way. For some proof systems it is possible to directly construct
a derivation, but we will take a slightly different approach. The
shift in perspective required is this: completeness can also be
formulated as: “if 𝛤 is consistent, it is satisfiable.” Perhaps we
can use the information in 𝛤 together with the hypothesis that it
is consistent to construct a structure that satisfies every sentence
in 𝛤 . After all, we know what kind of structure we are looking
for: one that is as 𝛤 describes it!

If 𝛤 contains only atomic sentences, it is easy to construct a
model for it. Suppose the atomic sentences are all of the form
P (a1, . . . ,an) where the ai are constant symbols. All we have to
do is come up with a domain |M | and an assignment for P so
that M ⊨ P (a1, . . . ,an). But that’s not very hard: put |M | = N,
cM
i = i , and for every P (a1, . . . ,an) ∈ 𝛤 , put the tuple ⟨k1, . . . ,kn⟩

into PM, where ki is the index of the constant symbol ai (i.e.,
ai ≡ cki).

Now suppose 𝛤 contains some formula ¬B , with B atomic.
We might worry that the construction of M interferes with the
possibility of making ¬B true. But here’s where the consistency
of 𝛤 comes in: if ¬B ∈ 𝛤 , then B ∉ 𝛤 , or else 𝛤 would be
inconsistent. And if B ∉ 𝛤 , then according to our construction
of M, M ⊭ B , so M ⊨ ¬B . So far so good.

What if 𝛤 contains complex, non-atomic formulas? Say it
contains A ∧ B . To make that true, we should proceed as if both
A and B were in 𝛤 . And if A ∨ B ∈ 𝛤 , then we will have to make
at least one of them true, i.e., proceed as if one of them was in 𝛤 .

This suggests the following idea: we add additional formulas

CHAPTER 12. THE COMPLETENESS THEOREM 218

to 𝛤 so as to (a) keep the resulting set consistent and (b) make
sure that for every possible atomic sentence A, either A is in the
resulting set, or ¬A is, and (c) such that, whenever A ∧ B is in
the set, so are both A and B , if A ∨B is in the set, at least one of
A or B is also, etc. We keep doing this (potentially forever). Call
the set of all formulas so added 𝛤∗. Then our construction above
would provide us with a structure M for which we could prove,
by induction, that it satisfies all sentences in 𝛤∗, and hence also
all sentence in 𝛤 since 𝛤 ⊆ 𝛤∗. It turns out that guaranteeing
(a) and (b) is enough. A set of sentences for which (b) holds is
called complete. So our task will be to extend the consistent set 𝛤
to a consistent and complete set 𝛤∗.

There is one wrinkle in this plan: if ∃x A(x) ∈ 𝛤 we would
hope to be able to pick some constant symbol c and add A(c)
in this process. But how do we know we can always do that?
Perhaps we only have a few constant symbols in our language,
and for each one of them we have ¬A(c) ∈ 𝛤 . We can’t also add
A(c), since this would make the set inconsistent, and we wouldn’t
know whether M has to make A(c) or ¬A(c) true. Moreover, it
might happen that 𝛤 contains only sentences in a language that
has no constant symbols at all (e.g., the language of set theory).

The solution to this problem is to simply add infinitely many
constants at the beginning, plus sentences that connect them with
the quantifiers in the right way. (Of course, we have to verify that
this cannot introduce an inconsistency.)

Our original construction works well if we only have constant
symbols in the atomic sentences. But the language might also
contain function symbols. In that case, it might be tricky to find
the right functions on N to assign to these function symbols to
make everything work. So here’s another trick: instead of using
i to interpret ci , just take the set of constant symbols itself as
the domain. Then M can assign every constant symbol to itself:
cM
i = ci . But why not go all the way: let |M | be all terms of

the language! If we do this, there is an obvious assignment of
functions (that take terms as arguments and have terms as values)
to function symbols: we assign to the function symbol f ni the

CHAPTER 12. THE COMPLETENESS THEOREM 219

function which, given n terms t1, . . . , tn as input, produces the
term f ni (t1, . . . ,tn) as value.

The last piece of the puzzle is what to do with =. The
predicate symbol = has a fixed interpretation: M ⊨ t = t ′ iff
ValM (t) = ValM (t ′). Now if we set things up so that the value of
a term t is t itself, then this structure will make no sentence of
the form t = t ′ true unless t and t ′ are one and the same term.
And of course this is a problem, since basically every interesting
theory in a language with function symbols will have as theorems
sentences t = t ′ where t and t ′ are not the same term (e.g., in
theories of arithmetic: (0 + 0) = 0). To solve this problem, we
change the domain of M: instead of using terms as the objects
in |M |, we use sets of terms, and each set is so that it contains
all those terms which the sentences in 𝛤 require to be equal. So,
e.g., if 𝛤 is a theory of arithmetic, one of these sets will contain:
0, (0 + 0), (0 × 0), etc. This will be the set we assign to 0, and it
will turn out that this set is also the value of all the terms in it,
e.g., also of (0 + 0). Therefore, the sentence (0 + 0) = 0 will be
true in this revised structure.

So here’s what we’ll do. First we investigate the properties of
complete consistent sets, in particular we prove that a complete
consistent set contains A∧B iff it contains both A and B , A∨B iff
it contains at least one of them, etc. (Proposition 12.2). Then we
define and investigate “saturated” sets of sentences. A saturated
set is one which contains conditionals that link each quantified
sentence to instances of it (Definition 12.5). We show that any
consistent set 𝛤 can always be extended to a saturated set 𝛤 ′

(Lemma 12.6). If a set is consistent, saturated, and complete it
also has the property that it contains ∃x A(x) iff it contains A(t)
for some closed term t and ∀x A(x) iff it contains A(t) for all
closed terms t (Proposition 12.7). We’ll then take the saturated
consistent set 𝛤 ′ and show that it can be extended to a satu-
rated, consistent, and complete set 𝛤∗ (Lemma 12.8). This set
𝛤∗ is what we’ll use to define our term model M(𝛤∗). The term
model has the set of closed terms as its domain, and the interpre-
tation of its predicate symbols is given by the atomic sentences

CHAPTER 12. THE COMPLETENESS THEOREM 220

in 𝛤∗ (Definition 12.9). We’ll use the properties of saturated, com-
plete consistent sets to show that indeed M(𝛤∗) ⊨ A iff A ∈ 𝛤∗

(Lemma 12.12), and thus in particular, M(𝛤∗) ⊨ 𝛤 . Finally, we’ll
consider how to define a term model if 𝛤 contains = as well (Def-
inition 12.16) and show that it satisfies 𝛤∗ (Lemma 12.19).

12.3 Complete Consistent Sets of Sentences

Definition 12.1 (Complete set). A set 𝛤 of sentences is com-
plete iff for any sentence A, either A ∈ 𝛤 or ¬A ∈ 𝛤 .

Complete sets of sentences leave no questions unanswered.
For any sentence A, 𝛤 “says” if A is true or false. The impor-
tance of complete sets extends beyond the proof of the complete-
ness theorem. A theory which is complete and axiomatizable, for
instance, is always decidable.

Complete consistent sets are important in the completeness
proof since we can guarantee that every consistent set of sen-
tences 𝛤 is contained in a complete consistent set 𝛤∗. A com-
plete consistent set contains, for each sentence A, either A or its
negation ¬A, but not both. This is true in particular for atomic
sentences, so from a complete consistent set in a language suit-
ably expanded by constant symbols, we can construct a structure
where the interpretation of predicate symbols is defined accord-
ing to which atomic sentences are in 𝛤∗. This structure can then
be shown to make all sentences in 𝛤∗ (and hence also all those
in 𝛤) true. The proof of this latter fact requires that ¬A ∈ 𝛤∗ iff
A ∉ 𝛤∗, (A ∨ B) ∈ 𝛤∗ iff A ∈ 𝛤∗ or B ∈ 𝛤∗, etc.

In what follows, we will often tacitly use the properties of
reflexivity, monotonicity, and transitivity of ⊢ (see sections 10.8
and 11.7).

Proposition 12.2. Suppose 𝛤 is complete and consistent. Then:

1. If 𝛤 ⊢ A, then A ∈ 𝛤 .

CHAPTER 12. THE COMPLETENESS THEOREM 221

2. A ∧ B ∈ 𝛤 iff both A ∈ 𝛤 and B ∈ 𝛤 .

3. A ∨ B ∈ 𝛤 iff either A ∈ 𝛤 or B ∈ 𝛤 .

4. A→ B ∈ 𝛤 iff either A ∉ 𝛤 or B ∈ 𝛤 .

Proof. Let us suppose for all of the following that 𝛤 is complete
and consistent.

1. If 𝛤 ⊢ A, then A ∈ 𝛤 .

Suppose that 𝛤 ⊢ A. Suppose to the contrary that A ∉ 𝛤 .
Since 𝛤 is complete, ¬A ∈ 𝛤 . By Propositions 10.20
and 11.20, 𝛤 is inconsistent. This contradicts the assump-
tion that 𝛤 is consistent. Hence, it cannot be the case that
A ∉ 𝛤 , so A ∈ 𝛤 .

2. Exercise.

3. First we show that if A ∨ B ∈ 𝛤 , then either A ∈ 𝛤 or
B ∈ 𝛤 . Suppose A ∨ B ∈ 𝛤 but A ∉ 𝛤 and B ∉ 𝛤 .
Since 𝛤 is complete, ¬A ∈ 𝛤 and ¬B ∈ 𝛤 . By Proposi-
tions 10.23 and 11.23, item (1), 𝛤 is inconsistent, a contra-
diction. Hence, either A ∈ 𝛤 or B ∈ 𝛤 .

For the reverse direction, suppose that A ∈ 𝛤 or B ∈ 𝛤 . By
Propositions 10.23 and 11.23, item (2), 𝛤 ⊢ A ∨ B . By (1),
A ∨ B ∈ 𝛤 , as required.

4. Exercise. □

12.4 Henkin Expansion

Part of the challenge in proving the completeness theorem is that
the model we construct from a complete consistent set 𝛤 must
make all the quantified formulas in 𝛤 true. In order to guar-
antee this, we use a trick due to Leon Henkin. In essence, the

CHAPTER 12. THE COMPLETENESS THEOREM 222

trick consists in expanding the language by infinitely many con-
stant symbols and adding, for each formula with one free variable
A(x) a formula of the form ∃x A(x) →A(c), where c is one of the
new constant symbols. When we construct the structure satisfy-
ing 𝛤 , this will guarantee that each true existential sentence has
a witness among the new constants.

Proposition 12.3. If 𝛤 is consistent in L and L′ is obtained from
L by adding a countably infinite set of new constant symbols d0, d1,
. . . , then 𝛤 is consistent in L′.

Definition 12.4 (Saturated set). A set 𝛤 of formulas of a lan-
guage L is saturated iff for each formula A(x) ∈ Frm(L) with
one free variable x there is a constant symbol c ∈ L such that
∃x A(x) → A(c) ∈ 𝛤 .

The following definition will be used in the proof of the next
theorem.

Definition 12.5. Let L′ be as in Proposition 12.3. Fix an enu-
meration A0(x0), A1(x1), . . . of all formulas Ai (xi) of L′ in which
one variable (xi) occurs free. We define the sentences Dn by in-
duction on n.

Let c0 be the first constant symbol among the di we added
to Lwhich does not occur in A0(x0). Assuming thatD0, . . . ,Dn−1

have already been defined, let cn be the first among the new
constant symbols di that occurs neither in D0, . . . , Dn−1 nor
in An (xn).

Now let Dn be the formula ∃xn An (xn) → An (cn).

Lemma 12.6. Every consistent set 𝛤 can be extended to a saturated
consistent set 𝛤 ′.

CHAPTER 12. THE COMPLETENESS THEOREM 223

Proof. Given a consistent set of sentences 𝛤 in a language L, ex-
pand the language by adding a countably infinite set of new con-
stant symbols to form L′. By Proposition 12.3, 𝛤 is still consistent
in the richer language. Further, let Di be as in Definition 12.5.
Let

𝛤0 = 𝛤

𝛤n+1 = 𝛤n ∪ {Dn}

i.e., 𝛤n+1 = 𝛤 ∪ {D0, . . . ,Dn}, and let 𝛤 ′ =
⋃︁
n 𝛤n . 𝛤 ′ is clearly

saturated.
If 𝛤 ′ were inconsistent, then for some n, 𝛤n would be incon-

sistent (Exercise: explain why). So to show that 𝛤 ′ is consistent it
suffices to show, by induction on n, that each set 𝛤n is consistent.

The induction basis is simply the claim that 𝛤0 = 𝛤 is consis-
tent, which is the hypothesis of the theorem. For the induction
step, suppose that 𝛤n is consistent but 𝛤n+1 = 𝛤n ∪ {Dn} is incon-
sistent. Recall that Dn is ∃xn An (xn) → An (cn), where An (xn) is
a formula of L′ with only the variable xn free. By the way we’ve
chosen the cn (see Definition 12.5), cn does not occur in An (xn)
nor in 𝛤n .

If 𝛤n ∪ {Dn} is inconsistent, then 𝛤n ⊢ ¬Dn , and hence both
of the following hold:

𝛤n ⊢ ∃xn An (xn) 𝛤n ⊢ ¬An (cn)

Since cn does not occur in 𝛤n or in An (xn), Theorems 10.25
and 11.25 applies. From 𝛤n ⊢ ¬An (cn), we obtain 𝛤n ⊢
∀xn ¬An (xn). Thus we have that both 𝛤n ⊢ ∃xn An (xn) and 𝛤n ⊢
∀xn ¬An (xn), so 𝛤n itself is inconsistent. (Note that ∀xn ¬An (xn) ⊢
¬∃xn An (xn).) Contradiction: 𝛤n was supposed to be consistent.
Hence 𝛤n ∪ {Dn} is consistent. □

We’ll now show that complete, consistent sets which are satu-
rated have the property that it contains a universally quantified
sentence iff it contains all its instances and it contains an existen-
tially quantified sentence iff it contains at least one instance. We’ll

CHAPTER 12. THE COMPLETENESS THEOREM 224

use this to show that the structure we’ll generate from a complete,
consistent, saturated set makes all its quantified sentences true.

Proposition 12.7. Suppose 𝛤 is complete, consistent, and saturated.

1. ∃x A(x) ∈ 𝛤 iff A(t) ∈ 𝛤 for at least one closed term t .

2. ∀x A(x) ∈ 𝛤 iff A(t) ∈ 𝛤 for all closed terms t .

Proof. 1. First suppose that ∃x A(x) ∈ 𝛤 . Because 𝛤 is satu-
rated, (∃x A(x) → A(c)) ∈ 𝛤 for some constant symbol c .
By Propositions 10.24 and 11.24, item (1), and Proposi-
tion 12.2(1), A(c) ∈ 𝛤 .

For the other direction, saturation is not necessary: Sup-
pose A(t) ∈ 𝛤 . Then 𝛤 ⊢ ∃x A(x) by Propositions 10.26
and 11.26, item (1). By Proposition 12.2(1), ∃x A(x) ∈ 𝛤 .

2. Exercise. □

12.5 Lindenbaum’s Lemma

We now prove a lemma that shows that any consistent set of sen-
tences is contained in some set of sentences which is not just
consistent, but also complete. The proof works by adding one
sentence at a time, guaranteeing at each step that the set remains
consistent. We do this so that for every A, either A or ¬A gets
added at some stage. The union of all stages in that construction
then contains either A or its negation ¬A and is thus complete.
It is also consistent, since we made sure at each stage not to in-
troduce an inconsistency.

Lemma 12.8 (Lindenbaum’s Lemma). Every consistent set 𝛤 in
a language L can be extended to a complete and consistent set 𝛤∗.

CHAPTER 12. THE COMPLETENESS THEOREM 225

Proof. Let 𝛤 be consistent. Let A0, A1, . . . be an enumeration of
all the sentences of L. Define 𝛤0 = 𝛤 , and

𝛤n+1 =

{︄
𝛤n ∪ {An} if 𝛤n ∪ {An} is consistent;

𝛤n ∪ {¬An} otherwise.

Let 𝛤∗ =
⋃︁
n≥0 𝛤n .

Each 𝛤n is consistent: 𝛤0 is consistent by definition. If
𝛤n+1 = 𝛤n ∪ {An}, this is because the latter is consistent. If it
isn’t, 𝛤n+1 = 𝛤n ∪ {¬An}. We have to verify that 𝛤n ∪ {¬An} is
consistent. Suppose it’s not. Then both 𝛤n ∪ {An} and 𝛤n ∪ {¬An}
are inconsistent. This means that 𝛤n would be inconsistent by
Propositions 10.21 and 11.21, contrary to the induction hypothe-
sis.

For every n and every i < n, 𝛤i ⊆ 𝛤n . This follows by a simple
induction on n. For n = 0, there are no i < 0, so the claim holds
automatically. For the inductive step, suppose it is true for n.
We have 𝛤n+1 = 𝛤n ∪ {An} or = 𝛤n ∪ {¬An} by construction. So
𝛤n ⊆ 𝛤n+1. If i < n, then 𝛤i ⊆ 𝛤n by inductive hypothesis, and so
⊆ 𝛤n+1 by transitivity of ⊆.

From this it follows that every finite subset of 𝛤∗ is a subset
of 𝛤n for some n, since each B ∈ 𝛤∗ not already in 𝛤0 is added at
some stage i . If n is the last one of these, then all B in the finite
subset are in 𝛤n . So, every finite subset of 𝛤∗ is consistent. By
Propositions 10.17 and 11.17, 𝛤∗ is consistent.

Every sentence of Frm(L) appears on the list used to de-
fine 𝛤∗. If An ∉ 𝛤∗, then that is because 𝛤n ∪ {An} was inconsis-
tent. But then ¬An ∈ 𝛤∗, so 𝛤∗ is complete. □

12.6 Construction of a Model

Right now we are not concerned about =, i.e., we only want to
show that a consistent set 𝛤 of sentences not containing = is satis-
fiable. We first extend 𝛤 to a consistent, complete, and saturated
set 𝛤∗. In this case, the definition of a model M(𝛤∗) is simple: We
take the set of closed terms of L′ as the domain. We assign every

CHAPTER 12. THE COMPLETENESS THEOREM 226

constant symbol to itself, and make sure that more generally, for
every closed term t , ValM (𝛤∗) (t) = t . The predicate symbols are
assigned extensions in such a way that an atomic sentence is true
in M(𝛤∗) iff it is in 𝛤∗. This will obviously make all the atomic
sentences in 𝛤∗ true in M(𝛤∗). The rest are true provided the 𝛤∗

we start with is consistent, complete, and saturated.

Definition 12.9 (Term model). Let 𝛤∗ be a complete and con-
sistent, saturated set of sentences in a language L. The term
model M(𝛤∗) of 𝛤∗ is the structure defined as follows:

1. The domain |M(𝛤∗) | is the set of all closed terms of L.

2. The interpretation of a constant symbol c is c itself:
cM (𝛤∗) = c .

3. The function symbol f is assigned the function which,
given as arguments the closed terms t1, . . . , tn , has as value
the closed term f (t1, . . . ,tn):

f M (𝛤∗) (t1, . . . ,tn) = f (t1, . . . ,tn)

4. If R is an n-place predicate symbol, then

⟨t1, . . . ,tn⟩ ∈ RM (𝛤∗) iff R (t1, . . . ,tn) ∈ 𝛤∗.

We will now check that we indeed have ValM (𝛤∗) (t) = t .

Lemma 12.10. Let M(𝛤∗) be the term model of Definition 12.9, then
ValM (𝛤∗) (t) = t .

Proof. The proof is by induction on t , where the base case, when
t is a constant symbol, follows directly from the definition of the
term model. For the induction step assume t1, . . . ,tn are closed
terms such that ValM (𝛤∗) (ti) = ti and that f is an n-ary function
symbol. Then

ValM (𝛤∗) (f (t1, . . . ,tn)) = f M (𝛤∗) (ValM (𝛤∗) (t1), . . . ,ValM (𝛤∗) (tn))

CHAPTER 12. THE COMPLETENESS THEOREM 227

= f M (𝛤∗) (t1, . . . ,tn)
= f (t1, . . . ,tn),

and so by induction this holds for every closed term t . □

A structure M may make an existentially quantified sen-
tence ∃x A(x) true without there being an instance A(t) that it
makes true. A structure M may make all instances A(t) of a uni-
versally quantified sentence ∀x A(x) true, without making ∀x A(x)
true. This is because in general not every element of |M | is the
value of a closed term (M may not be covered). This is the rea-
son the satisfaction relation is defined via variable assignments.
However, for our term model M(𝛤∗) this wouldn’t be necessary—
because it is covered. This is the content of the next result.

Proposition 12.11. Let M(𝛤∗) be the term model of Definition 12.9.

1. M(𝛤∗) ⊨ ∃x A(x) iff M(𝛤∗) ⊨ A(t) for at least one term t .

2. M(𝛤∗) ⊨ ∀x A(x) iff M(𝛤∗) ⊨ A(t) for all terms t .

Proof. 1. By Proposition 7.18, M(𝛤∗) ⊨ ∃x A(x) iff for at least
one variable assignment s , M(𝛤∗),s ⊨ A(x). As |M(𝛤∗) |
consists of the closed terms of L, this is the case iff there is
at least one closed term t such that s (x) = t and M(𝛤∗),s ⊨
A(x). By Proposition 7.22, M(𝛤∗),s ⊨ A(x) iff M(𝛤∗),s ⊨
A(t), where s (x) = t . By Proposition 7.17, M(𝛤∗),s ⊨ A(t)
iff M(𝛤∗) ⊨ A(t), since A(t) is a sentence.

2. Exercise. □

Lemma 12.12 (Truth Lemma). Suppose A does not contain =.
Then M(𝛤∗) ⊨ A iff A ∈ 𝛤∗.

Proof. We prove both directions simultaneously, and by induction
on A.

CHAPTER 12. THE COMPLETENESS THEOREM 228

1. A ≡ ⊥: M(𝛤∗) ⊭ ⊥ by definition of satisfaction. On the
other hand, ⊥ ∉ 𝛤∗ since 𝛤∗ is consistent.

2. A ≡ R (t1, . . . ,tn): M(𝛤∗) ⊨ R (t1, . . . ,tn) iff ⟨t1, . . . ,tn⟩ ∈
RM (𝛤∗) (by the definition of satisfaction) iff R (t1, . . . ,tn) ∈
𝛤∗ (by the construction of M(𝛤∗)).

3. A ≡ ¬B : M(𝛤∗) ⊨ A iff M(𝛤∗) ⊭ B (by definition of
satisfaction). By induction hypothesis, M(𝛤∗) ⊭ B iff B ∉

𝛤∗. Since 𝛤∗ is consistent and complete, B ∉ 𝛤∗ iff ¬B ∈ 𝛤∗.

4. A ≡ B ∧C : exercise.

5. A ≡ B ∨ C : M(𝛤∗) ⊨ A iff M(𝛤∗) ⊨ B or M(𝛤∗) ⊨ C
(by definition of satisfaction) iff B ∈ 𝛤∗ or C ∈ 𝛤∗ (by
induction hypothesis). This is the case iff (B ∨C) ∈ 𝛤∗ (by
Proposition 12.2(3)).

6. A ≡ B →C : exercise.

7. A ≡ ∀x B (x): exercise.

8. A ≡ ∃x B (x): M(𝛤∗) ⊨ A iff M(𝛤∗) ⊨ B (t) for at least
one term t (Proposition 12.11). By induction hypothesis,
this is the case iff B (t) ∈ 𝛤∗ for at least one term t . By
Proposition 12.7, this in turn is the case iff ∃x B (x) ∈ 𝛤∗.
□

12.7 Identity

The construction of the term model given in the preceding sec-
tion is enough to establish completeness for first-order logic for
sets 𝛤 that do not contain =. The term model satisfies every
A ∈ 𝛤∗ which does not contain = (and hence all A ∈ 𝛤). It does
not work, however, if = is present. The reason is that 𝛤∗ then
may contain a sentence t = t ′, but in the term model the value of
any term is that term itself. Hence, if t and t ′ are different terms,

CHAPTER 12. THE COMPLETENESS THEOREM 229

their values in the term model—i.e., t and t ′, respectively—are
different, and so t = t ′ is false. We can fix this, however, using a
construction known as “factoring.”

Definition 12.13. Let 𝛤∗ be a consistent and complete set of
sentences in L. We define the relation ≈ on the set of closed
terms of L by

t ≈ t ′ iff t = t ′ ∈ 𝛤∗

Proposition 12.14. The relation ≈ has the following properties:

1. ≈ is reflexive.

2. ≈ is symmetric.

3. ≈ is transitive.

4. If t ≈ t ′, f is a function symbol, and t1, . . . , ti−1, ti+1, . . . , tn
are terms, then

f (t1, . . . ,ti−1,t ,ti+1, . . . ,tn) ≈ f (t1, . . . ,ti−1,t ′,ti+1, . . . ,tn).

5. If t ≈ t ′, R is a predicate symbol, and t1, . . . , ti−1, ti+1, . . . , tn
are terms, then

R (t1, . . . ,ti−1,t ,ti+1, . . . ,tn) ∈ 𝛤∗ iff

R (t1, . . . ,ti−1,t ′,ti+1, . . . ,tn) ∈ 𝛤∗.

Proof. Since 𝛤∗ is consistent and complete, t = t ′ ∈ 𝛤∗ iff 𝛤∗ ⊢
t = t ′. Thus it is enough to show the following:

1. 𝛤∗ ⊢ t = t for all terms t .

2. If 𝛤∗ ⊢ t = t ′ then 𝛤∗ ⊢ t ′ = t .

3. If 𝛤∗ ⊢ t = t ′ and 𝛤∗ ⊢ t ′ = t ′′, then 𝛤∗ ⊢ t = t ′′.

CHAPTER 12. THE COMPLETENESS THEOREM 230

4. If 𝛤∗ ⊢ t = t ′, then

𝛤∗ ⊢ f (t1, . . . ,ti−1,t ,ti+1, , . . . ,tn) = f (t1, . . . ,ti−1,t ′,ti+1, . . . ,tn)

for every n-place function symbol f and terms t1, . . . , ti−1,
ti+1, . . . , tn .

5. If 𝛤∗ ⊢ t = t ′ and 𝛤∗ ⊢ R (t1, . . . ,ti−1,t ,ti+1, . . . ,tn), then
𝛤∗ ⊢ R (t1, . . . ,ti−1,t ′,ti+1, . . . ,tn) for every n-place predicate
symbol R and terms t1, . . . , ti−1, ti+1, . . . , tn . □

Definition 12.15. Suppose 𝛤∗ is a consistent and complete set
in a language L, t is a term, and ≈ as in the previous definition.
Then:

[t]≈ = {t ′ : t ′ ∈ Trm(L),t ≈ t ′}

and Trm(L)/≈= {[t]≈ : t ∈ Trm(L)}.

Definition 12.16. Let M = M(𝛤∗) be the term model for 𝛤∗.
Then M/≈ is the following structure:

1. |M/≈ | = Trm(L)/≈.

2. cM/≈ = [c]≈

3. f M/≈ ([t1]≈, . . . , [tn]≈) = [f (t1, . . . ,tn)]≈

4. ⟨[t1]≈, . . . , [tn]≈⟩ ∈ RM/≈ iff M ⊨ R (t1, . . . ,tn).

Note that we have defined f M/≈ and RM/≈ for elements of
Trm(L)/≈ by referring to them as [t]≈, i.e., via representatives t ∈
[t]≈. We have to make sure that these definitions do not depend
on the choice of these representatives, i.e., that for some other
choices t ′ which determine the same equivalence classes ([t]≈ =

[t ′]≈), the definitions yield the same result. For instance, if R
is a one-place predicate symbol, the last clause of the definition

CHAPTER 12. THE COMPLETENESS THEOREM 231

says that [t]≈ ∈ RM/≈ iff M ⊨ R (t). If for some other term t ′ with
t ≈ t ′, M ⊭ R (t), then the definition would require [t ′]≈ ∉ RM/≈ .
If t ≈ t ′, then [t]≈ = [t ′]≈, but we can’t have both [t]≈ ∈ RM/≈

and [t]≈ ∉ RM/≈ . However, Proposition 12.14 guarantees that
this cannot happen.

Proposition 12.17. M/≈ is well defined, i.e., if t1, . . . , tn , t ′1, . . . , t ′n
are terms, and ti ≈ t ′i then

1. [f (t1, . . . ,tn)]≈ = [f (t ′1, . . . ,t
′
n)]≈, i.e.,

f (t1, . . . ,tn) ≈ f (t ′1, . . . ,t
′
n)

and

2. M ⊨ R (t1, . . . ,tn) iff M ⊨ R (t ′1, . . . ,t
′
n), i.e.,

R (t1, . . . ,tn) ∈ 𝛤∗ iff R (t ′1, . . . ,t
′
n) ∈ 𝛤∗.

Proof. Follows from Proposition 12.14 by induction on n. □

As in the case of the term model, before proving the truth
lemma we need the following lemma.

Lemma 12.18. Let M = M(𝛤∗), then ValM/≈ (t) = [t]≈.

Proof. The proof is similar to that of Lemma 12.10. □

Lemma 12.19. M/≈ ⊨ A iff A ∈ 𝛤∗ for all sentences A.

Proof. By induction on A, just as in the proof of Lemma 12.12.
The only case that needs additional attention is when A ≡ t = t ′.

M/≈ ⊨ t = t ′ iff [t]≈ = [t ′]≈ (by definition of M/≈)

iff t ≈ t ′ (by definition of [t]≈)

iff t = t ′ ∈ 𝛤∗ (by definition of ≈). □

CHAPTER 12. THE COMPLETENESS THEOREM 232

Note that while M(𝛤∗) is always countable and infinite, M/≈
may be finite, since it may turn out that there are only finitely
many classes [t]≈. This is to be expected, since 𝛤 may contain
sentences which require any structure in which they are true to
be finite. For instance, ∀x ∀y x = y is a consistent sentence, but
is satisfied only in structures with a domain that contains exactly
one element.

12.8 The Completeness Theorem

Let’s combine our results: we arrive at the completeness theo-
rem.

Theorem 12.20 (Completeness Theorem). Let 𝛤 be a set of
sentences. If 𝛤 is consistent, it is satisfiable.

Proof. Suppose 𝛤 is consistent. By Lemma 12.6, there is a satu-
rated consistent set 𝛤 ′ ⊇ 𝛤 . By Lemma 12.8, there is a 𝛤∗ ⊇ 𝛤 ′

which is consistent and complete. Since 𝛤 ′ ⊆ 𝛤∗, for each for-
mulaA(x), 𝛤∗ contains a sentence of the form ∃x A(x)→A(c) and
so 𝛤∗ is saturated. If 𝛤 does not contain =, then by Lemma 12.12,
M(𝛤∗) ⊨ A iff A ∈ 𝛤∗. From this it follows in particular that for
all A ∈ 𝛤 , M(𝛤∗) ⊨ A, so 𝛤 is satisfiable. If 𝛤 does contain =,
then by Lemma 12.19, for all sentences A, M/≈ ⊨ A iff A ∈ 𝛤∗. In
particular, M/≈ ⊨ A for all A ∈ 𝛤 , so 𝛤 is satisfiable. □

Corollary 12.21 (Completeness Theorem, Second Version).
For all 𝛤 and sentences A: if 𝛤 ⊨ A then 𝛤 ⊢ A.

Proof. Note that the 𝛤 ’s in Corollary 12.21 and Theorem 12.20
are universally quantified. To make sure we do not confuse our-
selves, let us restate Theorem 12.20 using a different variable: for
any set of sentences 𝛥, if 𝛥 is consistent, it is satisfiable. By con-
traposition, if 𝛥 is not satisfiable, then 𝛥 is inconsistent. We will
use this to prove the corollary.

CHAPTER 12. THE COMPLETENESS THEOREM 233

Suppose that 𝛤 ⊨ A. Then 𝛤 ∪{¬A} is unsatisfiable by Propo-
sition 7.27. Taking 𝛤 ∪ {¬A} as our 𝛥, the previous version of
Theorem 12.20 gives us that 𝛤 ∪ {¬A} is inconsistent. By Propo-
sitions 10.19 and 11.19, 𝛤 ⊢ A. □

12.9 The Compactness Theorem

One important consequence of the completeness theorem is the
compactness theorem. The compactness theorem states that if
each finite subset of a set of sentences is satisfiable, the entire
set is satisfiable—even if the set itself is infinite. This is far from
obvious. There is nothing that seems to rule out, at first glance at
least, the possibility of there being infinite sets of sentences which
are contradictory, but the contradiction only arises, so to speak,
from the infinite number. The compactness theorem says that
such a scenario can be ruled out: there are no unsatisfiable infinite
sets of sentences each finite subset of which is satisfiable. Like the
completeness theorem, it has a version related to entailment: if an
infinite set of sentences entails something, already a finite subset
does.

Definition 12.22. A set 𝛤 of formulas is finitely satisfiable iff ev-
ery finite 𝛤0 ⊆ 𝛤 is satisfiable.

Theorem 12.23 (Compactness Theorem). The following hold
for any sentences 𝛤 and A:

1. 𝛤 ⊨ A iff there is a finite 𝛤0 ⊆ 𝛤 such that 𝛤0 ⊨ A.

2. 𝛤 is satisfiable iff it is finitely satisfiable.

Proof. We prove (2). If 𝛤 is satisfiable, then there is a structure M
such that M ⊨ A for all A ∈ 𝛤 . Of course, this M also satisfies
every finite subset of 𝛤 , so 𝛤 is finitely satisfiable.

Now suppose that 𝛤 is finitely satisfiable. Then every finite
subset 𝛤0 ⊆ 𝛤 is satisfiable. By soundness (Corollaries 11.29

CHAPTER 12. THE COMPLETENESS THEOREM 234

and 10.31), every finite subset is consistent. Then 𝛤 itself must
be consistent by Propositions 10.17 and 11.17. By completeness
(Theorem 12.20), since 𝛤 is consistent, it is satisfiable. □

Example 12.24. In every model M of a theory 𝛤 , each term t of
course picks out an element of |M |. Can we guarantee that it is
also true that every element of |M | is picked out by some term or
other? In other words, are there theories 𝛤 all models of which
are covered? The compactness theorem shows that this is not the
case if 𝛤 has infinite models. Here’s how to see this: Let M be
an infinite model of 𝛤 , and let c be a constant symbol not in the
language of 𝛤 . Let 𝛥 be the set of all sentences c ≠ t for t a term
in the language L of 𝛤 , i.e.,

𝛥 = {c ≠ t : t ∈ Trm(L)}.

A finite subset of 𝛤 ∪ 𝛥 can be written as 𝛤 ′ ∪ 𝛥′, with 𝛤 ′ ⊆ 𝛤

and 𝛥′ ⊆ 𝛥. Since 𝛥′ is finite, it can contain only finitely many
terms. Let a ∈ |M | be an element of |M | not picked out by any
of them, and let M′ be the structure that is just like M, but also
cM′

= a. Since a ≠ ValM (t) for all t occuring in 𝛥′, M′ ⊨ 𝛥′.
Since M ⊨ 𝛤 , 𝛤 ′ ⊆ 𝛤 , and c does not occur in 𝛤 , also M′ ⊨ 𝛤 ′.
Together, M′ ⊨ 𝛤 ′ ∪ 𝛥′ for every finite subset 𝛤 ′ ∪ 𝛥′ of 𝛤 ∪ 𝛥. So
every finite subset of 𝛤 ∪ 𝛥 is satisfiable. By compactness, 𝛤 ∪ 𝛥

itself is satisfiable. So there are models M ⊨ 𝛤 ∪ 𝛥. Every such
M is a model of 𝛤 , but is not covered, since ValM (c) ≠ ValM (t)
for all terms t of L.

Example 12.25. Consider a language L containing the predi-
cate symbol <, constant symbols 0, 1, and function symbols +,
×, −, ÷. Let 𝛤 be the set of all sentences in this language true in
Q with domain Q and the obvious interpretations. 𝛤 is the set of
all sentences of L true about the rational numbers. Of course,
in Q (and even in R), there are no numbers which are greater
than 0 but less than 1/k for all k ∈ Z+. Such a number, if it
existed, would be an infinitesimal: non-zero, but infinitely small.
The compactness theorem shows that there are models of 𝛤 in

CHAPTER 12. THE COMPLETENESS THEOREM 235

which infinitesimals exist: Let 𝛥 be {0 < c }∪{c < (1÷k) : k ∈ Z+}
(where k = (1 + (1 + · · · + (1 + 1) . . .)) with k 1’s). For any finite
subset 𝛥0 of 𝛥 there is a K such that all the sentences c < (1÷ k)
in 𝛥0 have k < K . If we expand Q to Q′ with cQ′

= 1/K we have
that Q′ ⊨ 𝛤 ∪ 𝛥0, and so 𝛤 ∪ 𝛥 is finitely satisfiable (Exercise:
prove this in detail). By compactness, 𝛤 ∪ 𝛥 is satisfiable. Any
model S of 𝛤 ∪ 𝛥 contains an infinitesimal, namely cS.

Example 12.26. We know that first-order logic with identity
predicate can express that the size of the domain must have some
minimal size: The sentence A≥n (which says “there are at least
n distinct objects”) is true only in structures where |M | has at
least n objects. So if we take

𝛥 = {A≥n : n ≥ 1}

then any model of 𝛥 must be infinite. Thus, we can guarantee that
a theory only has infinite models by adding 𝛥 to it: the models
of 𝛤 ∪ 𝛥 are all and only the infinite models of 𝛤 .

So first-order logic can express infinitude. The compactness
theorem shows that it cannot express finitude, however. For sup-
pose some set of sentences 𝛬 were satisfied in all and only finite
structures. Then 𝛥 ∪ 𝛬 is finitely satisfiable. Why? Suppose
𝛥′ ∪ 𝛬′ ⊆ 𝛥 ∪ 𝛬 is finite with 𝛥′ ⊆ 𝛥 and 𝛬′ ⊆ 𝛬. Let n be the
largest number such that A≥n ∈ 𝛥′. 𝛬, being satisfied in all finite
structures, has a model M with finitely many but ≥ n elements.
But then M ⊨ 𝛥′ ∪ 𝛬′. By compactness, 𝛥 ∪ 𝛬 has an infinite
model, contradicting the assumption that 𝛬 is satisfied only in
finite structures.

12.10 A Direct Proof of the Compactness
Theorem

We can prove the Compactness Theorem directly, without appeal-
ing to the Completeness Theorem, using the same ideas as in the

CHAPTER 12. THE COMPLETENESS THEOREM 236

proof of the completeness theorem. In the proof of the Complete-
ness Theorem we started with a consistent set 𝛤 of sentences,
expanded it to a consistent, saturated, and complete set 𝛤∗ of
sentences, and then showed that in the term model M(𝛤∗) con-
structed from 𝛤∗, all sentences of 𝛤 are true, so 𝛤 is satisfiable.

We can use the same method to show that a finitely satis-
fiable set of sentences is satisfiable. We just have to prove the
corresponding versions of the results leading to the truth lemma
where we replace “consistent” with “finitely satisfiable.”

Proposition 12.27. Suppose 𝛤 is complete and finitely satisfiable.
Then:

1. (A ∧ B) ∈ 𝛤 iff both A ∈ 𝛤 and B ∈ 𝛤 .

2. (A ∨ B) ∈ 𝛤 iff either A ∈ 𝛤 or B ∈ 𝛤 .

3. (A→ B) ∈ 𝛤 iff either A ∉ 𝛤 or B ∈ 𝛤 .

Lemma 12.28. Every finitely satisfiable set 𝛤 can be extended to a
saturated finitely satisfiable set 𝛤 ′.

Proposition 12.29. Suppose 𝛤 is complete, finitely satisfiable, and
saturated.

1. ∃x A(x) ∈ 𝛤 iff A(t) ∈ 𝛤 for at least one closed term t .

2. ∀x A(x) ∈ 𝛤 iff A(t) ∈ 𝛤 for all closed terms t .

Lemma 12.30. Every finitely satisfiable set 𝛤 can be extended to
a complete and finitely satisfiable set 𝛤∗.

CHAPTER 12. THE COMPLETENESS THEOREM 237

Theorem 12.31 (Compactness). 𝛤 is satisfiable if and only if it
is finitely satisfiable.

Proof. If 𝛤 is satisfiable, then there is a structure M such that
M ⊨ A for all A ∈ 𝛤 . Of course, this M also satisfies every finite
subset of 𝛤 , so 𝛤 is finitely satisfiable.

Now suppose that 𝛤 is finitely satisfiable. By Lemma 12.28,
there is a finitely satisfiable, saturated set 𝛤 ′ ⊇ 𝛤 . By
Lemma 12.30, 𝛤 ′ can be extended to a complete and finitely
satisfiable set 𝛤∗, and 𝛤∗ is still saturated. Construct the term
model M(𝛤∗) as in Definition 12.9. Note that Proposition 12.11
did not rely on the fact that 𝛤∗ is consistent (or complete or satu-
rated, for that matter), but just on the fact that M(𝛤∗) is covered.
The proof of the Truth Lemma (Lemma 12.12) goes through if
we replace references to Proposition 12.2 and Proposition 12.7 by
references to Proposition 12.27 and Proposition 12.29 □

12.11 The Löwenheim-Skolem Theorem

The Löwenheim-Skolem Theorem says that if a theory has an in-
finite model, then it also has a model that is at most countably
infinite. An immediate consequence of this fact is that first-order
logic cannot express that the size of a structure is uncountable:
any sentence or set of sentences satisfied in all uncountable struc-
tures is also satisfied in some countable structure.

Theorem 12.32. If 𝛤 is consistent then it has a countable model, i.e.,
it is satisfiable in a structure whose domain is either finite or countably
infinite.

Proof. If 𝛤 is consistent, the structure M delivered by the proof
of the completeness theorem has a domain |M | that is no larger
than the set of the terms of the language L. So M is at most
countably infinite. □

CHAPTER 12. THE COMPLETENESS THEOREM 238

Theorem 12.33. If 𝛤 is a consistent set of sentences in the language
of first-order logic without identity, then it has a countably infinite
model, i.e., it is satisfiable in a structure whose domain is infinite and
countable.

Proof. If 𝛤 is consistent and contains no sentences in which iden-
tity appears, then the structure M delivered by the proof of the
completness theorem has a domain |M | identical to the set of
terms of the language L′. So M is countably infinite, since
Trm(L′) is. □

Example 12.34 (Skolem’s Paradox). Zermelo-Fraenkel set
theory ZFC is a very powerful framework in which practically
all mathematical statements can be expressed, including facts
about the sizes of sets. So for instance, ZFC can prove that
the set R of real numbers is uncountable, it can prove Cantor’s
Theorem that the power set of any set is larger than the set
itself, etc. If ZFC is consistent, its models are all infinite, and
moreover, they all contain elements about which the theory says
that they are uncountable, such as the element that makes true
the theorem of ZFC that the power set of the natural numbers
exists. By the Löwenheim-Skolem Theorem, ZFC also has count-
able models—models that contain “uncountable” sets but which
themselves are countable.

Summary

In order to show that Q represents all computable functions, we
need a precise model of computability that we can take as the
basis for a proof. There are, of course, many models of com-
putability, such as Turing machines. One model that plays a sig-
nificant role historically—it’s one of the first models proposed,
and is also the one used by Gödel himself—is that of the recur-
sive functions. The recursive functions are a class of arithmeti-
cal functions—that is, their domain and range are the natural
numbers—that can be defined from a few basic functions using a

CHAPTER 12. THE COMPLETENESS THEOREM 239

few operations. The basic functions are zero, succ, and the pro-
jection functions. The operations are composition, primitive
recursion, and regular minimization. Composition is simply a
general version of “chaining together” functions: first apply one,
then apply the other to the result. Primitive recursion defines a
new function f from two functions g , h already defined, by stipu-
lating that the value of f for 0 is given by g , and the value for any
number n + 1 is given by h applied to f (n). Functions that can
be defined using just these two principles are called primitive
recursive. A relation is primitive recursive iff its characteristic
function is. It turns out that a whole list of interesting functions
and relations are primitive recursive (such as addition, multi-
plication, exponentiation, divisibility), and that we can define
new primitive recursive functions and relations from old ones us-
ing principles such as bounded quantification and bounded min-
imization. In particular, this allowed us to show that we can deal
with sequences of numbers in primitive recursive ways. That is,
there is a way to “code” sequences of numbers as single num-
bers in such a way that we can compute the i -the element, the
length, the concatenation of two sequences, etc., all using prim-
itive recursive functions operating on these codes. To obtain all
the computable functions, we finally added definition by regular
minimization to composition and primitive recursion. A func-
tion g (x ,y) is regular iff, for every y it takes the value 0 for at
least one x . If f is regular, the least x such that g (x ,y) = 0 al-
ways exists, and can be found simply by computing all the values
of g (0,y), g (1,y), etc., until one of them is = 0. The resulting
function f (y) = 𝜇x g (x ,y) = 0 is the function defined by regular
minimization from g . It is always total and computable. The re-
sulting set of functions are called general recursive. One version
of the Church-Turing Thesis says that the computable arithmeti-
cal functions are exactly the general recursive ones.

CHAPTER 12. THE COMPLETENESS THEOREM 240

Problems

Problem 12.1. Complete the proof of Proposition 12.2.

Problem 12.2. Complete the proof of Proposition 12.11.

Problem 12.3. Complete the proof of Lemma 12.12.

Problem 12.4. Complete the proof of Proposition 12.14.

Problem 12.5. Complete the proof of Lemma 12.18.

Problem 12.6. Use Corollary 12.21 to prove Theorem 12.20,
thus showing that the two formulations of the completeness the-
orem are equivalent.

Problem 12.7. In order for a derivation system to be complete,
its rules must be strong enough to prove every unsatisfiable set
inconsistent. Which of the rules of derivation were necessary to
prove completeness? Are any of these rules not used anywhere
in the proof? In order to answer these questions, make a list or
diagram that shows which of the rules of derivation were used in
which results that lead up to the proof of Theorem 12.20. Be sure
to note any tacit uses of rules in these proofs.

Problem 12.8. Prove (1) of Theorem 12.23.

Problem 12.9. In the standard model of arithmetic N, there is
no element k ∈ |N | which satisfies every formula n < x (where n
is 0′...′ with n ′’s). Use the compactness theorem to show that the
set of sentences in the language of arithmetic which are true in
the standard model of arithmetic N are also true in a structure N′

that contains an element which does satisfy every formula n < x .

Problem 12.10. Prove Proposition 12.27. Avoid the use of ⊢.

Problem 12.11. Prove Lemma 12.28. (Hint: The crucial step is
to show that if 𝛤n is finitely satisfiable, so is 𝛤n ∪ {Dn}, without
any appeal to derivations or consistency.)

CHAPTER 12. THE COMPLETENESS THEOREM 241

Problem 12.12. Prove Proposition 12.29.

Problem 12.13. Prove Lemma 12.30. (Hint: the crucial step is
to show that if 𝛤n is finitely satisfiable, then either 𝛤n ∪ {An} or
𝛤n ∪ {¬An} is finitely satisfiable.)

Problem 12.14. Write out the complete proof of the Truth
Lemma (Lemma 12.12) in the version required for the proof of
Theorem 12.31.

CHAPTER 13

Beyond
First-order
Logic
13.1 Overview

First-order logic is not the only system of logic of interest: there
are many extensions and variations of first-order logic. A logic
typically consists of the formal specification of a language, usu-
ally, but not always, a deductive system, and usually, but not
always, an intended semantics. But the technical use of the term
raises an obvious question: what do logics that are not first-order
logic have to do with the word “logic,” used in the intuitive or
philosophical sense? All of the systems described below are de-
signed to model reasoning of some form or another; can we say
what makes them logical?

No easy answers are forthcoming. The word “logic” is used
in different ways and in different contexts, and the notion, like
that of “truth,” has been analyzed from numerous philosophical
stances. For example, one might take the goal of logical reason-
ing to be the determination of which statements are necessarily

242

CHAPTER 13. BEYOND FIRST-ORDER LOGIC 243

true, true a priori, true independent of the interpretation of the
nonlogical terms, true by virtue of their form, or true by linguistic
convention; and each of these conceptions requires a good deal
of clarification. Even if one restricts one’s attention to the kind of
logic used in mathematics, there is little agreement as to its scope.
For example, in the Principia Mathematica, Russell and Whitehead
tried to develop mathematics on the basis of logic, in the logicist
tradition begun by Frege. Their system of logic was a form of
higher-type logic similar to the one described below. In the end
they were forced to introduce axioms which, by most standards,
do not seem purely logical (notably, the axiom of infinity, and
the axiom of reducibility), but one might nonetheless hold that
some forms of higher-order reasoning should be accepted as logi-
cal. In contrast, Quine, whose ontology does not admit “proposi-
tions” as legitimate objects of discourse, argues that second-order
and higher-order logic are really manifestations of set theory in
sheep’s clothing; in other words, systems involving quantification
over predicates are not purely logical.

For now, it is best to leave such philosophical issues for a rainy
day, and simply think of the systems below as formal idealizations
of various kinds of reasoning, logical or otherwise.

13.2 Many-Sorted Logic

In first-order logic, variables and quantifiers range over a single
domain. But it is often useful to have multiple (disjoint) domains:
for example, you might want to have a domain of numbers, a do-
main of geometric objects, a domain of functions from numbers
to numbers, a domain of abelian groups, and so on.

Many-sorted logic provides this kind of framework. One
starts with a list of “sorts”—the “sort” of an object indicates the
“domain” it is supposed to inhabit. One then has variables and
quantifiers for each sort, and (usually) an identity predicate for
each sort. Functions and relations are also “typed” by the sorts
of objects they can take as arguments. Otherwise, one keeps the

CHAPTER 13. BEYOND FIRST-ORDER LOGIC 244

usual rules of first-order logic, with versions of the quantifier-rules
repeated for each sort.

For example, to study international relations we might choose
a language with two sorts of objects, French citizens and German
citizens. We might have a unary relation, “drinks wine,” for ob-
jects of the first sort; another unary relation, “eats wurst,” for
objects of the second sort; and a binary relation, “forms a multi-
national married couple,” which takes two arguments, where the
first argument is of the first sort and the second argument is of
the second sort. If we use variables a, b , c to range over French
citizens and x , y , z to range over German citizens, then

∀a ∀x [(Marr iedTo (a,x)→(DrinksW ine (a)∨¬EatsWurst (x))]]

asserts that if any French person is married to a German, either
the French person drinks wine or the German doesn’t eat wurst.

Many-sorted logic can be embedded in first-order logic in a
natural way, by lumping all the objects of the many-sorted do-
mains together into one first-order domain, using unary predi-
cate symbols to keep track of the sorts, and relativizing quanti-
fiers. For example, the first-order language corresponding to the
example above would have unary predicate symbols “German”
and “F rench,” in addition to the other relations described, with
the sort requirements erased. A sorted quantifier ∀x A, where x
is a variable of the German sort, translates to

∀x (German(x) → A).

We need to add axioms that insure that the sorts are separate—
e.g., ∀x ¬(German(x)∧F rench(x))—as well as axioms that guar-
antee that “drinks wine” only holds of objects satisfying the pred-
icate F rench(x), etc. With these conventions and axioms, it is
not difficult to show that many-sorted sentences translate to first-
order sentences, and many-sorted derivations translate to first-
order derivations. Also, many-sorted structures “translate” to cor-
responding first-order structures and vice-versa, so we also have
a completeness theorem for many-sorted logic.

CHAPTER 13. BEYOND FIRST-ORDER LOGIC 245

13.3 Second-Order logic

The language of second-order logic allows one to quantify not
just over a domain of individuals, but over relations on that do-
main as well. Given a first-order language L, for each k one adds
variables R which range over k -ary relations, and allows quantifi-
cation over those variables. If R is a variable for a k -ary rela-
tion, and t1, . . . , tk are ordinary (first-order) terms, R (t1, . . . ,tk)
is an atomic formula. Otherwise, the set of formulas is defined
just as in the case of first-order logic, with additional clauses for
second-order quantification. Note that we only have the identity
predicate for first-order terms: if R and S are relation variables
of the same arity k , we can define R = S to be an abbreviation
for

∀x1 . . . ∀xk (R (x1, . . . ,xk) ↔ S (x1, . . . ,xk)).
The rules for second-order logic simply extend the quanti-

fier rules to the new second order variables. Here, however, one
has to be a little bit careful to explain how these variables in-
teract with the predicate symbols of L, and with formulas of L
more generally. At the bare minimum, relation variables count
as terms, so one has inferences of the form

A(R) ⊢ ∃R A(R)

But if L is the language of arithmetic with a constant relation
symbol <, one would also expect the following inference to be
valid:

x < y ⊢ ∃R R (x ,y)
or for a given formula A,

A(x1, . . . ,xk) ⊢ ∃R R (x1, . . . ,xk)

More generally, we might want to allow inferences of the form

A[𝜆 x⃗ .B (x⃗)/R] ⊢ ∃R A

where A[𝜆 x⃗ .B (x⃗)/R] denotes the result of replacing every atomic
formula of the form Rt1, . . . ,tk in A by B (t1, . . . ,tk). This last rule

CHAPTER 13. BEYOND FIRST-ORDER LOGIC 246

is equivalent to having a comprehension schema, i.e., an axiom of
the form

∃R ∀x1, . . . ,xk (A(x1, . . . ,xk) ↔R (x1, . . . ,xk)),

one for each formula A in the second-order language, in which
R is not a free variable. (Exercise: show that if R is allowed to
occur in A, this schema is inconsistent!)

When logicians refer to the “axioms of second-order logic”
they usually mean the minimal extension of first-order logic by
second-order quantifier rules together with the comprehension
schema. But it is often interesting to study weaker subsystems of
these axioms and rules. For example, note that in its full gen-
erality the axiom schema of comprehension is impredicative: it
allows one to assert the existence of a relation R (x1, . . . ,xk) that
is “defined” by a formula with second-order quantifiers; and these
quantifiers range over the set of all such relations—a set which
includesR itself! Around the turn of the twentieth century, a com-
mon reaction to Russell’s paradox was to lay the blame on such
definitions, and to avoid them in developing the foundations of
mathematics. If one prohibits the use of second-order quantifiers
in the formula A, one has a predicative form of comprehension,
which is somewhat weaker.

From the semantic point of view, one can think of a second-
order structure as consisting of a first-order structure for the lan-
guage, coupled with a set of relations on the domain over which
the second-order quantifiers range (more precisely, for each k
there is a set of relations of arity k). Of course, if comprehen-
sion is included in the derivation system, then we have the added
requirement that there are enough relations in the “second-order
part” to satisfy the comprehension axioms—otherwise the deriva-
tion system is not sound! One easy way to insure that there are
enough relations around is to take the second-order part to con-
sist of all the relations on the first-order part. Such a structure is
called full, and, in a sense, is really the “intended structure” for
the language. If we restrict our attention to full structures we have

CHAPTER 13. BEYOND FIRST-ORDER LOGIC 247

what is known as the full second-order semantics. In that case,
specifying a structure boils down to specifying the first-order part,
since the contents of the second-order part follow from that im-
plicitly.

To summarize, there is some ambiguity when talking about
second-order logic. In terms of the derivation system, one might
have in mind either

1. A “minimal” second-order derivation system, together with
some comprehension axioms.

2. The “standard” second-order derivation system, with full
comprehension.

In terms of the semantics, one might be interested in either

1. The “weak” semantics, where a structure consists of a first-
order part, together with a second-order part big enough
to satisfy the comprehension axioms.

2. The “standard” second-order semantics, in which one con-
siders full structures only.

When logicians do not specify the derivation system or the se-
mantics they have in mind, they are usually refering to the second
item on each list. The advantage to using this semantics is that,
as we will see, it gives us categorical descriptions of many natural
mathematical structures; at the same time, the derivation system
is quite strong, and sound for this semantics. The drawback is
that the derivation system is not complete for the semantics; in
fact, no effectively given derivation system is complete for the
full second-order semantics. On the other hand, we will see that
the derivation system is complete for the weakened semantics;
this implies that if a sentence is not provable, then there is some
structure, not necessarily the full one, in which it is false.

The language of second-order logic is quite rich. One can
identify unary relations with subsets of the domain, and so in

CHAPTER 13. BEYOND FIRST-ORDER LOGIC 248

particular you can quantify over these sets; for example, one can
express induction for the natural numbers with a single axiom

∀R ((R (0) ∧ ∀x (R (x) →R (x ′))) → ∀x R (x)).

If one takes the language of arithmetic to have symbols 0,′,+,×
and <, one can add the following axioms to describe their behav-
ior:

1. ∀x ¬x ′ = 0

2. ∀x ∀y (s (x) = s (y) → x = y)

3. ∀x (x + 0) = x

4. ∀x ∀y (x + y ′) = (x + y)′

5. ∀x (x × 0) = 0

6. ∀x ∀y (x × y ′) = ((x × y) + x)

7. ∀x ∀y (x < y ↔∃z y = (x + z ′))

It is not difficult to show that these axioms, together with the
axiom of induction above, provide a categorical description of
the structure N, the standard model of arithmetic, provided we
are using the full second-order semantics. Given any structure M
in which these axioms are true, define a function f from N to the
domain of M using ordinary recursion on N, so that f (0) = 0M

and f (x + 1) = ′M (f (x)). Using ordinary induction on N and the
fact that axioms (1) and (2) hold in M, we see that f is injective.
To see that f is surjective, let P be the set of elements of |M |
that are in the range of f . Since M is full, P is in the second-
order domain. By the construction of f , we know that 0M is in P ,
and that P is closed under ′M. The fact that the induction axiom
holds in M (in particular, for P) guarantees that P is equal to the
entire first-order domain of M. This shows that f is a bijection.
Showing that f is a homomorphism is no more difficult, using
ordinary induction on N repeatedly.

CHAPTER 13. BEYOND FIRST-ORDER LOGIC 249

In set-theoretic terms, a function is just a special kind of re-
lation; for example, a unary function f can be identified with a
binary relation R satisfying ∀x ∃!y R (x ,y). As a result, one can
quantify over functions too. Using the full semantics, one can
then define the class of infinite structures to be the class of struc-
tures M for which there is an injective function from the domain
of M to a proper subset of itself:

∃f (∀x ∀y (f (x) = f (y) → x = y) ∧ ∃y ∀x f (x) ≠ y).

The negation of this sentence then defines the class of finite struc-
tures.

In addition, one can define the class of well-orderings, by
adding the following to the definition of a linear ordering:

∀P (∃x P (x) → ∃x (P (x) ∧ ∀y (y < x →¬P (y)))).

This asserts that every non-empty set has a least element, modulo
the identification of “set” with “one-place relation”. For another
example, one can express the notion of connectedness for graphs,
by saying that there is no nontrivial separation of the vertices into
disconnected parts:

¬∃A (∃x A(x) ∧∃y ¬A(y) ∧∀w ∀z ((A(w) ∧¬A(z)) →¬R (w ,z))).

For yet another example, you might try as an exercise to define
the class of finite structures whose domain has even size. More
strikingly, one can provide a categorical description of the real
numbers as a complete ordered field containing the rationals.

In short, second-order logic is much more expressive than
first-order logic. That’s the good news; now for the bad. We have
already mentioned that there is no effective derivation system
that is complete for the full second-order semantics. For better
or for worse, many of the properties of first-order logic are absent,
including compactness and the Löwenheim-Skolem theorems.

On the other hand, if one is willing to give up the full second-
order semantics in terms of the weaker one, then the minimal

CHAPTER 13. BEYOND FIRST-ORDER LOGIC 250

second-order derivation system is complete for this semantics. In
other words, if we read ⊢ as “proves in the minimal system” and ⊨
as “logically implies in the weaker semantics”, we can show that
whenever 𝛤 ⊨ A then 𝛤 ⊢ A. If one wants to include specific
comprehension axioms in the derivation system, one has to re-
strict the semantics to second-order structures that satisfy these
axioms: for example, if 𝛥 consists of a set of comprehension
axioms (possibly all of them), we have that if 𝛤 ∪ 𝛥 ⊨ A, then
𝛤 ∪ 𝛥 ⊢ A. In particular, if A is not provable using the compre-
hension axioms we are considering, then there is a model of ¬A
in which these comprehension axioms nonetheless hold.

The easiest way to see that the completeness theorem holds
for the weaker semantics is to think of second-order logic as a
many-sorted logic, as follows. One sort is interpreted as the ordi-
nary “first-order” domain, and then for each k we have a domain
of “relations of arity k .” We take the language to have built-in
relation symbols “truek (R,x1, . . . ,xk)” which is meant to assert
that R holds of x1, . . . , xk , where R is a variable of the sort “k -ary
relation” and x1, . . . , xk are objects of the first-order sort.

With this identification, the weak second-order semantics is
essentially the usual semantics for many-sorted logic; and we have
already observed that many-sorted logic can be embedded in first-
order logic. Modulo the translations back and forth, then, the
weaker conception of second-order logic is really a form of first-
order logic in disguise, where the domain contains both “objects”
and “relations” governed by the appropriate axioms.

13.4 Higher-Order logic

Passing from first-order logic to second-order logic enabled us
to talk about sets of objects in the first-order domain, within the
formal language. Why stop there? For example, third-order logic
should enable us to deal with sets of sets of objects, or perhaps
even sets which contain both objects and sets of objects. And
fourth-order logic will let us talk about sets of objects of that kind.

CHAPTER 13. BEYOND FIRST-ORDER LOGIC 251

As you may have guessed, one can iterate this idea arbitrarily.
In practice, higher-order logic is often formulated in terms

of functions instead of relations. (Modulo the natural identifica-
tions, this difference is inessential.) Given some basic “sorts” A,
B , C , . . . (which we will now call “types”), we can create new ones
by stipulating

If 𝜎 and 𝜏 are finite types then so is 𝜎 → 𝜏.

Think of types as syntactic “labels,” which classify the objects
we want in our domain; 𝜎 → 𝜏 describes those objects that are
functions which take objects of type 𝜎 to objects of type 𝜏. For
example, we might want to have a type 𝛺 of truth values, “true”
and “false,” and a type N of natural numbers. In that case, you
can think of objects of type N → 𝛺 as unary relations, or sub-
sets of N; objects of type N → N are functions from natural nu-
mers to natural numbers; and objects of type (N→ N) → N are
“functionals,” that is, higher-type functions that take functions to
numbers.

As in the case of second-order logic, one can think of higher-
order logic as a kind of many-sorted logic, where there is a sort for
each type of object we want to consider. But it is usually clearer
just to define the syntax of higher-type logic from the ground up.
For example, we can define a set of finite types inductively, as
follows:

1. N is a finite type.

2. If 𝜎 and 𝜏 are finite types, then so is 𝜎 → 𝜏.

3. If 𝜎 and 𝜏 are finite types, so is 𝜎 × 𝜏.

Intuitively, N denotes the type of the natural numbers, 𝜎 → 𝜏

denotes the type of functions from 𝜎 to 𝜏, and 𝜎 × 𝜏 denotes the
type of pairs of objects, one from 𝜎 and one from 𝜏. We can then
define a set of terms inductively, as follows:

1. For each type 𝜎, there is a stock of variables x , y , z , . . . of
type 𝜎

CHAPTER 13. BEYOND FIRST-ORDER LOGIC 252

2. 0 is a term of type N

3. S (successor) is a term of type N→ N

4. If s is a term of type 𝜎, and t is a term of type N→ (𝜎 →
𝜎), then Rs t is a term of type N→ 𝜎

5. If s is a term of type 𝜏 → 𝜎 and t is a term of type 𝜏, then
s (t) is a term of type 𝜎

6. If s is a term of type 𝜎 and x is a variable of type 𝜏, then
𝜆x . s is a term of type 𝜏 → 𝜎.

7. If s is a term of type 𝜎 and t is a term of type 𝜏, then ⟨s ,t⟩
is a term of type 𝜎 × 𝜏.

8. If s is a term of type 𝜎 × 𝜏 then p1(s) is a term of type 𝜎

and p2(s) is a term of type 𝜏.

Intuitively, Rs t denotes the function defined recursively by

Rs t (0) = s
Rs t (x + 1) = t (x ,Rs t (x)),

⟨s ,t⟩ denotes the pair whose first component is s and whose sec-
ond component is t , and p1(s) and p2(s) denote the first and
second elements (“projections”) of s . Finally, 𝜆x . s denotes the
function f defined by

f (x) = s

for any x of type 𝜎; so item (6) gives us a form of comprehension,
enabling us to define functions using terms. Formulas are built
up from identity predicate statements s = t between terms of the
same type, the usual propositional connectives, and higher-type
quantification. One can then take the axioms of the system to be
the basic equations governing the terms defined above, together
with the usual rules of logic with quantifiers and identity predi-
cate.

CHAPTER 13. BEYOND FIRST-ORDER LOGIC 253

If one augments the finite type system with a type 𝛺 of truth
values, one has to include axioms which govern its use as well. In
fact, if one is clever, one can get rid of complex formulas entirely,
replacing them with terms of type 𝛺! The proof system can then
be modified accordingly. The result is essentially the simple theory
of types set forth by Alonzo Church in the 1930s.

As in the case of second-order logic, there are different ver-
sions of higher-type semantics that one might want to use. In the
full version, variables of type 𝜎 → 𝜏 range over the set of all
functions from the objects of type 𝜎 to objects of type 𝜏. As you
might expect, this semantics is too strong to admit a complete,
effective derivation system. But one can consider a weaker se-
mantics, in which a structure consists of sets of elements T𝜏 for
each type 𝜏, together with appropriate operations for application,
projection, etc. If the details are carried out correctly, one can
obtain completeness theorems for the kinds of derivation systems
described above.

Higher-type logic is attractive because it provides a frame-
work in which we can embed a good deal of mathematics in a
natural way: starting with N, one can define real numbers, con-
tinuous functions, and so on. It is also particularly attractive in
the context of intuitionistic logic, since the types have clear “con-
structive” intepretations. In fact, one can develop constructive
versions of higher-type semantics (based on intuitionistic, rather
than classical logic) that clarify these constructive interpretations
quite nicely, and are, in many ways, more interesting than the
classical counterparts.

13.5 Intuitionistic Logic

In constrast to second-order and higher-order logic, intuitionistic
first-order logic represents a restriction of the classical version,
intended to model a more “constructive” kind of reasoning. The
following examples may serve to illustrate some of the underlying
motivations.

CHAPTER 13. BEYOND FIRST-ORDER LOGIC 254

Suppose someone came up to you one day and announced
that they had determined a natural number x , with the property
that if x is prime, the Riemann hypothesis is true, and if x is com-
posite, the Riemann hypothesis is false. Great news! Whether the
Riemann hypothesis is true or not is one of the big open ques-
tions of mathematics, and here they seem to have reduced the
problem to one of calculation, that is, to the determination of
whether a specific number is prime or not.

What is the magic value of x? They describe it as follows: x is
the natural number that is equal to 7 if the Riemann hypothesis
is true, and 9 otherwise.

Angrily, you demand your money back. From a classical point
of view, the description above does in fact determine a unique
value of x ; but what you really want is a value of x that is given
explicitly.

To take another, perhaps less contrived example, consider
the following question. We know that it is possible to raise an
irrational number to a rational power, and get a rational result.

For example,
√

2
2
= 2. What is less clear is whether or not it is

possible to raise an irrational number to an irrational power, and
get a rational result. The following theorem answers this in the
affirmative:

Theorem 13.1. There are irrational numbers a and b such that ab

is rational.

Proof. Consider
√

2
√

2
. If this is rational, we are done: we can let

a = b =
√

2. Otherwise, it is irrational. Then we have

(
√

2
√

2
)
√

2 =
√

2
√

2·
√

2
=
√

2
2
= 2,

which is certainly rational. So, in this case, let a be
√

2
√

2
, and let

b be
√

2. □

Does this constitute a valid proof? Most mathematicians feel
that it does. But again, there is something a little bit unsatisfying

CHAPTER 13. BEYOND FIRST-ORDER LOGIC 255

here: we have proved the existence of a pair of real numbers
with a certain property, without being able to say which pair of
numbers it is. It is possible to prove the same result, but in such
a way that the pair a, b is given in the proof: take a =

√
3 and

b = log3 4. Then

ab =
√

3
log3 4

= 31/2·log3 4 = (3log3 4)1/2 = 41/2 = 2,

since 3log3 x = x .
Intuitionistic logic is designed to model a kind of reasoning

where moves like the one in the first proof are disallowed. Proving
the existence of an x satisfying A(x) means that you have to give a
specific x , and a proof that it satisfies A, like in the second proof.
Proving that A or B holds requires that you can prove one or the
other.

Formally speaking, intuitionistic first-order logic is what you
get if you restrict a derivation system for first-order logic in a
certain way. Similarly, there are intuitionistic versions of second-
order or higher-order logic. From the mathematical point of view,
these are just formal deductive systems, but, as already noted,
they are intended to model a kind of mathematical reasoning.
One can take this to be the kind of reasoning that is justified on
a certain philosophical view of mathematics (such as Brouwer’s
intuitionism); one can take it to be a kind of mathematical rea-
soning which is more “concrete” and satisfying (along the lines
of Bishop’s constructivism); and one can argue about whether or
not the formal description captures the informal motivation. But
whatever philosophical positions we may hold, we can study in-
tuitionistic logic as a formally presented logic; and for whatever
reasons, many mathematical logicians find it interesting to do so.

There is an informal constructive interpretation of the intu-
itionist connectives, usually known as the BHK interpretation
(named after Brouwer, Heyting, and Kolmogorov). It runs as
follows: a proof of A ∧ B consists of a proof of A paired with a
proof of B ; a proof of A ∨ B consists of either a proof of A, or a
proof of B , where we have explicit information as to which is the

CHAPTER 13. BEYOND FIRST-ORDER LOGIC 256

case; a proof of A→B consists of a procedure, which transforms
a proof of A to a proof of B ; a proof of ∀x A(x) consists of a proce-
dure which returns a proof of A(x) for any value of x ; and a proof
of ∃x A(x) consists of a value of x , together with a proof that this
value satisfies A. One can describe the interpretation in compu-
tational terms known as the “Curry-Howard isomorphism” or the
“formulas-as-types paradigm”: think of a formula as specifying a
certain kind of data type, and proofs as computational objects
of these data types that enable us to see that the corresponding
formula is true.

Intuitionistic logic is often thought of as being classical logic
“minus” the law of the excluded middle. This following theorem
makes this more precise.

Theorem 13.2. Intuitionistically, the following axiom schemata are
equivalent:

1. (A→⊥) → ¬A.

2. A ∨ ¬A

3. ¬¬A→ A

Obtaining instances of one schema from either of the others is a
good exercise in intuitionistic logic.

The first deductive systems for intuitionistic propositional
logic, put forth as formalizations of Brouwer’s intuitionism, are
due, independently, to Kolmogorov, Glivenko, and Heyting. The
first formalization of intuitionistic first-order logic (and parts of
intuitionist mathematics) is due to Heyting. Though a number
of classically valid schemata are not intuitionistically valid, many
are.

The double-negation translation describes an important rela-
tionship between classical and intuitionist logic. It is defined in-
ductively follows (think of AN as the “intuitionist” translation of
the classical formula A):

AN ≡ ¬¬A for atomic formulas A

CHAPTER 13. BEYOND FIRST-ORDER LOGIC 257

(A ∧ B)N ≡ (AN ∧ BN)
(A ∨ B)N ≡ ¬¬(AN ∨ BN)
(A→ B)N ≡ (AN → BN)
(∀x A)N ≡ ∀x AN

(∃x A)N ≡ ¬¬∃x AN

Kolmogorov and Glivenko had versions of this translation for
propositional logic; for predicate logic, it is due to Gödel and
Gentzen, independently. We have

Theorem 13.3. 1. A↔ AN is provable classically

2. If A is provable classically, then AN is provable intuitionistically.

We can now envision the following dialogue. Classical math-
ematician: “I’ve proved A!” Intuitionist mathematician: “Your
proof isn’t valid. What you’ve really proved is AN .” Classical
mathematician: “Fine by me!” As far as the classical mathemati-
cian is concerned, the intuitionist is just splitting hairs, since the
two are equivalent. But the intuitionist insists there is a differ-
ence.

Note that the above translation concerns pure logic only; it
does not address the question as to what the appropriate nonlog-
ical axioms are for classical and intuitionistic mathematics, or
what the relationship is between them. But the following slight
extension of the theorem above provides some useful informa-
tion:

Theorem 13.4. If 𝛤 proves A classically, 𝛤N proves AN intuitionis-
tically.

In other words, if A is provable from some hypotheses classi-
cally, thenAN is provable from their double-negation translations.

To show that a sentence or propositional formula is intuition-
istically valid, all you have to do is provide a proof. But how can

CHAPTER 13. BEYOND FIRST-ORDER LOGIC 258

you show that it is not valid? For that purpose, we need a seman-
tics that is sound, and preferrably complete. A semantics due to
Kripke nicely fits the bill.

We can play the same game we did for classical logic: de-
fine the semantics, and prove soundness and completeness. It
is worthwhile, however, to note the following distinction. In the
case of classical logic, the semantics was the “obvious” one, in
a sense implicit in the meaning of the connectives. Though one
can provide some intuitive motivation for Kripke semantics, the
latter does not offer the same feeling of inevitability. In addi-
tion, the notion of a classical structure is a natural mathematical
one, so we can either take the notion of a structure to be a tool
for studying classical first-order logic, or take classical first-order
logic to be a tool for studying mathematical structures. In con-
trast, Kripke structures can only be viewed as a logical construct;
they don’t seem to have independent mathematical interest.

A Kripke structure 𝔐 = ⟨W,R,V ⟩ for a propositional lan-
guage consists of a setW , partial order R onW with a least ele-
ment, and an “monotone” assignment of propositional variables
to the elements of W . The intuition is that the elements of W
represent “worlds,” or “states of knowledge”; an element v ≥ u
represents a “possible future state” of u; and the propositional
variables assigned to u are the propositions that are known to be
true in state u . The forcing relation 𝔐,w ⊩ A then extends this
relationship to arbitrary formulas in the language; read 𝔐,w ⊩ A
as “A is true in state w .” The relationship is defined inductively,
as follows:

1. 𝔐,w ⊩ pi iff pi is one of the propositional variables as-
signed to w .

2. 𝔐,w ⊮ ⊥.

3. 𝔐,w ⊩ (A ∧ B) iff 𝔐,w ⊩ A and 𝔐,w ⊩ B .

4. 𝔐,w ⊩ (A ∨ B) iff 𝔐,w ⊩ A or 𝔐,w ⊩ B .

CHAPTER 13. BEYOND FIRST-ORDER LOGIC 259

5. 𝔐,w ⊩ (A→ B) iff, whenever w ′ ≥ w and 𝔐,w ′ ⊩ A, then
𝔐,w ′ ⊩ B .

It is a good exercise to try to show that ¬(p ∧ q) → (¬p ∨ ¬q) is
not intuitionistically valid, by cooking up a Kripke structure that
provides a counterexample.

13.6 Modal Logics

Consider the following example of a conditional sentence:

If Jeremy is alone in that room, then he is drunk and
naked and dancing on the chairs.

This is an example of a conditional assertion that may be mate-
rially true but nonetheless misleading, since it seems to suggest
that there is a stronger link between the antecedent and conclu-
sion other than simply that either the antecedent is false or the
consequent true. That is, the wording suggests that the claim is
not only true in this particular world (where it may be trivially
true, because Jeremy is not alone in the room), but that, more-
over, the conclusion would have been true had the antecedent
been true. In other words, one can take the assertion to mean
that the claim is true not just in this world, but in any “possible”
world; or that it is necessarily true, as opposed to just true in this
particular world.

Modal logic was designed to make sense of this kind of ne-
cessity. One obtains modal propositional logic from ordinary
propositional logic by adding a box operator; which is to say, if A
is a formula, so is □A. Intuitively, □A asserts that A is necessarily
true, or true in any possible world. ◇A is usually taken to be
an abbreviation for ¬□¬A, and can be read as asserting that A is
possibly true. Of course, modality can be added to predicate logic
as well.

Kripke structures can be used to provide a semantics for
modal logic; in fact, Kripke first designed this semantics with

CHAPTER 13. BEYOND FIRST-ORDER LOGIC 260

modal logic in mind. Rather than restricting to partial orders,
more generally one has a set of “possible worlds,” P , and a bi-
nary “accessibility” relation R (x ,y) between worlds. Intuitively,
R (p ,q) asserts that the world q is compatible with p; i.e., if we are
“in” world p, we have to entertain the possibility that the world
could have been like q .

Modal logic is sometimes called an “intensional” logic, as op-
posed to an “extensional” one. The intended semantics for an
extensional logic, like classical logic, will only refer to a single
world, the “actual” one; while the semantics for an “intensional”
logic relies on a more elaborate ontology. In addition to structure-
ing necessity, one can use modality to structure other linguistic
constructions, reinterpreting □ and ◇ according to the applica-
tion. For example:

1. In provability logic, □A is read “A is provable” and ◇A is
read “A is consistent.”

2. In epistemic logic, one might read □A as “I know A” or “I
believe A.”

3. In temporal logic, one can read □A as “A is always true”
and ◇A as “A is sometimes true.”

One would like to augment logic with rules and axioms deal-
ing with modality. For example, the system S4 consists of the
ordinary axioms and rules of propositional logic, together with
the following axioms:

□(A→ B) → (□A→ □B)
□A→ A

□A→ □□A

as well as a rule, “from A conclude □A.” S5 adds the following
axiom:

◇A→ □◇A

CHAPTER 13. BEYOND FIRST-ORDER LOGIC 261

Variations of these axioms may be suitable for different applica-
tions; for example, S5 is usually taken to characterize the notion
of logical necessity. And the nice thing is that one can usually
find a semantics for which the derivation system is sound and
complete by restricting the accessibility relation in the Kripke
structures in natural ways. For example, S4 corresponds to the
class of Kripke structures in which the accessibility relation is
reflexive and transitive. S5 corresponds to the class of Kripke
structures in which the accessibility relation is universal, which
is to say that every world is accessible from every other; so □A
holds if and only if A holds in every world.

13.7 Other Logics

As you may have gathered by now, it is not hard to design a new
logic. You too can create your own a syntax, make up a deductive
system, and fashion a semantics to go with it. You might have to
be a bit clever if you want the derivation system to be complete
for the semantics, and it might take some effort to convince the
world at large that your logic is truly interesting. But, in return,
you can enjoy hours of good, clean fun, exploring your logic’s
mathematical and computational properties.

Recent decades have witnessed a veritable explosion of for-
mal logics. Fuzzy logic is designed to model reasoning about
vague properties. Probabilistic logic is designed to model reason-
ing about uncertainty. Default logics and nonmonotonic logics
are designed to model defeasible forms of reasoning, which is to
say, “reasonable” inferences that can later be overturned in the
face of new information. There are epistemic logics, designed
to model reasoning about knowledge; causal logics, designed to
model reasoning about causal relationships; and even “deontic”
logics, which are designed to model reasoning about moral and
ethical obligations. Depending on whether the primary motiva-
tion for introducing these systems is philosophical, mathematical,
or computational, you may find such creatures studies under the

CHAPTER 13. BEYOND FIRST-ORDER LOGIC 262

rubric of mathematical logic, philosophical logic, artificial intel-
ligence, cognitive science, or elsewhere.

The list goes on and on, and the possibilities seem endless.
We may never attain Leibniz’ dream of reducing all of human
reason to calculation—but that can’t stop us from trying.

PART III

Incompleteness

263

CHAPTER 14

Introduction to
Incompleteness
14.1 Historical Background

In this section, we will briefly discuss historical developments
that will help put the incompleteness theorems in context. In
particular, we will give a very sketchy overview of the history of
mathematical logic; and then say a few words about the history
of the foundations of mathematics.

The phrase “mathematical logic” is ambiguous. One can in-
terpret the word “mathematical” as describing the subject mat-
ter, as in, “the logic of mathematics,” denoting the principles
of mathematical reasoning; or as describing the methods, as in
“the mathematics of logic,” denoting a mathematical study of the
principles of reasoning. The account that follows involves math-
ematical logic in both senses, often at the same time.

The study of logic began, essentially, with Aristotle, who lived
approximately 384–322 bce. His Categories, Prior analytics, and
Posterior analytics include systematic studies of the principles of
scientific reasoning, including a thorough and systematic study
of the syllogism.

Aristotle’s logic dominated scholastic philosophy through the
middle ages; indeed, as late as eighteenth century Kant main-

264

CHAPTER 14. INTRODUCTION TO INCOMPLETENESS 265

tained that Aristotle’s logic was perfect and in no need of revision.
But the theory of the syllogism is far too limited to model any-
thing but the most superficial aspects of mathematical reasoning.
A century earlier, Leibniz, a contemporary of Newton’s, imag-
ined a complete “calculus” for logical reasoning, and made some
rudimentary steps towards designing such a calculus, essentially
describing a version of propositional logic.

The nineteenth century was a watershed for logic. In 1854
George Boole wrote The Laws of Thought, with a thorough alge-
braic study of propositional logic that is not far from modern
presentations. In 1879 Gottlob Frege published his Begriffsschrift
(Concept writing) which extends propositional logic with quan-
tifiers and relations, and thus includes first-order logic. In fact,
Frege’s logical systems included higher-order logic as well, and
more. In his Basic Laws of Arithmetic, Frege set out to show that
all of arithmetic could be derived in his Begriffsschrift from purely
logical assumption. Unfortunately, these assumptions turned out
to be inconsistent, as Russell showed in 1902. But setting aside
the inconsistent axiom, Frege more or less invented modern
logic singlehandedly, a startling achievement. Quantificational
logic was also developed independently by algebraically-minded
thinkers after Boole, including Peirce and Schröder.

Let us now turn to developments in the foundations of math-
ematics. Of course, since logic plays an important role in mathe-
matics, there is a good deal of interaction with the developments
just described. For example, Frege developed his logic with the
explicit purpose of showing that all of mathematics could be
based solely on his logical framework; in particular, he wished
to show that mathematics consists of a priori analytic truths in-
stead of, as Kant had maintained, a priori synthetic ones.

Many take the birth of mathematics proper to have occurred
with the Greeks. Euclid’s Elements, written around 300 B.C., is
already a mature representative of Greek mathematics, with its
emphasis on rigor and precision. The definitions and proofs in
Euclid’s Elements survive more or less in tact in high school geom-
etry textbooks today (to the extent that geometry is still taught in

CHAPTER 14. INTRODUCTION TO INCOMPLETENESS 266

high schools). This model of mathematical reasoning has been
held to be a paradigm for rigorous argumentation not only in
mathematics but in branches of philosophy as well. (Spinoza
even presented moral and religious arguments in the Euclidean
style, which is strange to see!)

Calculus was invented by Newton and Leibniz in the seven-
teenth century. (A fierce priority dispute raged for centuries, but
most scholars today hold that the two developments were for the
most part independent.) Calculus involves reasoning about, for
example, infinite sums of infinitely small quantities; these fea-
tures fueled criticism by Bishop Berkeley, who argued that belief
in God was no less rational than the mathematics of his time. The
methods of calculus were widely used in the eighteenth century,
for example by Leonhard Euler, who used calculations involving
infinite sums with dramatic results.

In the nineteenth century, mathematicians tried to address
Berkeley’s criticisms by putting calculus on a firmer foundation.
Efforts by Cauchy, Weierstrass, Bolzano, and others led to our
contemporary definitions of limits, continuity, differentiation,
and integration in terms of “epsilons and deltas,” in other words,
devoid of any reference to infinitesimals. Later in the century,
mathematicians tried to push further, and explain all aspects of
calculus, including the real numbers themselves, in terms of the
natural numbers. (Kronecker: “God created the whole numbers,
all else is the work of man.”) In 1872, Dedekind wrote “Continu-
ity and the irrational numbers,” where he showed how to “con-
struct” the real numbers as sets of rational numbers (which, as
you know, can be viewed as pairs of natural numbers); in 1888 he
wrote “Was sind und was sollen die Zahlen” (roughly, “What are
the natural numbers, and what should they be?”) which aimed
to explain the natural numbers in purely “logical” terms. In 1887
Kronecker wrote “Über den Zahlbegriff” (“On the concept of
number”) where he spoke of representing all mathematical ob-
ject in terms of the integers; in 1889 Giuseppe Peano gave formal,
symbolic axioms for the natural numbers.

The end of the nineteenth century also brought a new bold-

CHAPTER 14. INTRODUCTION TO INCOMPLETENESS 267

ness in dealing with the infinite. Before then, infinitary objects
and structures (like the set of natural numbers) were treated gin-
gerly; “infinitely many” was understood as “as many as you want,”
and “approaches in the limit” was understood as “gets as close
as you want.” But Georg Cantor showed that it was possible to
take the infinite at face value. Work by Cantor, Dedekind, and
others help to introduce the general set-theoretic understanding
of mathematics that is now widely accepted.

This brings us to twentieth century developments in logic and
foundations. In 1902 Russell discovered the paradox in Frege’s
logical system. In 1904 Zermelo proved Cantor’s well-ordering
principle, using the so-called “axiom of choice”; the legitimacy
of this axiom prompted a good deal of debate. Between 1910
and 1913 the three volumes of Russell and Whitehead’s Principia
Mathematica appeared, extending the Fregean program of estab-
lishing mathematics on logical grounds. Unfortunately, Russell
and Whitehead were forced to adopt two principles that seemed
hard to justify as purely logical: an axiom of infinity and an ax-
iom of “reducibility.” In the 1900’s Poincaré criticized the use
of “impredicative definitions” in mathematics, and in the 1910’s
Brouwer began proposing to refound all of mathematics in an
“intuitionistic” basis, which avoided the use of the law of the ex-
cluded middle (A ∨ ¬A).

Strange days indeed! The program of reducing all of math-
ematics to logic is now referred to as “logicism,” and is com-
monly viewed as having failed, due to the difficulties mentioned
above. The program of developing mathematics in terms of in-
tuitionistic mental constructions is called “intuitionism,” and is
viewed as posing overly severe restrictions on everyday mathe-
matics. Around the turn of the century, David Hilbert, one of
the most influential mathematicians of all time, was a strong sup-
porter of the new, abstract methods introduced by Cantor and
Dedekind: “no one will drive us from the paradise that Cantor
has created for us.” At the same time, he was sensitive to founda-
tional criticisms of these new methods (oddly enough, now called
“classical”). He proposed a way of having one’s cake and eating

CHAPTER 14. INTRODUCTION TO INCOMPLETENESS 268

it too:

1. Represent classical methods with formal axioms and rules;
represent mathematical questions as formulas in an ax-
iomatic system.

2. Use safe, “finitary” methods to prove that these formal de-
ductive systems are consistent.

Hilbert’s work went a long way toward accomplishing the first
goal. In 1899, he had done this for geometry in his celebrated
book Foundations of geometry. In subsequent years, he and a num-
ber of his students and collaborators worked on other areas of
mathematics to do what Hilbert had done for geometry. Hilbert
himself gave axiom systems for arithmetic and analysis. Zermelo
gave an axiomatization of set theory, which was expanded on by
Fraenkel, Skolem, von Neumann, and others. By the mid-1920s,
there were two approaches that laid claim to the title of an ax-
iomatization of “all” of mathematics, the Principia mathematica of
Russell and Whitehead, and what came to be known as Zermelo-
Fraenkel set theory.

In 1921, Hilbert set out on a research project to establish the
goal of proving these systems to be consistent. He was aided
in this project by several of his students, in particular Bernays,
Ackermann, and later Gentzen. The basic idea for accomplishing
this goal was to cast the question of the possibility of a derivation
of an inconsistency in mathematics as a combinatorial problem
about possible sequences of symbols, namely possible sequences
of sentences which meet the criterion of being a correct deriva-
tion of, say, A ∧ ¬A from the axioms of an axiom system for
arithmetic, analysis, or set theory. A proof of the impossibility
of such a sequence of symbols would—since it is itself a math-
ematical proof—be formalizable in these axiomatic systems. In
other words, there would be some sentence Con which states that,
say, arithmetic is consistent. Moreover, this sentence should be
provable in the systems in question, especially if its proof requires
only very restricted, “finitary” means.

CHAPTER 14. INTRODUCTION TO INCOMPLETENESS 269

The second aim, that the axiom systems developed would set-
tle every mathematical question, can be made precise in two ways.
In one way, we can formulate it as follows: For any sentence A
in the language of an axiom system for mathematics, either A
or ¬A is provable from the axioms. If this were true, then there
would be no sentences which can neither be proved nor refuted
on the basis of the axioms, no questions which the axioms do not
settle. An axiom system with this property is called complete. Of
course, for any given sentence it might still be a difficult task to
determine which of the two alternatives holds. But in principle
there should be a method to do so. In fact, for the axiom and
derivation systems considered by Hilbert, completeness would
imply that such a method exists—although Hilbert did not real-
ize this. The second way to interpret the question would be this
stronger requirement: that there be a mechanical, computational
method which would determine, for a given sentence A, whether
it is derivable from the axioms or not.

In 1931, Gödel proved the two “incompleteness theorems,”
which showed that this program could not succeed. There is
no axiom system for mathematics which is complete, specifically,
the sentence that expresses the consistency of the axioms is a
sentence which can neither be proved nor refuted.

This struck a lethal blow to Hilbert’s original program. How-
ever, as is so often the case in mathematics, it also opened
up exciting new avenues for research. If there is no one, all-
encompassing formal system of mathematics, it makes sense to
develop more circumscribesd systems and investigate what can
be proved in them. It also makes sense to develop less restricted
methods of proof for establishing the consistency of these sys-
tems, and to find ways to measure how hard it is to prove their
consistency. Since Gödel showed that (almost) every formal sys-
tem has questions it cannot settle, it makes sense to look for
“interesting” questions a given formal system cannot settle, and
to figure out how strong a formal system has to be to settle them.
To the present day, logicians have been pursuing these questions
in a new mathematical discipline, the theory of proofs.

CHAPTER 14. INTRODUCTION TO INCOMPLETENESS 270

14.2 Definitions

In order to carry out Hilbert’s project of formalizing mathematics
and showing that such a formalization is consistent and complete,
the first order of business would be that of picking a language,
logical framework, and a system of axioms. For our purposes, let
us suppose that mathematics can be formalized in a first-order
language, i.e., that there is some set of constant symbols, func-
tion symbols, and predicate symbols which, together with the
connectives and quatifiers of first-order logic, allow us to express
the claims of mathematics. Most people agree that such a lan-
guage exists: the language of set theory, in which ∈ is the only
non-logical symbol. That such a simple language is so expressive
is of course a very implausible claim at first sight, and it took a
lot of work to establish that practically of all mathematics can be
expressed in this very austere vocabulary. To keep things simple,
for now, let’s restrict our discussion to arithmetic, so the part of
mathematics that just deals with the natural numbers N. The nat-
ural language in which to express facts of arithmetic is LA. LA
contains a single two-place predicate symbol <, a single constant
symbol 0, one one-place function symbol ′, and two two-place
function symbols + and ×.

Definition 14.1. A set of sentences 𝛤 is a theory if it is closed
under entailment, i.e., if 𝛤 = {A : 𝛤 ⊨ A}.

There are two easy ways to specify theories. One is as the
set of sentences true in some structure. For instance, consider
the structure for LA in which the domain is N and all non-logical
symbols are interpreted as you would expect.

Definition 14.2. The standard model of arithmetic is the struc-
ture N defined as follows:

1. |N | = N

CHAPTER 14. INTRODUCTION TO INCOMPLETENESS 271

2. 0N = 0

3. ′N (n) = n + 1 for all n ∈ N

4. +N (n,m) = n +m for all n,m ∈ N

5. ×N (n,m) = n · m for all n,m ∈ N

6. <N = {⟨n,m⟩ : n ∈ N,m ∈ N,n < m}

Note the difference between × and ·: × is a symbol in the
language of arithmetic. Of course, we’ve chosen it to remind us
of multiplication, but × is not the multiplication operation but
a two-place function symbol (officially, f 2

1). By contrast, · is the
ordinary multiplication function. When you see something like
n · m, we mean the product of the numbers n and m; when you
see something like x × y we are talking about a term in the lan-
guage of arithmetic. In the standard model, the function symbol
times is interpreted as the function · on the natural numbers. For
addition, we use + as both the function symbol of the language
of arithmetic, and the addition function on the natural numbers.
Here you have to use the context to determine what is meant.

Definition 14.3. The theory of true arithmetic is the set of sen-
tences satisfied in the standard model of arithmetic, i.e.,

TA = {A : N ⊨ A}.

TA is a theory, for whenever TA ⊨ A, A is satisfied in every
structure which satisfies TA. Since M ⊨ TA, M ⊨ A, and so
A ∈ TA.

The other way to specify a theory 𝛤 is as the set of sentences
entailed by some set of sentences 𝛤0. In that case, 𝛤 is the “clo-
sure” of 𝛤0 under entailment. Specifying a theory this way is only
interesting if 𝛤0 is explicitly specified, e.g., if the elements of 𝛤0

are listed. At the very least, 𝛤0 has to be decidable, i.e., there
has to be a computable test for when a sentence counts as an

CHAPTER 14. INTRODUCTION TO INCOMPLETENESS 272

element of 𝛤0 or not. We call the sentences in 𝛤0 axioms for 𝛤 ,
and 𝛤 axiomatized by 𝛤0.

Definition 14.4. A theory 𝛤 is axiomatized by 𝛤0 iff

𝛤 = {A : 𝛤0 ⊨ A}

Definition 14.5. The theory Q axiomatized by the following
sentences is known as “Robinson’s Q ” and is a very simple the-
ory of arithmetic.

∀x ∀y (x ′ = y ′ → x = y) (Q1)

∀x 0 ≠ x ′ (Q2)

∀x (x = 0 ∨ ∃y x = y ′) (Q3)

∀x (x + 0) = x (Q4)

∀x ∀y (x + y ′) = (x + y)′ (Q5)

∀x (x × 0) = 0 (Q6)

∀x ∀y (x × y ′) = ((x × y) + x) (Q7)

∀x ∀y (x < y ↔∃z (z ′ + x) = y) (Q8)

The set of sentences {Q1, . . . ,Q8} are the axioms of Q , so Q
consists of all sentences entailed by them:

Q = {A : {Q1, . . . ,Q8} ⊨ A}.

Definition 14.6. Suppose A(x) is a formula in LA with free vari-
ables x and y1, . . . , yn . Then any sentence of the form

∀y1 . . .∀yn ((A(0) ∧ ∀x (A(x) → A(x ′))) → ∀x A(x))

is an instance of the induction schema.
Peano arithmetic PA is the theory axiomatized by the axioms

CHAPTER 14. INTRODUCTION TO INCOMPLETENESS 273

of Q together with all instances of the induction schema.

Every instance of the induction schema is true in N. This is
easiest to see if the formula A only has one free variable x . Then
A(x) defines a subset XA of N in N. XA is the set of all n ∈ N such
that N,s ⊨ A(x) when s (x) = n. The corresponding instance of
the induction schema is

((A(0) ∧ ∀x (A(x) → A(x ′))) → ∀x A(x)).

If its antecedent is true in N, then 0 ∈ XA and, whenever n ∈ XA,
so is n + 1. Since 0 ∈ XA, we get 1 ∈ XA. With 1 ∈ XA we get
2 ∈ XA. And so on. So for every n ∈ N, n ∈ XA. But this means
that ∀x A(x) is satisfied in N.

Both Q and PA are axiomatized theories. The big question
is, how strong are they? For instance, can PA prove all the truths
about N that can be expressed in LA? Specifically, do the axioms
of PA settle all the questions that can be formulated in LA?

Another way to put this is to ask: Is PA = TA? TA obviously
does prove (i.e., it includes) all the truths about N, and it settles
all the questions that can be formulated in LA, since if A is a sen-
tence in LA, then either N ⊨ A or N ⊨ ¬A, and so either TA ⊨ A
or TA ⊨ ¬A. Call such a theory complete.

Definition 14.7. A theory 𝛤 is complete iff for every sentence A
in its language, either 𝛤 ⊨ A or 𝛤 ⊨ ¬A.

By the Completeness Theorem, 𝛤 ⊨ A iff 𝛤 ⊢ A, so 𝛤 is
complete iff for every sentence A in its language, either 𝛤 ⊢ A or
𝛤 ⊢ ¬A.

Another question we are led to ask is this: Is there a computa-
tional procedure we can use to test if a sentence is in TA, in PA,
or even just in Q ? We can make this more precise by defining
when a set (e.g., a set of sentences) is decidable.

CHAPTER 14. INTRODUCTION TO INCOMPLETENESS 274

Definition 14.8. A set X is decidable iff there is a computational
procedure which on input x returns 1 if x ∈ X and 0 otherwise.

So our question becomes: Is TA (PA, Q) decidable?
The answer to all these questions will be: no. None of these

theories are decidable. However, this phenomenon is not spe-
cific to these particular theories. In fact, any theory that satisfies
certain conditions is subject to the same results. One of these
conditions, which Q and PA satisfy, is that they are axiomatized
by a decidable set of axioms.

Definition 14.9. A theory is axiomatizable if it is axiomatized by
a decidable set of axioms.

Example 14.10. Any theory axiomatized by a finite set of sen-
tences is axiomatizable, since any finite set is decidable. Thus,
Q , for instance, is axiomatizable.

Schematically axiomatized theories like PA are also axiomati-
zable. For to test if B is among the axioms of PA, i.e., to compute
the function 𝜒X where 𝜒X (B) = 1 if B is an axiom of PA and
= 0 otherwise, we can do the following: First, check if B is one
of the axioms of Q . If it is, the answer is “yes” and the value of
𝜒X (B) = 1. If not, test if it is an instance of the induction schema.
This can be done systematically; in this case, perhaps it’s easiest
to see that it can be done as follows: Any instance of the induc-
tion schema begins with a number of universal quantifiers, and
then a sub-formula that is a conditional. The consequent of that
conditional is ∀x A(x ,y1, . . . ,yn) where x and y1, . . . , yn are all
the free variables of A and the initial quantifiers of B bind the
variables y1, . . . , yn . Once we have extracted this A and checked
that its free variables match the variables bound by the univer-
sal qauntifiers at the front and ∀x , we go on to check that the
antecedent of the conditional matches

A(0,y1, . . . ,yn) ∧ ∀x (A(x ,y1, . . . ,yn) → A(x ′,y1, . . . ,yn))

CHAPTER 14. INTRODUCTION TO INCOMPLETENESS 275

Again, if it does, B is an instance of the induction schema, and
if it doesn’t, B isn’t.

In answering this question—and the more general question
of which theories are complete or decidable—it will be useful
to consider also the following definition. Recall that a set X is
countable iff it is empty or if there is a surjective function f : N→
X . Such a function is called an enumeration of X .

Definition 14.11. A set X is called computably enumerable (c.e.
for short) iff it is empty or it has a computable enumeration.

In addition to axiomatizability, another condition on theories
to which the incompleteness theorems apply will be that they are
strong enough to prove basic facts about computable functions
and decidable relations. By “basic facts,” we mean sentences
which express what the values of computable functions are for
each of their arguments. And by “strong enough” we mean that
the theories in question count these sentences among its theo-
rems. For instance, consider a prototypical computable function:
addition. The value of + for arguments 2 and 3 is 5, i.e., 2+3 = 5.
A sentence in the language of arithmetic that expresses that the
value of + for arguments 2 and 3 is 5 is: (2 + 3) = 5. And, e.g.,
Q proves this sentence. More generally, we would like there to
be, for each computable function f (x1,x2) a formula A f (x1,x2,y)
in LA such that Q ⊢ A f (n1,n2,m) whenever f (n1,n2) = m. In this
way, Q proves that the value of f for arguments n1, n2 is m. In
fact, we require that it proves a bit more, namely that no other
number is the value of f for arguments n1, n2. And the same goes
for decidable relations. This is made precise in the following two
definitions.

Definition 14.12. A formula A(x1, . . . ,xk ,y) represents the func-
tion f : Nk → N in 𝛤 iff whenever f (n1, . . . ,nk) = m, then

1. 𝛤 ⊢ A(n1, . . . ,nk ,m), and

CHAPTER 14. INTRODUCTION TO INCOMPLETENESS 276

2. 𝛤 ⊢ ∀y (A(n1, . . . ,nk ,y) → y = m).

Definition 14.13. A formula A(x1, . . . ,xk) represents the relation
R ⊆ Nk iff,

1. whenever R (n1, . . . ,nk), 𝛤 ⊢ A(n1, . . . ,nk), and

2. whenever not R (n1, . . . ,nk), 𝛤 ⊢ ¬A(n1, . . . ,nk).

A theory is “strong enough” for the incompleteness theorems
to apply if it represents all computable functions and all decid-
able relations. Q and its extensions satisfy this condition, but it
will take us a while to establish this—it’s a non-trivial fact about
the kinds of things Q can prove, and it’s hard to show because
Q has only a few axioms from which we’ll have to prove all these
facts. However, Q is a very weak theory. So although it’s hard to
prove that Q represents all computable functions, most interest-
ing theories are stronger than Q , i.e., prove more than Q does.
And if Q proves something, any stronger theory does; since Q
represents all computable functions, every stronger theory does.
This means that many interesting theories meet this condition
of the incompleteness theorems. So our hard work will pay off,
since it shows that the incompleteness theorems apply to a wide
range of theories. Certainly, any theory aiming to formalize “all
of mathematics” must prove everything that Q proves, since it
should at the very least be able to capture the results of elemen-
tary computations. So any theory that is a candidate for a theory
of “all of mathematics” will be one to which the incompleteness
theorems apply.

14.3 Overview of Incompleteness Results

Hilbert expected that mathematics could be formalized in an ax-
iomatizable theory which it would be possible to prove complete
and decidable. Moreover, he aimed to prove the consistency of

CHAPTER 14. INTRODUCTION TO INCOMPLETENESS 277

this theory with very weak, “finitary,” means, which would de-
fend classical mathematics against the challenges of intuitionism.
Gödel’s incompleteness theorems showed that these goals cannot
be achieved.

Gödel’s first incompleteness theorem showed that a version of
Russell and Whitehead’s Principia Mathematica is not complete.
But the proof was actually very general and applies to a wide
variety of theories. This means that it wasn’t just that Principia
Mathematica did not manage to completely capture mathematics,
but that no acceptable theory does. It took a while to isolate the
features of theories that suffice for the incompleteness theorems
to apply, and to generalize Gödel’s proof to apply make it depend
only on these features. But we are now in a position to state a very
general version of the first incompleteness theorem for theories
in the language LA of arithmetic.

Theorem 14.14. If 𝛤 is a consistent and axiomatizable theory in LA
which represents all computable functions and decidable relations, then
𝛤 is not complete.

To say that 𝛤 is not complete is to say that for at least one sen-
tence A, 𝛤 ⊬ A and 𝛤 ⊬ ¬A. Such a sentence is called independent
(of 𝛤). We can in fact relatively quickly prove that there must
be independent sentences. But the power of Gödel’s proof of the
theorem lies in the fact that it exhibits a specific example of such
an independent sentence. The intriguing construction produces
a sentence G𝛤 , called a Gödel sentence for 𝛤 , which is unprovable
because in 𝛤 , G𝛤 is equivalent to the claim that G𝛤 is unprov-
able in 𝛤 . It does so constructively, i.e., given an axiomatization
of 𝛤 and a description of the derivation system, the proof gives
a method for actually writing down G𝛤 .

The construction in Gödel’s proof requires that we find a way
to express in LA the properties of and operations on terms and
formulas of LA itself. These include properties such as “A is
a sentence,” “𝛿 is a derivation of A,” and operations such as
A[t/x]. This way must (a) express these properties and relations

CHAPTER 14. INTRODUCTION TO INCOMPLETENESS 278

via a “coding” of symbols and sequences thereof (which is what
terms, formulas, derivations, etc. are) as natural numbers (which
is what LA can talk about). It must (b) do this in such a way that
𝛤 will prove the relevant facts, so we must show that these prop-
erties are coded by decidable properties of natural numbers and
the operations correspond to computable functions on natural
numbers. This is called “arithmetization of syntax.”

Before we investigate how syntax can be arithmetized, how-
ever, we will consider the condition that 𝛤 is “strong enough,”
i.e., represents all computable functions and decidable relations.
This requires that we give a precise definition of “computable.”
This can be done in a number of ways, e.g., via the model of
Turing machines, or as those functions computable by programs
in some general-purpose programming language. Since our aim
is to represent these functions and relations in a theory in the
language LA, however, it is best to pick a simple definition of
computability of just numerical functions. This is the notion of
recursive function. So we will first discuss the recursive functions.
We will then show that Q already represents all recursive func-
tions and relations. This will allow us to apply the incompleteness
theorem to specific theories such as Q and PA, since we will have
established that these are examples of theories that are “strong
enough.”

The end result of the arithmetization of syntax is a formula
Prov𝛤 (x) which, via the coding of formulas as numbers, expresses
provability from the axioms of 𝛤 . Specifically, if A is coded by
the number n, and 𝛤 ⊢ A, then 𝛤 ⊢ Prov𝛤 (n). This “provability
predicate” for 𝛤 allows us also to express, in a certain sense, the
consistency of 𝛤 as a sentence of LA: let the “consistency state-
ment” for 𝛤 be the sentence ¬Prov𝛤 (n), where we take n to be the
code of a contradiction, e.g., of ⊥. The second incompleteness
theorem states that consistent axiomatizable theories also do not
prove their own consistency statements. The conditions required
for this theorem to apply are a bit more stringent than just that
the theory represents all computable functions and decidable re-
lations, but we will show that PA satisifes them.

CHAPTER 14. INTRODUCTION TO INCOMPLETENESS 279

14.4 Undecidability and Incompleteness

Gödel’s proof of the incompleteness theorems require arithmeti-
zation of syntax. But even without that we can obtain some nice
results just on the assumption that a theory represents all decid-
able relations. The proof is a diagonal argument similar to the
proof of the undecidability of the halting problem.

Theorem 14.15. If 𝛤 is a consistent theory that represents every de-
cidable relation, then 𝛤 is not decidable.

Proof. Suppose 𝛤 were decidable. We show that if 𝛤 represents
every decidable relation, it must be inconsistent.

Decidable properties (one-place relations) are represented by
formulas with one free variable. Let A0(x), A1(x), . . . , be a com-
putable enumeration of all such formulas. Now consider the fol-
lowing set D ⊆ N:

D = {n : 𝛤 ⊢ ¬An (n)}

The set D is decidable, since we can test if n ∈ D by first com-
puting An (x), and from this ¬An (n). Obviously, substituting the
term n for every free occurrence of x in An (x) and prefixing A(n)
by ¬ is a mechanical matter. By assumption, 𝛤 is decidable, so
we can test if ¬A(n) ∈ 𝛤 . If it is, n ∈ D , and if it isn’t, n ∉ D . So
D is likewise decidable.

Since 𝛤 represents all decidable properties, it represents D .
And the formulas which represent D in 𝛤 are all among A0(x),
A1(x), So let d be a number such that Ad (x) represents D
in 𝛤 . If d ∉ D , then, since Ad (x) represents D , 𝛤 ⊢ ¬Ad (d).
But that means that d meets the defining condition of D , and so
d ∈ D . This contradicts d ∉ D . So by indirect proof, d ∈ D .

Since d ∈ D , by the definition of D , 𝛤 ⊢ ¬Ad (d). On the
other hand, since Ad (x) represents D in 𝛤 , 𝛤 ⊢ Ad (d). Hence, 𝛤
is inconsistent. □

The preceding theorem shows that no consistent theory that
represents all decidable relations can be decidable. We will show

CHAPTER 14. INTRODUCTION TO INCOMPLETENESS 280

that Q does represent all decidable relations; this means that all
theories that include Q , such as PA and TA, also do, and hence
also are not decidable. (Since all these theories are true in the
standard model, they are all consistent.))

We can also use this result to obtain a weak version of the first
incompleteness theorem. Any theory that is axiomatizable and
complete is decidable. Consistent theories that are axiomatizable
and represent all decidable properties then cannot be complete.

Theorem 14.16. If 𝛤 is axiomatizable and complete it is decidable.

Proof. Any inconsistent theory is decidable, since inconsistent
theories contain all sentences, so the answer to the question “is
A ∈ 𝛤” is always “yes,” i.e., can be decided.

So suppose 𝛤 is consistent, and furthermore is axiomatizable,
and complete. Since 𝛤 is axiomatizable, it is computably enumer-
able. For we can enumerate all the correct derivations from the
axioms of 𝛤 by a computable function. From a correct derivation
we can compute the sentence it derives, and so together there is
a computable function that enumerates all theorems of 𝛤 . A
sentence is a theorem of 𝛤 iff ¬A is not a theorem, since 𝛤 is
consistent and complete. We can therefore decide if A ∈ 𝛤 as
follows. Enumerate all theorems of 𝛤 . When A appears on this
list, we know that 𝛤 ⊢ A. When ¬A appears on this list, we know
that 𝛤 ⊬ A. Since 𝛤 is complete, one of these cases eventually
obtains, so the procedure eventually produces an answer. □

Corollary 14.17. If 𝛤 is consistent, axiomatizable, and represents
every decidable property, it is not complete.

Proof. If 𝛤 were complete, it would be decidable by the previous
theorem (since it is axiomatizable and consistent). But since 𝛤

represents every decidable property, it is not decidable, by the
first theorem. □

CHAPTER 14. INTRODUCTION TO INCOMPLETENESS 281

Once we have established that, e.g., Q , represents all decid-
able properties, the corollary tells us that Q must be incomplete.
However, its proof does not provide an example of an indepen-
dent sentence; it merely shows that such a sentence must exist.
For this, we have to arithmetize syntax and follow Gödel’s origi-
nal proof idea. And of course, we still have to show the first claim,
namely that Q does, in fact, represent all decidable properties.

It should be noted that not every interesting theory is incom-
plete or undecidable. There are many theories that are suf-
ficiently strong to describe interesting mathematical facts that
do not satisify the conditions of Gödel’s result. For instance,
Pres = {A ∈ LA+ : N ⊨ A}, the set of sentences of the language
of arithmetic without × true in the standard model, is both com-
plete and decidable. This theory is called Presburger arithmetic,
and proves all the truths about natural numbers that can be for-
mulated just with 0, ′, and +.

Summary

Hilbert’s program aimed to show that all of mathematics could be
formalized in an axiomatized theory in a formal language, such
as the language of arithmetic or of set theory. He believed that
such a theory would be complete. That is, for every sentence A,
either T ⊢ A or T ⊢ ¬A. In this sense then, T would have settled
every mathematical question: it would either prove that it’s true
or that it’s false. If Hilbert had been right, it would also have
turned out that mathematics is decidable. That’s because any
axiomatizable theory is computably enumerable, i.e., there is
a computable function that lists all its theorems. We can test if
a sentence A is a theorem by listing all of them until we find A
(in which it is a theorem) or ¬A (in which case it isn’t). Alas,
Hilbert was wrong. Gödel proved that no axiomatizable, consis-
tent theory that is “strong enough” is complete. That’s the first
incompleteness theorem. The requirement that the theory be
“strong enough” amounts to it representing all computable func-

CHAPTER 14. INTRODUCTION TO INCOMPLETENESS 282

tions and relations. Specifically, the very weak theory Q satisfies
this property, and any theory that is at least as strong as Q also
does. He also showed—that is the second incompleteness the-
orem—that the sentence that expresses the consistency of the
theory is itself undecidable in it, i.e., the theory proves neither
it nor its negation. So Hilbert’s further aim of finding “finitary”
consistency proof of all of mathematics cannot be realized. For
any finitary consistency proof would, presumably, be formalizable
in a theory that captures all of mathematics. Finally, we estab-
lished that theories that represent all computable functions and
relations are not decidable. Note that although axomatizabil-
ity and completeness implies decidability, incompleteness does
not imply undecidability. So this result shows that the second of
Hilbert’s goals, namely that there be a procedure that decides if
T ⊢ A or not, can also not be achieved, at least not for theories
at least as strong as Q .

Problems

Problem 14.1. Show that TA = {A : N ⊨ A} is not axiomatiz-
able. You may assume that TA represents all decidable proper-
ties.

CHAPTER 15

Recursive
Functions
15.1 Introduction

In order to develop a mathematical theory of computability, one
has to, first of all, develop a model of computability. We now
think of computability as the kind of thing that computers do,
and computers work with symbols. But at the beginning of the
development of theories of computability, the paradigmatic ex-
ample of computation was numerical computation. Mathemati-
cians were always interested in number-theoretic functions, i.e.,
functions f : Nn → N that can be computed. So it is not surpris-
ing that at the beginning of the theory of computability, it was
such functions that were studied. The most familiar examples
of computable numerical functions, such as addition, multipli-
cation, exponentiation (of natural numbers) share an interesting
feature: they can be defined recursively. It is thus quite natural
to attempt a general definition of computable function on the basis
of recursive definitions. Among the many possible ways to de-
fine number-theoretic functions recursively, one particularly sim-
ple pattern of definition here becomes central: so-called primitive
recursion.

In addition to computable functions, we might be interested

283

CHAPTER 15. RECURSIVE FUNCTIONS 284

in computable sets and relations. A set is computable if we can
compute the answer to whether or not a given number is an ele-
ment of the set, and a relation is computable iff we can compute
whether or not a tuple ⟨n1, . . . ,nk ⟩ is an element of the relation.
By considering the characteristic function of a set or relation, dis-
cussion of computable sets and relations can be subsumed under
that of computable functions. Thus we can define primitive re-
cursive relations as well, e.g., the relation “n evenly divides m” is
a primitive recursive relation.

Primitive recursive functions—those that can be defined using
just primitive recursion—are not, however, the only computable
number-theoretic functions. Many generalizations of primitive re-
cursion have been considered, but the most powerful and widely-
accepted additional way of computing functions is by unbounded
search. This leads to the definition of partial recursive functions,
and a related definition to general recursive functions. General re-
cursive functions are computable and total, and the definition
characterizes exactly the partial recursive functions that happen
to be total. Recursive functions can simulate every other model
of computation (Turing machines, lambda calculus, etc.) and so
represent one of the many accepted models of computation.

15.2 Primitive Recursion

A characteristic of the natural numbers is that every natural num-
ber can be reached from 0 by applying the successor operation +1
finitely many times—any natural number is either 0 or the suc-
cessor of . . . the successor of 0. One way to specify a func-
tion h : N→ N that makes use of this fact is this: (a) specify what
the value of h is for argument 0, and (b) also specify how to, given
the value of h (x), compute the value of h (x + 1). For (a) tells us
directly what h (0) is, so h is defined for 0. Now, using the in-
struction given by (b) for x = 0, we can compute h (1) = h (0 + 1)
from h (0). Using the same instructions for x = 1, we compute
h (2) = h (1 + 1) from h (1), and so on. For every natural num-

CHAPTER 15. RECURSIVE FUNCTIONS 285

ber x , we’ll eventually reach the step where we define h (x) from
h (x + 1), and so h (x) is defined for all x ∈ N.

For instance, suppose we specify h : N → N by the following
two equations:

h (0) = 1

h (x + 1) = 2 · h (x)

If we already know how to multiply, then these equations give us
the information required for (a) and (b) above. By successively
applying the second equation, we get that

h (1) = 2 · h (0) = 2,

h (2) = 2 · h (1) = 2 · 2,
h (3) = 2 · h (2) = 2 · 2 · 2,

...

We see that the function h we have specified is h (x) = 2x .
The characteristic feature of the natural numbers guarantees

that there is only one function h that meets these two criteria.
A pair of equations like these is called a definition by primitive
recursion of the function h. It is so-called because we define h
“recursively,” i.e., the definition, specifically the second equation,
involves h itself on the right-hand-side. It is “primitive” because in
defining h (x +1) we only use the value h (x), i.e., the immediately
preceding value. This is the simplest way of defining a function
on N recursively.

We can define even more fundamental functions like addi-
tion and multiplication by primitive recursion. In these cases,
however, the functions in question are 2-place. We fix one of the
argument places, and use the other for the recursion. E.g, to de-
fine add(x ,y) we can fix x and define the value first for y = 0 and
then for y + 1 in terms of y . Since x is fixed, it will appear on the
left and on the right side of the defining equations.

add(x ,0) = x

CHAPTER 15. RECURSIVE FUNCTIONS 286

add(x ,y + 1) = add(x ,y) + 1

These equations specify the value of add for all x and y . To find
add(2,3), for instance, we apply the defining equations for x = 2,
using the first to find add(2,0) = 2, then using the second to
successively find add(2,1) = 2 + 1 = 3, add(2,2) = 3 + 1 = 4,
add(2,3) = 4 + 1 = 5.

In the definition of add we used + on the right-hand-side of the
second equation, but only to add 1. In other words, we used the
successor function succ(z) = z + 1 and applied it to the previous
value add(x ,y) to define add(x ,y + 1). So we can think of the
recursive definition as given in terms of a single function which
we apply to the previous value. However, it doesn’t hurt—and
sometimes is necessary—to allow the function to depend not just
on the previous value but also on x and y . Consider:

mult(x ,0) = 0

mult(x ,y + 1) = add(mult(x ,y),x)

This is a primitive recursive definition of a function mult
by applying the function add to both the preceding value
mult(x ,y) and the first argument x . It also defines the func-
tion mult(x ,y) for all arguments x and y . For instance, mult(2,3)
is determined by successively computing mult(2,0), mult(2,1),
mult(2,2), and mult(2,3):

mult(2,0) = 0

mult(2,1) = mult(2,0 + 1) = add(mult(2,0),2) = add(0,2) = 2

mult(2,2) = mult(2,1 + 1) = add(mult(2,1),2) = add(2,2) = 4

mult(2,3) = mult(2,2 + 1) = add(mult(2,2),2) = add(4,2) = 6

The general pattern then is this: to give a primitive recursive
definition of a function h (x0, . . . ,xk−1,y), we provide two equa-
tions. The first defines the value of h (x0, . . . ,xk−1,0) without ref-
erence to h. The second defines the value of h (x0, . . . ,xk−1,y + 1)
in terms of h (x0, . . . ,xk−1,y), the other arguments x0, . . . , xk−1,

CHAPTER 15. RECURSIVE FUNCTIONS 287

and y . Only the immediately preceding value of h may be used in
that second equation. If we think of the operations given by the
right-hand-sides of these two equations as themselves being func-
tions f and g , then the general pattern to define a new function h
by primitive recursion is this:

h (x0, . . . ,xk−1,0) = f (x0, . . . ,xk−1)
h (x0, . . . ,xk−1,y + 1) = g (x0, . . . ,xk−1,y ,h (x0, . . . ,xk−1,y))

In the case of add, we have k = 1 and f (x0) = x0 (the identity
function), and g (x0,y ,z) = z +1 (the 3-place function that returns
the successor of its third argument):

add(x0,0) = f (x0) = x0

add(x0,y + 1) = g (x0,y ,add(x0,y)) = succ(add(x0,y))

In the case of mult, we have f (x0) = 0 (the constant function
always returning 0) and g (x0,y ,z) = add(z ,x0) (the 3-place func-
tion that returns the sum of its last and first argument):

mult(x0,0) = f (x0) = 0

mult(x0,y + 1) = g (x0,y ,mult(x0,y)) = add(mult(x0,y),x0)

15.3 Composition

If f and g are two one-place functions of natural numbers, we
can compose them: h (x) = g (f (x)). The new function h (x) is
then defined by composition from the functions f and g . We’d like
to generalize this to functions of more than one argument.

Here’s one way of doing this: suppose f is a k -place function,
and g0, . . . , gk−1 are k functions which are all n-place. Then we
can define a new n-place function h as follows:

h (x0, . . . ,xn−1) = f (g0(x0, . . . ,xn−1), . . . , gk−1(x0, . . . ,xn−1))

If f and all gi are computable, so is h: To compute
h (x0, . . . ,xn−1), first compute the values yi = gi (x0, . . . ,xn−1) for

CHAPTER 15. RECURSIVE FUNCTIONS 288

each i = 0, . . . , k − 1. Then feed these values into f to compute
h (x0, . . . ,xk−1) = f (y0, . . . ,yk−1).

This may seem like an overly restrictive characterization of
what happens when we compute a new function using some ex-
isting ones. For one thing, sometimes we do not use all the argu-
ments of a function, as when we defined g (x ,y ,z) = succ(z) for
use in the primitive recursive definition of add. Suppose we are
allowed use of the following functions:

P ni (x0, . . . ,xn−1) = xi

The functions P ki are called projection functions: P ni is an n-place
function. Then g can be defined by

g (x ,y ,z) = succ(P 3
2 (x ,y ,z)).

Here the role of f is played by the 1-place function succ, so k = 1.
And we have one 3-place function P 3

2 which plays the role of g0.
The result is a 3-place function that returns the successor of the
third argument.

The projection functions also allow us to define new func-
tions by reordering or identifying arguments. For instance, the
function h (x) = add(x ,x) can be defined by

h (x0) = add(P 1
0 (x0),P 1

0 (x0)).

Here k = 2, n = 1, the role of f (y0,y1) is played by add, and the
roles of g0(x0) and g1(x0) are both played by P 1

0 (x0), the one-place
projection function (aka the identity function).

If f (y0,y1) is a function we already have, we can define the
function h (x0,x1) = f (x1,x0) by

h (x0,x1) = f (P 2
1 (x0,x1),P 2

0 (x0,x1)).

Here k = 2, n = 2, and the roles of g0 and g1 are played by P 2
1

and P 2
0 , respectively.

You may also worry that g0, . . . , gk−1 are all required to have
the same arity n. (Remember that the arity of a function is the

CHAPTER 15. RECURSIVE FUNCTIONS 289

number of arguments; an n-place function has arity n.) But
adding the projection functions provides the desired flexibility.
For example, suppose f and g are 3-place functions and h is the
2-place function defined by

h (x ,y) = f (x , g (x ,x ,y),y).

The definition of h can be rewritten with the projection functions,
as

h (x ,y) = f (P 2
0 (x ,y), g (P

2
0 (x ,y),P

2
0 (x ,y),P

2
1 (x ,y)),P

2
1 (x ,y)).

Then h is the composition of f with P 2
0 , l , and P 2

1 , where

l (x ,y) = g (P 2
0 (x ,y),P

2
0 (x ,y),P

2
1 (x ,y)),

i.e., l is the composition of g with P 2
0 , P 2

0 , and P 2
1 .

15.4 Primitive Recursion Functions

Let us record again how we can define new functions from exist-
ing ones using primitive recursion and composition.

Definition 15.1. Suppose f is a k -place function (k ≥ 1) and
g is a (k + 2)-place function. The function defined by primitive
recursion from f and g is the (k + 1)-place function h defined by
the equations

h (x0, . . . ,xk−1,0) = f (x0, . . . ,xk−1)
h (x0, . . . ,xk−1,y + 1) = g (x0, . . . ,xk−1,y ,h (x0, . . . ,xk−1,y))

Definition 15.2. Suppose f is a k -place function, and g0, . . . ,
gk−1 are k functions which are all n-place. The function defined
by composition from f and g0, . . . , gk−1 is the n-place function h

CHAPTER 15. RECURSIVE FUNCTIONS 290

defined by

h (x0, . . . ,xn−1) = f (g0(x0, . . . ,xn−1), . . . , gk−1(x0, . . . ,xn−1)).

In addition to succ and the projection functions

P ni (x0, . . . ,xn−1) = xi ,

for each natural number n and i < n, we will include among the
primitive recursive functions the function zero(x) = 0.

Definition 15.3. The set of primitive recursive functions is the
set of functions from Nn to N, defined inductively by the following
clauses:

1. zero is primitive recursive.

2. succ is primitive recursive.

3. Each projection function P ni is primitive recursive.

4. If f is a k -place primitive recursive function and g0,
. . . , gk−1 are n-place primitive recursive functions, then the
composition of f with g0, . . . , gk−1 is primitive recursive.

5. If f is a k -place primitive recursive function and g is a
k + 2-place primitive recursive function, then the function
defined by primitive recursion from f and g is primitive
recursive.

Put more concisely, the set of primitive recursive functions is
the smallest set containing zero, succ, and the projection func-
tions P nj , and which is closed under composition and primitive
recursion.

Another way of describing the set of primitive recursive func-
tions is by defining it in terms of “stages.” Let S0 denote the set of
starting functions: zero, succ, and the projections. These are the
primitive recursive functions of stage 0. Once a stage Si has been

CHAPTER 15. RECURSIVE FUNCTIONS 291

defined, let Si+1 be the set of all functions you get by applying a
single instance of composition or primitive recursion to functions
already in Si . Then

S =
⋃︂
i ∈N

Si

is the set of all primitive recursive functions
Let us verify that add is a primitive recursive function.

Proposition 15.4. The addition function add(x ,y) = x + y is prim-
itive recursive.

Proof. We already have a primitive recursive definition of add
in terms of two functions f and g which matches the format of
Definition 15.1:

add(x0,0) = f (x0) = x0

add(x0,y + 1) = g (x0,y ,add(x0,y)) = succ(add(x0,y))

So add is primitive recursive provided f and g are as well.
f (x0) = x0 = P 1

0 (x0), and the projection functions count as prim-
itive recursive, so f is primitive recursive. The function g is the
three-place function g (x0,y ,z) defined by

g (x0,y ,z) = succ(z).

This does not yet tell us that g is primitive recursive, since g and
succ are not quite the same function: succ is one-place, and g has
to be three-place. But we can define g “officially” by composition
as

g (x0,y ,z) = succ(P 3
2 (x0,y ,z))

Since succ and P 3
2 count as primitive recursive functions, g does

as well, since it can be defined by composition from primitive
recursive functions. □

CHAPTER 15. RECURSIVE FUNCTIONS 292

Proposition 15.5. The multiplication function mult(x ,y) = x · y is
primitive recursive.

Proof. Exercise. □

Example 15.6. Here’s our very first example of a primitive re-
cursive definition:

h (0) = 1

h (y + 1) = 2 · h (y).

This function cannot fit into the form required by Definition 15.1,
since k = 0. The definition also involves the constants 1 and 2. To
get around the first problem, let’s introduce a dummy argument
and define the function h′:

h′(x0,0) = f (x0) = 1

h′(x0,y + 1) = g (x0,y ,h′(x0,y)) = 2 · h′(x0,y).

The function f (x0) = 1 can be defined from succ and zero by
composition: f (x0) = succ(zero(x0)). The function g can be
defined by composition from g ′(z) = 2 · z and projections:

g (x0,y ,z) = g ′(P 3
2 (x0,y ,z))

and g ′ in turn can be defined by composition as

g ′(z) = mult(g ′′(z),P 1
0 (z))

and

g ′′(z) = succ(f (z)),

where f is as above: f (z) = succ(zero(z)). Now that we have h′,
we can use composition again to let h (y) = h′(P 1

0 (y),P
1
0 (y)). This

shows that h can be defined from the basic functions using a se-
quence of compositions and primitive recursions, so h is primitive
recursive.

CHAPTER 15. RECURSIVE FUNCTIONS 293

15.5 Primitive Recursion Notations

One advantage to having the precise inductive description of the
primitive recursive functions is that we can be systematic in de-
scribing them. For example, we can assign a “notation” to each
such function, as follows. Use symbols zero, succ, and P ni for
zero, successor, and the projections. Now suppose h is defined
by composition from a k -place function f and n-place functions
g0, . . . , gk−1, and we have assigned notations F , G0, . . . , Gk−1 to
the latter functions. Then, using a new symbol Compk ,n , we can
denote the function h by Compk ,n [F,G0, . . . ,Gk−1].

For functions defined by primitive recursion, we can use anal-
ogous notations. Suppose the (k + 1)-ary function h is defined by
primitive recursion from the k -ary function f and the (k + 2)-ary
function g , and the notations assigned to f and g are F and G ,
respectively. Then the notation assigned to h is Reck [F,G].

Recall that the addition function is defined by primitive re-
cursion as

add(x0,0) = P 1
0 (x0) = x0

add(x0,y + 1) = succ(P 3
2 (x0,y ,add(x0,y))) = add(x0,y) + 1

Here the role of f is played by P 1
0 , and the role of g is

played by succ(P 3
2 (x0,y ,z)), which is assigned the notation

Comp1,3 [succ,P 3
2] as it is the result of defining a function by com-

position from the 1-ary function succ and the 3-ary function P 3
2 .

With this setup, we can denote the addition function by

Rec1 [P 1
0 ,Comp1,3 [succ,P 3

2]] .

Having these notations sometimes proves useful, e.g., when enu-
merating primitive recursive functions.

CHAPTER 15. RECURSIVE FUNCTIONS 294

15.6 Primitive Recursive Functions are
Computable

Suppose a function h is defined by primitive recursion

h (x⃗ ,0) = f (x⃗)
h (x⃗ ,y + 1) = g (x⃗ ,y ,h (x⃗ ,y))

and suppose the functions f and g are computable. (We use x⃗
to abbreviate x0, . . . , xk−1.) Then h (x⃗ ,0) can obviously be com-
puted, since it is just f (x⃗) which we assume is computable. h (x⃗ ,1)
can then also be computed, since 1 = 0 + 1 and so h (x⃗ ,1) is just

h (x⃗ ,1) = g (x⃗ ,0,h (x⃗ ,0)) = g (x⃗ ,0, f (x⃗)).

We can go on in this way and compute

h (x⃗ ,2) = g (x⃗ ,1,h (x⃗ ,1)) = g (x⃗ ,1, g (x⃗ ,0, f (x⃗)))
h (x⃗ ,3) = g (x⃗ ,2,h (x⃗ ,2)) = g (x⃗ ,2, g (x⃗ ,1, g (x⃗ ,0, f (x⃗))))
h (x⃗ ,4) = g (x⃗ ,3,h (x⃗ ,3)) = g (x⃗ ,3, g (x⃗ ,2, g (x⃗ ,1, g (x⃗ ,0, f (x⃗)))))

...

Thus, to compute h (x⃗ ,y) in general, successively compute h (x⃗ ,0),
h (x⃗ ,1), . . . , until we reach h (x⃗ ,y).

Thus, a primitive recursive definition yields a new com-
putable function if the functions f and g are computable. Com-
position of functions also results in a computable function if the
functions f and gi are computable.

Since the basic functions zero, succ, and P ni are computable,
and composition and primitive recursion yield computable func-
tions from computable functions, this means that every primitive
recursive function is computable.

CHAPTER 15. RECURSIVE FUNCTIONS 295

15.7 Examples of Primitive Recursive
Functions

We already have some examples of primitive recursive functions:
the addition and multiplication functions add and mult. The
identity function id(x) = x is primitive recursive, since it is
just P 1

0 . The constant functions constn (x) = n are primitive recur-
sive since they can be defined from zero and succ by successive
composition. This is useful when we want to use constants in
primitive recursive definitions, e.g., if we want to define the func-
tion f (x) = 2 ·x can obtain it by composition from constn (x) and
multiplication as f (x) = mult(const2(x),P 1

0 (x)). We’ll make use
of this trick from now on.

Proposition 15.7. The exponentiation function exp(x ,y) = x y is
primitive recursive.

Proof. We can define exp primitive recursively as

exp(x ,0) = 1

exp(x ,y + 1) = mult(x ,exp(x ,y)).

Strictly speaking, this is not a recursive definition from primitive
recursive functions. Officially, though, we have:

exp(x ,0) = f (x)
exp(x ,y + 1) = g (x ,y ,exp(x ,y)).

where

f (x) = succ(zero(x)) = 1

g (x ,y ,z) = mult(P 3
0 (x ,y ,z),P

3
2 (x ,y ,z)) = x · z

and so f and g are defined from primitive recursive functions by
composition. □

CHAPTER 15. RECURSIVE FUNCTIONS 296

Proposition 15.8. The predecessor function pred(y) defined by

pred(y) =
{︄
0 if y = 0

y − 1 otherwise

is primitive recursive.

Proof. Note that

pred(0) = 0 and

pred(y + 1) = y .

This is almost a primitive recursive definition. It does not, strictly
speaking, fit into the pattern of definition by primitive recursion,
since that pattern requires at least one extra argument x . It is
also odd in that it does not actually use pred(y) in the definition
of pred(y + 1). But we can first define pred′(x ,y) by

pred′(x ,0) = zero(x) = 0,

pred′(x ,y + 1) = P 3
1 (x ,y ,pred′(x ,y)) = y .

and then define pred from it by composition, e.g., as pred(x) =
pred′(zero(x),P 1

0 (x)). □

Proposition 15.9. The factorial function fac(x) = x ! = 1·2·3·· · ··x
is primitive recursive.

Proof. The obvious primitive recursive definition is

fac(0) = 1

fac(y + 1) = fac(y) · (y + 1).

Officially, we have to first define a two-place function h

h (x ,0) = const1(x)
h (x ,y + 1) = g (x ,y ,h (x ,y))

CHAPTER 15. RECURSIVE FUNCTIONS 297

where g (x ,y ,z) = mult(P 3
2 (x ,y ,z),succ(P 3

1 (x ,y ,z))) and then let

fac(y) = h (P 1
0 (y),P

1
0 (y)) = h (y ,y).

From now on we’ll be a bit more laissez-faire and not give the
official definitions by composition and primitive recursion. □

Proposition 15.10. Truncated subtraction, x −̇ y , defined by

x −̇ y =
{︄
0 if x < y

x − y otherwise

is primitive recursive.

Proof. We have:

x −̇ 0 = x

x −̇ (y + 1) = pred(x −̇ y) □

Proposition 15.11. The distance between x and y,
|︁|︁x − y |︁|︁, is primi-

tive recursive.

Proof. We have
|︁|︁x − y |︁|︁ = (x −̇ y) + (y −̇ x), so the distance can

be defined by composition from + and −̇, which are primitive
recursive. □

Proposition 15.12. The maximum of x and y, max(x ,y), is primi-
tive recursive.

Proof. We can define max(x ,y) by composition from + and −̇ by

max(x ,y) = x + (y −̇ x).

If x is the maximum, i.e., x ≥ y , then y −̇ x = 0, so x + (y −̇ x) =
x + 0 = x . If y is the maximum, then y −̇ x = y − x , and so
x + (y −̇ x) = x + (y − x) = y . □

CHAPTER 15. RECURSIVE FUNCTIONS 298

Proposition 15.13. The minimum of x and y, min(x ,y), is primitive
recursive.

Proof. Exercise. □

Proposition 15.14. The set of primitive recursive functions is closed
under the following two operations:

1. Finite sums: if f (x⃗ ,z) is primitive recursive, then so is the func-
tion

g (x⃗ ,y) =
y∑︂
z=0

f (x⃗ ,z).

2. Finite products: if f (x⃗ ,z) is primitive recursive, then so is the
function

h (x⃗ ,y) =
y∏︂
z=0

f (x⃗ ,z).

Proof. For example, finite sums are defined recursively by the
equations

g (x⃗ ,0) = f (x⃗ ,0)
g (x⃗ ,y + 1) = g (x⃗ ,y) + f (x⃗ ,y + 1). □

15.8 Primitive Recursive Relations

Definition 15.15. A relation R (x⃗) is said to be primitive recur-
sive if its characteristic function,

𝜒R (x⃗) =
{︃

1 if R (x⃗)
0 otherwise

is primitive recursive.

CHAPTER 15. RECURSIVE FUNCTIONS 299

In other words, when one speaks of a primitive recursive re-
lation R (x⃗), one is referring to a relation of the form 𝜒R (x⃗) = 1,
where 𝜒R is a primitive recursive function which, on any input,
returns either 1 or 0. For example, the relation IsZero(x), which
holds if and only if x = 0, corresponds to the function 𝜒 IsZero,
defined using primitive recursion by

𝜒 IsZero(0) = 1,

𝜒 IsZero(x + 1) = 0.

It should be clear that one can compose relations with other
primitive recursive functions. So the following are also primitive
recursive:

1. The equality relation, x = y , defined by IsZero(
|︁|︁x − y |︁|︁)

2. The less-than relation, x ≤ y , defined by IsZero(x −̇ y)

Proposition 15.16. The set of primitive recursive relations is closed
under Boolean operations, that is, if P (x⃗) and Q (x⃗) are primitive re-
cursive, so are

1. ¬P (x⃗)

2. P (x⃗) ∧Q (x⃗)

3. P (x⃗) ∨Q (x⃗)

4. P (x⃗) →Q (x⃗)

Proof. Suppose P (x⃗) and Q (x⃗) are primitive recursive, i.e., their
characteristic functions 𝜒P and 𝜒Q are. We have to show that
the characteristic functions of ¬P (x⃗), etc., are also primitive re-
cursive.

𝜒¬P (x⃗) =
{︄
0 if 𝜒P (x⃗) = 1

1 otherwise

CHAPTER 15. RECURSIVE FUNCTIONS 300

We can define 𝜒¬P (x⃗) as 1 −̇ 𝜒P (x⃗).

𝜒P∧Q (x⃗) =
{︄
1 if 𝜒P (x⃗) = 𝜒Q (x⃗) = 1

0 otherwise

We can define 𝜒P∧Q (x⃗) as 𝜒P (x⃗)·𝜒Q (x⃗) or as min(𝜒P (x⃗), 𝜒Q (x⃗)).
Similarly,

𝜒P∨Q (x⃗) = max(𝜒P (x⃗), 𝜒Q (x⃗))) and

𝜒P→Q (x⃗) = max(1 −̇ 𝜒P (x⃗), 𝜒Q (x⃗)). □

Proposition 15.17. The set of primitive recursive relations is closed
under bounded quantification, i.e., if R (x⃗ ,z) is a primitive recursive
relation, then so are the relations

(∀z < y) R (x⃗ ,z) and

(∃z < y) R (x⃗ ,z).

(∀z < y) R (x⃗ ,z) holds of x⃗ and y if and only if R (x⃗ ,z) holds for
every z less than y, and similarly for (∃z < y) R (x⃗ ,z).

Proof. By convention, we take (∀z < 0) R (x⃗ ,z) to be true (for the
trivial reason that there are no z less than 0) and (∃z < 0) R (x⃗ ,z)
to be false. A bounded universal quantifier functions just like
a finite product or iterated minimum, i.e., if P (x⃗ ,y) ⇔ (∀z <

y) R (x⃗ ,z) then 𝜒P (x⃗ ,y) can be defined by

𝜒P (x⃗ ,0) = 1

𝜒P (x⃗ ,y + 1) = min(𝜒P (x⃗ ,y), 𝜒R (x⃗ ,y))).

Bounded existential quantification can similarly be defined using
max. Alternatively, it can be defined from bounded universal
quantification, using the equivalence (∃z < y) R (x⃗ ,z) ↔ ¬(∀z <

y) ¬R (x⃗ ,z). Note that, for example, a bounded quantifier of the
form (∃x ≤ y) . . . x . . . is equivalent to (∃x < y + 1) . . . x □

CHAPTER 15. RECURSIVE FUNCTIONS 301

Another useful primitive recursive function is the conditional
function, cond(x ,y ,z), defined by

cond(x ,y ,z) =
{︄
y if x = 0

z otherwise.

This is defined recursively by

cond(0,y ,z) = y ,
cond(x + 1,y ,z) = z .

One can use this to justify definitions of primitive recursive func-
tions by cases from primitive recursive relations:

Proposition 15.18. If g0(x⃗), . . . , gm (x⃗) are primitive recursive func-
tions, and R0(x⃗), . . . , Rm−1(x⃗) are primitive recursive relations, then
the function f defined by

f (x⃗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g0(x⃗) if R0(x⃗)
g1(x⃗) if R1(x⃗) and not R0(x⃗)
...

gm−1(x⃗) if Rm−1(x⃗) and none of the previous hold

gm (x⃗) otherwise

is also primitive recursive.

Proof. When m = 1, this is just the function defined by

f (x⃗) = cond(𝜒¬R0 (x⃗), g0(x⃗), g1(x⃗)).

For m greater than 1, one can just compose definitions of this
form. □

15.9 Bounded Minimization

It is often useful to define a function as the least number sat-
isfying some property or relation P . If P is decidable, we can

CHAPTER 15. RECURSIVE FUNCTIONS 302

compute this function simply by trying out all the possible num-
bers, 0, 1, 2, . . . , until we find the least one satisfying P . This
kind of unbounded search takes us out of the realm of primitive
recursive functions. However, if we’re only interested in the least
number less than some independently given bound, we stay primitive
recursive. In other words, and a bit more generally, suppose we
have a primitive recursive relation R (x ,z). Consider the function
that maps x and y to the least z < y such that R (x ,z). It, too, can
be computed, by testing whether R (x ,0), R (x ,1), . . . , R (x ,y − 1).
But why is it primitive recursive?

Proposition 15.19. If R (x⃗ ,z) is primitive recursive, so is the func-
tion mR (x⃗ ,y) which returns the least z less than y such that R (x⃗ ,z)
holds, if there is one, and y otherwise. We will write the function mR
as

(min z < y)R (x⃗ ,z),

Proof. Note than there can be no z < 0 such that R (x⃗ ,z) since
there is no z < 0 at all. So mR (x⃗ ,0) = 0.

In case the bound is of the form y + 1 we have three cases:

1. There is a z < y such that R (x⃗ ,z), in which case mR (x⃗ ,y +
1) = mR (x⃗ ,y).

2. There is no such z < y but R (x⃗ ,y) holds, then mR (x⃗ ,y +1) =
y .

3. There is no z < y + 1 such that R (x⃗ ,z), then mR (z⃗ ,y + 1) =
y + 1.

So we can define mR (x⃗ ,0) by primitive recursion as follows:

mR (x⃗ ,0) = 0

mR (x⃗ ,y + 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
mR (x⃗ ,y) if mR (x⃗ ,y) ≠ y
y if mR (x⃗ ,y) = y and R (x⃗ ,y)
y + 1 otherwise.

Note that there is a z < y such that R (x⃗ ,z) iff mR (x⃗ ,y) ≠ y . □

CHAPTER 15. RECURSIVE FUNCTIONS 303

15.10 Primes

Bounded quantification and bounded minimization provide us
with a good deal of machinery to show that natural functions
and relations are primitive recursive. For example, consider the
relation “x divides y”, written x | y . The relation x | y holds if
division of y by x is possible without remainder, i.e., if y is an
integer multiple of x . (If it doesn’t hold, i.e., the remainder when
dividing x by y is > 0, we write x ∤ y .) In other words, x | y iff for
some z , x · z = y . Obviously, any such z , if it exists, must be ≤ y .
So, we have that x | y iff for some z ≤ y , x · z = y . We can define
the relation x | y by bounded existential quantification from =

and multiplication by

x | y ⇔ (∃z ≤ y) (x · z) = y .

We’ve thus shown that x | y is primitive recursive.
A natural number x is prime if it is neither 0 nor 1 and is only

divisible by 1 and itself. In other words, prime numbers are such
that, whenever y | x , either y = 1 or y = x . To test if x is prime,
we only have to check if y | x for all y ≤ x , since if y > x , then
automatically y ∤ x . So, the relation Prime(x), which holds iff x
is prime, can be defined by

Prime(x) ⇔ x ≥ 2 ∧ (∀y ≤ x) (y | x → y = 1 ∨ y = x)

and is thus primitive recursive.
The primes are 2, 3, 5, 7, 11, etc. Consider the function

p (x) which returns the xth prime in that sequence, i.e., p (0) = 2,
p (1) = 3, p (2) = 5, etc. (For convenience we will often write p (x)
as px (p0 = 2, p1 = 3, etc.)

If we had a function nextPrime(x), which returns the first
prime number larger than x , p can be easily defined using prim-
itive recursion:

p (0) = 2

p (x + 1) = nextPrime(p (x))

CHAPTER 15. RECURSIVE FUNCTIONS 304

Since nextPrime(x) is the least y such that y > x and y is prime,
it can be easily computed by unbounded search. But it can also
be defined by bounded minimization, thanks to a result due to
Euclid: there is always a prime number between x and x ! + 1.

nextPrime(x) = (min y ≤ x ! + 1) (y > x ∧ Prime(y)).

This shows, that nextPrime(x) and hence p (x) are (not just com-
putable but) primitive recursive.

(If you’re curious, here’s a quick proof of Euclid’s theorem.
Suppose pn is the largest prime ≤ x and consider the product
p = p0 · p1 · · · · · pn of all primes ≤ x . Either p + 1 is prime or there
is a prime between x and p +1. Why? Suppose p +1 is not prime.
Then some prime number q | p + 1 where q < p + 1. None of the
primes ≤ x divide p + 1. (By definition of p, each of the primes
pi ≤ x divides p, i.e., with remainder 0. So, each of the primes
pi ≤ x divides p + 1 with remainder 1, and so pi ∤ p + 1.) Hence,
q is a prime > x and < p + 1. And p ≤ x !, so there is a prime > x
and ≤ x ! + 1.)

15.11 Sequences

The set of primitive recursive functions is remarkably robust.
But we will be able to do even more once we have developed
a adequate means of handling sequences. We will identify finite
sequences of natural numbers with natural numbers in the fol-
lowing way: the sequence ⟨a0,a1,a2, . . . ,ak ⟩ corresponds to the
number

pa0+1
0 · pa1+1

1 · pa2+1
2 · · · · · pak+1

k .

We add one to the exponents to guarantee that, for example, the
sequences ⟨2,7,3⟩ and ⟨2,7,3,0,0⟩ have distinct numeric codes.
We can take both 0 and 1 to code the empty sequence; for con-
creteness, let 𝛬 denote 0.

The reason that this coding of sequences works is the so-called
Fundamental Theorem of Arithmetic: every natural number n ≥

CHAPTER 15. RECURSIVE FUNCTIONS 305

2 can be written in one and only one way in the form

n = pa0
0 · pa1

1 · · · · · pakk

with ak ≥ 1. This guarantees that the mapping ⟨⟩(a0, . . . ,ak) =

⟨a0, . . . ,ak ⟩ is injective: different sequences are mapped to differ-
ent numbers; to each number only at most one sequence corre-
sponds.

We’ll now show that the operations of determining the length
of a sequence, determining its i th element, appending an element
to a sequence, and concatenating two sequences, are all primitive
recursive.

Proposition 15.20. The function len(s), which returns the length of
the sequence s , is primitive recursive.

Proof. Let R (i ,s) be the relation defined by

R (i ,s) iff pi | s ∧ pi+1 ∤ s .

R is clearly primitive recursive. Whenever s is the code of a non-
empty sequence, i.e.,

s = pa0+1
0 · · · · · pak+1

k ,

R (i ,s) holds if pi is the largest prime such that pi | s , i.e., i = k .
The length of s thus is i+1 iff pi is the largest prime that divides s ,
so we can let

len(s) =
{︄
0 if s = 0 or s = 1

1 + (min i < s)R (i ,s) otherwise

We can use bounded minimization, since there is only one i that
satisfies R (s ,i) when s is a code of a sequence, and if i exists it
is less than s itself. □

CHAPTER 15. RECURSIVE FUNCTIONS 306

Proposition 15.21. The function append(s ,a), which returns the
result of appending a to the sequence s , is primitive recursive.

Proof. append can be defined by:

append(s ,a) =
{︄
2a+1 if s = 0 or s = 1

s · pa+1
len(s) otherwise. □

Proposition 15.22. The function element(s ,i), which returns the
i th element of s (where the initial element is called the 0th), or 0 if i is
greater than or equal to the length of s , is primitive recursive.

Proof. Note that a is the i th element of s iff pa+1
i is the largest

power of pi that divides s , i.e., pa+1
i | s but pa+2

i ∤ s . So:

element(s ,i) =
{︄
0 if i ≥ len(s)
(min a < s) (pa+2

i ∤ s) otherwise. □

Instead of using the official names for the functions defined
above, we introduce a more compact notation. We will use (s)i
instead of element(s ,i), and ⟨s0, . . . ,sk ⟩ to abbreviate

append(append(. . . append(𝛬,s0) . . .),sk).

Note that if s has length k , the elements of s are (s)0, . . . , (s)k−1.

Proposition 15.23. The function concat(s ,t), which concatenates
two sequences, is primitive recursive.

Proof. We want a function concat with the property that

concat(⟨a0, . . . ,ak ⟩, ⟨b0, . . . ,bl ⟩) = ⟨a0, . . . ,ak ,b0, . . . ,bl ⟩.

We’ll use a “helper” function hconcat(s ,t ,n) which concatenates
the first n symbols of t to s . This function can be defined by
primitive recursion as follows:

hconcat(s ,t ,0) = s

CHAPTER 15. RECURSIVE FUNCTIONS 307

hconcat(s ,t ,n + 1) = append(hconcat(s ,t ,n), (t)n)

Then we can define concat by

concat(s ,t) = hconcat(s ,t , len(t)). □

We will write s ⌢ t instead of concat(s ,t).
It will be useful for us to be able to bound the numeric code of

a sequence in terms of its length and its largest element. Suppose
s is a sequence of length k , each element of which is less than or
equal to some number x . Then s has at most k prime factors,
each at most pk−1, and each raised to at most x + 1 in the prime
factorization of s . In other words, if we define

sequenceBound(x ,k) = pk · (x+1)
k−1 ,

then the numeric code of the sequence s described above is at
most sequenceBound(x ,k).

Having such a bound on sequences gives us a way of defining
new functions using bounded search. For example, we can define
concat using bounded search. All we need to do is write down
a primitive recursive specification of the object (number of the
concatenated sequence) we are looking for, and a bound on how
far to look. The following works:

concat(s ,t) = (min v < sequenceBound(s + t , len(s) + len(t)))
(len(v) = len(s) + len(t) ∧

(∀i < len(s)) ((v)i = (s)i) ∧
(∀ j < len(t)) ((v)len(s)+ j = (t) j))

Proposition 15.24. The function subseq(s ,i ,n) which returns the
subsequence of s of length n beginning at the i th element, is primitive
recursive.

Proof. Exercise. □

CHAPTER 15. RECURSIVE FUNCTIONS 308

15.12 Trees

Sometimes it is useful to represent trees as natural numbers, just
like we can represent sequences by numbers and properties of and
operations on them by primitive recursive relations and functions
on their codes. We’ll use sequences and their codes to do this. A
tree can be either a single node (possibly with a label) or else a
node (possibly with a label) connected to a number of subtrees.
The node is called the root of the tree, and the subtrees it is
connected to its immediate subtrees.

We code trees recursively as a sequence ⟨k ,d1, . . . ,dk ⟩, where
k is the number of immediate subtrees and d1, . . . , dk the codes
of the immediate subtrees. If the nodes have labels, they can be
included after the immediate subtrees. So a tree consisting just
of a single node with label l would be coded by ⟨0,l ⟩, and a tree
consisting of a root (labelled l1) connected to two single nodes
(labelled l2, l3) would be coded by ⟨2, ⟨0,l2⟩, ⟨0,l3⟩,l1⟩.

Proposition 15.25. The function SubtreeSeq(t), which returns the
code of a sequence the elements of which are the codes of all subtrees of
the tree with code t , is primitive recursive.

Proof. First note that ISubtrees(t) = subseq(t ,1, (t)0) is primitive
recursive and returns the codes of the immediate subtrees of a
tree t . Now we can define a helper function hSubtreeSeq(t ,n)
which computes the sequence of all subtrees which are n nodes
removed from the root. The sequence of subtrees of t which is 0
nodes removed from the root—in other words, begins at the root
of t—is the sequence consisting just of t . To obtain a sequence
of all level n + 1 subtrees of t , we concatenate the level n subtrees
with a sequence consisting of all immediate subtrees of the level n
subtrees. To get a list of all these, note that if f (x) is a primitive
recursive function returning codes of sequences, then g f (s ,k) =
f ((s)0) ⌢ . . . ⌢ f ((s)k) is also primitive recursive:

g (s ,0) = f ((s)0)

CHAPTER 15. RECURSIVE FUNCTIONS 309

g (s ,k + 1) = g (s ,k) ⌢ f ((s)k+1)

For instance, if s is a sequence of trees, then h (s) =

gISubtrees(s , len(s)) gives the sequence of the immediate subtrees
of the elements of s . We can use it to define hSubtreeSeq by

hSubtreeSeq(t ,0) = ⟨t⟩
hSubtreeSeq(t ,n + 1) = hSubtreeSeq(t ,n) ⌢ h (hSubtreeSeq(t ,n)).

The maximum level of subtrees in a tree coded by t , i.e., the
maximum distance between the root and a leaf node, is bounded
by the code t . So a sequence of codes of all subtrees of the tree
coded by t is given by hSubtreeSeq(t ,t). □

15.13 Other Recursions

Using pairing and sequencing, we can justify more exotic (and
useful) forms of primitive recursion. For example, it is often use-
ful to define two functions simultaneously, such as in the following
definition:

h0(x⃗ ,0) = f0(x⃗)
h1(x⃗ ,0) = f1(x⃗)

h0(x⃗ ,y + 1) = g0(x⃗ ,y ,h0(x⃗ ,y),h1(x⃗ ,y))
h1(x⃗ ,y + 1) = g1(x⃗ ,y ,h0(x⃗ ,y),h1(x⃗ ,y))

This is an instance of simultaneous recursion. Another useful way
of defining functions is to give the value of h (x⃗ ,y + 1) in terms of
all the values h (x⃗ ,0), . . . , h (x⃗ ,y), as in the following definition:

h (x⃗ ,0) = f (x⃗)
h (x⃗ ,y + 1) = g (x⃗ ,y , ⟨h (x⃗ ,0), . . . ,h (x⃗ ,y)⟩).

The following schema captures this idea more succinctly:

h (x⃗ ,y) = g (x⃗ ,y , ⟨h (x⃗ ,0), . . . ,h (x⃗ ,y − 1)⟩)

CHAPTER 15. RECURSIVE FUNCTIONS 310

with the understanding that the last argument to g is just the
empty sequence when y is 0. In either formulation, the idea is
that in computing the “successor step,” the function h can make
use of the entire sequence of values computed so far. This is
known as a course-of-values recursion. For a particular example, it
can be used to justify the following type of definition:

h (x⃗ ,y) =
{︄
g (x⃗ ,y ,h (x⃗ ,k (x⃗ ,y))) if k (x⃗ ,y) < y
f (x⃗) otherwise

In other words, the value of h at y can be computed in terms of
the value of h at any previous value, given by k .

You should think about how to obtain these functions using
ordinary primitive recursion. One final version of primitive recur-
sion is more flexible in that one is allowed to change the parameters
(side values) along the way:

h (x⃗ ,0) = f (x⃗)
h (x⃗ ,y + 1) = g (x⃗ ,y ,h (k (x⃗),y))

This, too, can be simulated with ordinary primitive recursion.
(Doing so is tricky. For a hint, try unwinding the computation by
hand.)

15.14 Non-Primitive Recursive Functions

The primitive recursive functions do not exhaust the intuitively
computable functions. It should be intuitively clear that we can
make a list of all the unary primitive recursive functions, f0, f1,
f2, . . . such that we can effectively compute the value of fx on
input y ; in other words, the function g (x ,y), defined by

g (x ,y) = fx (y)

is computable. But then so is the function

h (x) = g (x ,x) + 1

CHAPTER 15. RECURSIVE FUNCTIONS 311

= fx (x) + 1.

For each primitive recursive function fi , the value of h and fi
differ at i . So h is computable, but not primitive recursive; and
one can say the same about g . This is an “effective” version of
Cantor’s diagonalization argument.

One can provide more explicit examples of computable func-
tions that are not primitive recursive. For example, let the nota-
tion g n (x) denote g (g (. . . g (x))), with n g ’s in all; and define a
sequence g0, g1, . . . of functions by

g0(x) = x + 1

gn+1(x) = g xn (x)

You can confirm that each function gn is primitive recursive. Each
successive function grows much faster than the one before; g1(x)
is equal to 2x , g2(x) is equal to 2x ·x , and g3(x) grows roughly like
an exponential stack of x 2’s. The Ackermann–Péter function is
essentially the functionG (x) = gx (x), and one can show that this
grows faster than any primitive recursive function.

Let us return to the issue of enumerating the primitive re-
cursive functions. Remember that we have assigned symbolic
notations to each primitive recursive function; so it suffices to
enumerate notations. We can assign a natural number #(F) to
each notation F , recursively, as follows:

#(0) = ⟨0⟩
#(S) = ⟨1⟩

#(P ni) = ⟨2,n,i ⟩
#(Compk ,l [H ,G0, . . . ,Gk−1]) = ⟨3,k ,l ,#(H),#(G0), . . . ,#(Gk−1)⟩

#(Recl [G ,H]) = ⟨4,l ,#(G),#(H)⟩

Here we are using the fact that every sequence of numbers can
be viewed as a natural number, using the codes from the last sec-
tion. The upshot is that every code is assigned a natural number.
Of course, some sequences (and hence some numbers) do not

CHAPTER 15. RECURSIVE FUNCTIONS 312

correspond to notations; but we can let fi be the unary primitive
recursive function with notation coded as i , if i codes such a no-
tation; and the constant 0 function otherwise. The net result is
that we have an explicit way of enumerating the unary primitive
recursive functions.

(In fact, some functions, like the constant zero function, will
appear more than once on the list. This is not just an artifact
of our coding, but also a result of the fact that the constant zero
function has more than one notation. We will later see that one
can not computably avoid these repetitions; for example, there
is no computable function that decides whether or not a given
notation represents the constant zero function.)

We can now take the function g (x ,y) to be given by fx (y),
where fx refers to the enumeration we have just described. How
do we know that g (x ,y) is computable? Intuitively, this is clear:
to compute g (x ,y), first “unpack” x , and see if it is a notation for
a unary function. If it is, compute the value of that function on
input y .

You may already be convinced that (with some work!) one
can write a program (say, in Java or C++) that does this; and
now we can appeal to the Church-Turing thesis, which says that
anything that, intuitively, is computable can be computed by a
Turing machine.

Of course, a more direct way to show that g (x ,y) is com-
putable is to describe a Turing machine that computes it, explic-
itly. This would, in particular, avoid the Church-Turing thesis and
appeals to intuition. Soon we will have built up enough machin-
ery to show that g (x ,y) is computable, appealing to a model of
computation that can be simulated on a Turing machine: namely,
the recursive functions.

15.15 Partial Recursive Functions

To motivate the definition of the recursive functions, note that
our proof that there are computable functions that are not primi-

CHAPTER 15. RECURSIVE FUNCTIONS 313

tive recursive actually establishes much more. The argument was
simple: all we used was the fact that it is possible to enumerate
functions f0, f1, . . . such that, as a function of x and y , fx (y) is
computable. So the argument applies to any class of functions that
can be enumerated in such a way. This puts us in a bind: we would
like to describe the computable functions explicitly; but any ex-
plicit description of a collection of computable functions cannot
be exhaustive!

The way out is to allow partial functions to come into play.
We will see that it is possible to enumerate the partial computable
functions. In fact, we already pretty much know that this is the
case, since it is possible to enumerate Turing machines in a sys-
tematic way. We will come back to our diagonal argument later,
and explore why it does not go through when partial functions
are included.

The question is now this: what do we need to add to the
primitive recursive functions to obtain all the partial recursive
functions? We need to do two things:

1. Modify our definition of the primitive recursive functions
to allow for partial functions as well.

2. Add something to the definition, so that some new partial
functions are included.

The first is easy. As before, we will start with zero, succes-
sor, and projections, and close under composition and primitive
recursion. The only difference is that we have to modify the def-
initions of composition and primitive recursion to allow for the
possibility that some of the terms in the definition are not de-
fined. If f and g are partial functions, we will write f (x) ↓ to
mean that f is defined at x , i.e., x is in the domain of f ; and
f (x) ↑ to mean the opposite, i.e., that f is not defined at x . We
will use f (x) ≃ g (x) to mean that either f (x) and g (x) are both
undefined, or they are both defined and equal. We will use these
notations for more complicated terms as well. We will adopt the

CHAPTER 15. RECURSIVE FUNCTIONS 314

convention that if h and g0, . . . , gk all are partial functions, then

h (g0(x⃗), . . . , gk (x⃗))

is defined if and only if each gi is defined at x⃗ , and h is defined
at g0(x⃗), . . . , gk (x⃗). With this understanding, the definitions of
composition and primitive recursion for partial functions is just
as above, except that we have to replace “=” by “≃”.

What we will add to the definition of the primitive recursive
functions to obtain partial functions is the unbounded search oper-
ator. If f (x , z⃗) is any partial function on the natural numbers,
define 𝜇x f (x , z⃗) to be

the least x such that f (0, z⃗), f (1, z⃗), . . . , f (x , z⃗) are all
defined, and f (x , z⃗) = 0, if such an x exists

with the understanding that 𝜇x f (x , z⃗) is undefined otherwise.
This defines 𝜇x f (x , z⃗) uniquely.

Note that our definition makes no reference to Turing ma-
chines, or algorithms, or any specific computational model. But
like composition and primitive recursion, there is an opera-
tional, computational intuition behind unbounded search. When
it comes to the computability of a partial function, arguments
where the function is undefined correspond to inputs for which
the computation does not halt. The procedure for computing
𝜇x f (x , z⃗) will amount to this: compute f (0, z⃗), f (1, z⃗), f (2, z⃗)
until a value of 0 is returned. If any of the intermediate com-
putations do not halt, however, neither does the computation of
𝜇x f (x , z⃗).

If R (x , z⃗) is any relation, 𝜇x R (x , z⃗) is defined to be 𝜇x (1 −̇
𝜒R (x , z⃗)). In other words, 𝜇x R (x , z⃗) returns the least value of x
such thatR (x , z⃗) holds. So, if f (x , z⃗) is a total function, 𝜇x f (x , z⃗)
is the same as 𝜇x (f (x , z⃗) = 0). But note that our original defini-
tion is more general, since it allows for the possibility that f (x , z⃗)
is not everywhere defined (whereas, in contrast, the characteristic
function of a relation is always total).

CHAPTER 15. RECURSIVE FUNCTIONS 315

Definition 15.26. The set of partial recursive functions is the
smallest set of partial functions from the natural numbers to the
natural numbers (of various arities) containing zero, successor,
and projections, and closed under composition, primitive recur-
sion, and unbounded search.

Of course, some of the partial recursive functions will happen
to be total, i.e., defined for every argument.

Definition 15.27. The set of recursive functions is the set of par-
tial recursive functions that are total.

A recursive function is sometimes called “total recursive” to
emphasize that it is defined everywhere.

15.16 The Normal Form Theorem

Theorem 15.28 (Kleene’s Normal Form Theorem). There is
a primitive recursive relation T (e ,x ,s) and a primitive recursive func-
tion U (s), with the following property: if f is any partial recursive
function, then for some e ,

f (x) ≃ U (𝜇s T (e ,x ,s))

for every x.

The proof of the normal form theorem is involved, but the ba-
sic idea is simple. Every partial recursive function has an index e ,
intuitively, a number coding its program or definition. If f (x) ↓,
the computation can be recorded systematically and coded by
some number s , and the fact that s codes the computation of f
on input x can be checked primitive recursively using only x and
the definition e . Consequently, the relation T , “the function with
index e has a computation for input x , and s codes this compu-
tation,” is primitive recursive. Given the full record of the com-

CHAPTER 15. RECURSIVE FUNCTIONS 316

putation s , the “upshot” of s is the value of f (x), and it can be
obtained from s primitive recursively as well.

The normal form theorem shows that only a single un-
bounded search is required for the definition of any partial re-
cursive function. Basically, we can search through all numbers
until we find one that codes a computation of the function with
index e for input x . We can use the numbers e as “names” of par-
tial recursive functions, and write 𝜑e for the function f defined
by the equation in the theorem. Note that any partial recursive
function can have more than one index—in fact, every partial
recursive function has infinitely many indices.

15.17 The Halting Problem

The halting problem in general is the problem of deciding, given
the specification e (e.g., program) of a computable function and
a number n, whether the computation of the function on input n
halts, i.e., produces a result. Famously, Alan Turing proved that
this problem itself cannot be solved by a computable function,
i.e., the function

h (e ,n) =
{︄
1 if computation e halts on input n

0 otherwise,

is not computable.
In the context of partial recursive functions, the role of the

specification of a program may be played by the index e given in
Kleene’s normal form theorem. If f is a partial recursive func-
tion, any e for which the equation in the normal form theorem
holds, is an index of f . Given a number e , the normal form
theorem states that

𝜑e (x) ≃ U (𝜇s T (e ,x ,s))

is partial recursive, and for every partial recursive f : N → N,
there is an e ∈ N such that 𝜑e (x) ≃ f (x) for all x ∈ N. In fact,

CHAPTER 15. RECURSIVE FUNCTIONS 317

for each such f there is not just one, but infinitely many such e .
The halting function h is defined by

h (e ,x) =
{︄
1 if 𝜑e (x) ↓
0 otherwise.

Note that h (e ,x) = 0 if 𝜑e (x) ↑, but also when e is not the index
of a partial recursive function at all.

Theorem 15.29. The halting function h is not partial recursive.

Proof. If h were partial recursive, we could define

d (y) =
{︄
1 if h (y ,y) = 0

𝜇x x ≠ x otherwise.

Since no number x satisfies x ≠ x , there is no 𝜇x x ≠ x , and so
d (y) ↑ iff h (y ,y) ≠ 0. From this definition it follows that

1. d (y) ↓ iff 𝜑y (y) ↑ or y is not the index of a partial recursive
function.

2. d (y) ↑ iff 𝜑y (y) ↓.

If h were partial recursive, then d would be partial recursive as
well. Thus, by the Kleene normal form theorem, it has an in-
dex ed . Consider the value of h (ed ,ed). There are two possible
cases, 0 and 1.

1. If h (ed ,ed) = 1 then 𝜑ed (ed) ↓. But 𝜑ed ≃ d , and d (ed) is
defined iff h (ed ,ed) = 0. So h (ed ,ed) ≠ 1.

2. If h (ed ,ed) = 0 then either ed is not the index of a partial
recursive function, or it is and 𝜑ed (ed) ↑. But again, 𝜑ed ≃ d ,
and d (ed) is undefined iff 𝜑ed (ed) ↓.

The upshot is that ed cannot, after all, be the index of a partial
recursive function. But if h were partial recursive, d would be too,
and so our definition of ed as an index of it would be admissible.
We must conclude that h cannot be partial recursive. □

CHAPTER 15. RECURSIVE FUNCTIONS 318

15.18 General Recursive Functions

There is another way to obtain a set of total functions. Say a total
function f (x , z⃗) is regular if for every sequence of natural numbers
z⃗ , there is an x such that f (x , z⃗) = 0. In other words, the regu-
lar functions are exactly those functions to which one can apply
unbounded search, and end up with a total function. One can,
conservatively, restrict unbounded search to regular functions:

Definition 15.30. The set of general recursive functions is the
smallest set of functions from the natural numbers to the nat-
ural numbers (of various arities) containing zero, successor, and
projections, and closed under composition, primitive recursion,
and unbounded search applied to regular functions.

Clearly every general recursive function is total. The differ-
ence between Definition 15.30 and Definition 15.27 is that in the
latter one is allowed to use partial recursive functions along the
way; the only requirement is that the function you end up with at
the end is total. So the word “general,” a historic relic, is a mis-
nomer; on the surface, Definition 15.30 is less general than Def-
inition 15.27. But, fortunately, the difference is illusory; though
the definitions are different, the set of general recursive functions
and the set of recursive functions are one and the same.

Summary

In order to show that Q represents all computable functions, we
need a precise model of computability that we can take as the
basis for a proof. There are, of course, many models of com-
putability, such as Turing machines. One model that plays a sig-
nificant role historically—it’s one of the first models proposed,
and is also the one used by Gödel himself—is that of the recur-
sive functions. The recursive functions are a class of arithmeti-
cal functions—that is, their domain and range are the natural
numbers—that can be defined from a few basic functions using a

CHAPTER 15. RECURSIVE FUNCTIONS 319

few operations. The basic functions are zero, succ, and the pro-
jection functions. The operations are composition, primitive
recursion, and regular minimization. Composition is simply a
general version of “chaining together” functions: first apply one,
then apply the other to the result. Primitive recursion defines a
new function f from two functions g , h already defined, by stipu-
lating that the value of f for 0 is given by g , and the value for any
number n + 1 is given by h applied to f (n). Functions that can
be defined using just these two principles are called primitive
recursive. A relation is primitive recursive iff its characteristic
function is. It turns out that a whole list of interesting functions
and relations are primitive recursive (such as addition, multi-
plication, exponentiation, divisibility), and that we can define
new primitive recursive functions and relations from old ones us-
ing principles such as bounded quantification and bounded min-
imization. In particular, this allowed us to show that we can deal
with sequences of numbers in primitive recursive ways. That is,
there is a way to “code” sequences of numbers as single num-
bers in such a way that we can compute the i -the element, the
length, the concatenation of two sequences, etc., all using prim-
itive recursive functions operating on these codes. To obtain all
the computable functions, we finally added definition by regular
minimization to composition and primitive recursion. A func-
tion g (x ,y) is regular iff, for every y it takes the value 0 for at
least one x . If f is regular, the least x such that g (x ,y) = 0 al-
ways exists, and can be found simply by computing all the values
of g (0,y), g (1,y), etc., until one of them is = 0. The resulting
function f (y) = 𝜇x g (x ,y) = 0 is the function defined by regular
minimization from g . It is always total and computable. The re-
sulting set of functions are called general recursive. One version
of the Church-Turing Thesis says that the computable arithmeti-
cal functions are exactly the general recursive ones.

CHAPTER 15. RECURSIVE FUNCTIONS 320

Problems

Problem 15.1. Prove Proposition 15.5 by showing that the prim-
itive recursive definition of mult is can be put into the form re-
quired by Definition 15.1 and showing that the corresponding
functions f and g are primitive recursive.

Problem 15.2. Give the complete primitive recursive notation
for mult.

Problem 15.3. Prove Proposition 15.13.

Problem 15.4. Show that

f (x ,y) = 2(2. .
.2
x

)

}︃
y 2’s

is primitive recursive.

Problem 15.5. Show that integer division d (x ,y) = ⌊x/y⌋ (i.e.,
division, where you disregard everything after the decimal point)
is primitive recursive. When y = 0, we stipulate d (x ,y) = 0. Give
an explicit definition of d using primitive recursion and compo-
sition.

Problem 15.6. Show that the three place relation x ≡ y mod n
(congruence modulo n) is primitive recursive.

Problem 15.7. SupposeR (x⃗ ,z) is primitive recursive. Define the
function m′

R (x⃗ ,y) which returns the least z less than y such that
R (x⃗ ,z) holds, if there is one, and 0 otherwise, by primitive recur-
sion from 𝜒R .

Problem 15.8. Define integer division d (x ,y) using bounded
minimization.

Problem 15.9. Show that there is a primitive recursive func-
tion sconcat(s) with the property that

sconcat(⟨s0, . . . ,sk ⟩) = s0 ⌢ . . . ⌢ sk .

CHAPTER 15. RECURSIVE FUNCTIONS 321

Problem 15.10. Show that there is a primitive recursive func-
tion tail(s) with the property that

tail(𝛬) = 0 and

tail(⟨s0, . . . ,sk ⟩) = ⟨s1, . . . ,sk ⟩.

Problem 15.11. Prove Proposition 15.24.

Problem 15.12. The definition of hSubtreeSeq in the proof of
Proposition 15.25 in general includes repetitions. Give an alterna-
tive definition which guarantees that the code of a subtree occurs
only once in the resulting list.

Problem 15.13. Define the remainder function r (x ,y) by course-
of-values recursion. (If x , y are natural numbers and y > 0, r (x ,y)
is the number less than y such that x = z × y + r (x ,y) for some z .
For definiteness, let’s say that if y = 0, r (x ,0) = 0.)

CHAPTER 16

Arithmetization
of Syntax
16.1 Introduction

In order to connect computability and logic, we need a way to talk
about the objects of logic (symbols, terms, formulas, derivations),
operations on them, and their properties and relations, in a way
amenable to computational treatment. We can do this directly,
by considering computable functions and relations on symbols,
sequences of symbols, and other objects built from them. Since
the objects of logical syntax are all finite and built from a count-
able sets of symbols, this is possible for some models of compu-
tation. But other models of computation—such as the recursive
functions—-are restricted to numbers, their relations and func-
tions. Moreover, ultimately we also want to be able to deal with
syntax within certain theories, specifically, in theories formulated
in the language of arithmetic. In these cases it is necessary to
arithmetize syntax, i.e., to represent syntactic objects, operations
on them, and their relations, as numbers, arithmetical functions,
and arithmetical relations, respectively. The idea, which goes
back to Leibniz, is to assign numbers to syntactic objects.

It is relatively straightforward to assign numbers to symbols
as their “codes.” Some symbols pose a bit of a challenge, since,

322

CHAPTER 16. ARITHMETIZATION OF SYNTAX 323

e.g., there are infinitely many variables, and even infinitely many
function symbols of each arity n. But of course it’s possible to
assign numbers to symbols systematically in such a way that, say,
v2 and v3 are assigned different codes. Sequences of symbols
(such as terms and formulas) are a bigger challenge. But if we can
deal with sequences of numbers purely arithmetically (e.g., by the
powers-of-primes coding of sequences), we can extend the coding
of individual symbols to coding of sequences of symbols, and then
further to sequences or other arrangements of formulas, such as
derivations. This extended coding is called “Gödel numbering.”
Every term, formula, and derivation is assigned a Gödel number.

By coding sequences of symbols as sequences of their codes,
and by chosing a system of coding sequences that can be dealt
with using computable functions, we can then also deal with
Gödel numbers using computable functions. In practice, all the
relevant functions will be primitive recursive. For instance, com-
puting the length of a sequence and computing the i -th element
of a sequence from the code of the sequence are both primitive
recursive. If the number coding the sequence is, e.g., the Gödel
number of a formula A, we immediately see that the length of
a formula and the (code of the) i -th symbol in a formula can
also be computed from the Gödel number of A. It is a bit harder
to prove that, e.g., the property of being the Gödel number of
a correctly formed term or of a correct derivation is primitive
recursive. It is nevertheless possible, because the sequences of
interest (terms, formulas, derivations) are inductively defined.

As an example, consider the operation of substitution. If A
is a formula, x a variable, and t a term, then A[t/x] is the result
of replacing every free occurrence of x in A by t . Now suppose
we have assigned Gödel numbers to A, x , t—say, k , l , and m, re-
spectively. The same scheme assigns a Gödel number to A[t/x],
say, n. This mapping—of k , l , and m to n—is the arithmetical
analog of the substitution operation. When the substitution oper-
ation maps A, x , t to A[t/x], the arithmetized substitution func-
tions maps the Gödel numbers k , l , m to the Gödel number n.
We will see that this function is primitive recursive.

CHAPTER 16. ARITHMETIZATION OF SYNTAX 324

Arithmetization of syntax is not just of abstract interest, al-
though it was originally a non-trivial insight that languages like
the language of arithmetic, which do not come with mechanisms
for “talking about” languages can, after all, formalize complex
properties of expressions. It is then just a small step to ask what
a theory in this language, such as Peano arithmetic, can prove
about its own language (including, e.g., whether sentences are
provable or true). This leads us to the famous limitative theorems
of Gödel (about unprovability) and Tarski (the undefinability of
truth). But the trick of arithmetizing syntax is also important in
order to prove some important results in computability theory,
e.g., about the computational power of theories or the relation-
ship between different models of computability. The arithmetiza-
tion of syntax serves as a model for arithmetizing other objects
and properties. For instance, it is similarly possible to arithme-
tize configurations and computations (say, of Turing machines).
This makes it possible to simulate computations in one model
(e.g., Turing machines) in another (e.g., recursive functions).

16.2 Coding Symbols

The basic language Lof first order logic makes use of the symbols

⊥ ¬ ∨ ∧ → ∀ ∃ = () ,

together with countable sets of variables and constant symbols,
and countable sets of function symbols and predicate symbols
of arbitrary arity. We can assign codes to each of these symbols
in such a way that every symbol is assigned a unique number
as its code, and no two different symbols are assigned the same
number. We know that this is possible since the set of all symbols
is countable and so there is a bijection between it and the set of
natural numbers. But we want to make sure that we can recover
the symbol (as well as some information about it, e.g., the arity of
a function symbol) from its code in a computable way. There are
many possible ways of doing this, of course. Here is one such way,

CHAPTER 16. ARITHMETIZATION OF SYNTAX 325

which uses primitive recursive functions. (Recall that ⟨n0, . . . ,nk ⟩
is the number coding the sequence of numbers n0, . . . , nk .)

Definition 16.1. If s is a symbol of L, let the symbol code cs be
defined as follows:

1. If s is among the logical symbols, cs is given by the follow-
ing table:

⊥ ¬ ∨ ∧ → ∀
⟨0,0⟩ ⟨0,1⟩ ⟨0,2⟩ ⟨0,3⟩ ⟨0,4⟩ ⟨0,5⟩
∃ = () ,

⟨0,6⟩ ⟨0,7⟩ ⟨0,8⟩ ⟨0,9⟩ ⟨0,10⟩

2. If s is the i -th variable vi , then cs = ⟨1,i ⟩.

3. If s is the i -th constant symbol ci , then cs = ⟨2,i ⟩.

4. If s is the i -th n-ary function symbol f ni , then cs = ⟨3,n,i ⟩.

5. If s is the i -th n-ary predicate symbol P ni , then cs = ⟨4,n,i ⟩.

Proposition 16.2. The following relations are primitive recursive:

1. Fn(x ,n) iff x is the code of f ni for some i , i.e., x is the code of an
n-ary function symbol.

2. Pred(x ,n) iff x is the code of P ni for some i or x is the code of =
and n = 2, i.e., x is the code of an n-ary predicate symbol.

Definition 16.3. If s0, . . . ,sn−1 is a sequence of symbols, its Gödel
number is ⟨cs0 , . . . ,csn−1⟩.

Note that codes and Gödel numbers are different things. For
instance, the variable v5 has a code cv5 = ⟨1,5⟩ = 22 · 36. But the
variable v5 considered as a term is also a sequence of symbols (of

CHAPTER 16. ARITHMETIZATION OF SYNTAX 326

length 1). The Gödel number #v5
of the term v5 is ⟨cv5⟩ = 2cv5+1 =

222 ·36+1.

Example 16.4. Recall that if k0, . . . , kn−1 is a sequence of num-
bers, then the code of the sequence ⟨k0, . . . ,kn−1⟩ in the power-
of-primes coding is

2k0+1 · 3k1+1 · · · · · pkn−1
n−1 ,

where pi is the i -th prime (starting with p0 = 2). So for instance,
the formula v0 = 0, or, more explicitly, =(v0,c0), has the Gödel
number

⟨c=,c(,cv0 ,c,,cc0 ,c)⟩.

Here, c= is ⟨0,7⟩ = 20+1 · 37=1, cv0 is ⟨1,0⟩ = 21+1 · 30+1, etc. So
#= (v0,c0)# is

2c=+1 · 3c(+1 · 5cv0+1 · 7c,+1 · 11cc0+1 · 13c)+1 =

221 ·38+1 · 321 ·39+1 · 522 ·31+1 · 721 ·311+1 · 1123 ·31+1 · 1321 ·310+1 =

213 123 · 339 367 · 513 · 7354 295 · 1125 · 13118 099.

16.3 Coding Terms

A term is simply a certain kind of sequence of symbols: it is
built up inductively from constants and variables according to
the formation rules for terms. Since sequences of symbols can be
coded as numbers—using a coding scheme for the symbols plus
a way to code sequences of numbers—assigning Gödel numbers
to terms is not difficult. The challenge is rather to show that the
property a number has if it is the Gödel number of a correctly
formed term is computable, or in fact primitive recursive.

Variables and constant symbols are the simplest terms, and
testing whether x is the Gödel number of such a term is easy:
Var(x) holds if x is #vi

for some i . In other words, x is a se-
quence of length 1 and its single element (x)0 is the code of some
variable vi , i.e., x is ⟨⟨1,i ⟩⟩ for some i . Similarly, Const(x) holds

CHAPTER 16. ARITHMETIZATION OF SYNTAX 327

if x is #ci
for some i . Both of these relations are primitive recur-

sive, since if such an i exists, it must be < x :

Var(x) ⇔ (∃i < x) x = ⟨⟨1,i ⟩⟩
Const(x) ⇔ (∃i < x) x = ⟨⟨2,i ⟩⟩

Proposition 16.5. The relations Term(x) and ClTerm(x) which
hold iff x is the Gödel number of a term or a closed term, respectively,
are primitive recursive.

Proof. A sequence of symbols s is a term iff there is a sequence s0,
. . . , sk−1 = s of terms which records how the term s was formed
from constant symbols and variables according to the formation
rules for terms. To express that such a putative formation se-
quence follows the formation rules it has to be the case that, for
each i < k , either

1. si is a variable v j , or

2. si is a constant symbol c j , or

3. si is built from n terms t1, . . . , tn occurring prior to place i
using an n-place function symbol f nj .

To show that the corresponding relation on Gödel numbers is
primitive recursive, we have to express this condition primitive
recursively, i.e., using primitive recursive functions, relations, and
bounded quantification.

Suppose y is the number that codes the sequence s0, . . . , sk−1,
i.e., y = ⟨ #s0#, . . . , #sk−1

#⟩. It codes a formation sequence for the
term with Gödel number x iff for all i < k :

1. Var((y)i), or

2. Const((y)i), or

CHAPTER 16. ARITHMETIZATION OF SYNTAX 328

3. there is an n and a number z = ⟨z1, . . . ,zn⟩ such that each
zl is equal to some (y)i ′ for i ′ < i and

(y)i = #f nj (# ⌢ flatten(z) ⌢ #)#,

and moreover (y)k−1 = x . (The function flatten(z) turns the se-
quence ⟨ #t1#, . . . , #tn#⟩ into #t1, . . . ,tn# and is primitive recursive.)

The indices j , n, the Gödel numbers zl of the terms tl , and the
code z of the sequence ⟨z1, . . . ,zn⟩, in (3) are all less than y . We
can replace k above with len(y). Hence we can express “y is the
code of a formation sequence of the term with Gödel number x”
in a way that shows that this relation is primitive recursive.

We now just have to convince ourselves that there is a prim-
itive recursive bound on y . But if x is the Gödel number of
a term, it must have a formation sequence with at most len(x)
terms (since every term in the formation sequence of s must start
at some place in s , and no two subterms can start at the same
place). The Gödel number of each subterm of s is of course ≤ x .
Hence, there always is a formation sequence with code ≤ pk (x+1)

k−1 ,
where k = len(x).

For ClTerm, simply leave out the clause for variables. □

Proposition 16.6. The function num(n) = #n# is primitive recur-
sive.

Proof. We define num(n) by primitive recursion:

num(0) = #0#

num(n + 1) = #′(# ⌢ num(n) ⌢ #)#. □

16.4 Coding Formulas

CHAPTER 16. ARITHMETIZATION OF SYNTAX 329

Proposition 16.7. The relation Atom(x) which holds iff x is the
Gödel number of an atomic formula, is primitive recursive.

Proof. The number x is the Gödel number of an atomic formula
iff one of the following holds:

1. There are n, j < x , and z < x such that for each i < n,
Term((z)i) and x =

#P nj (# ⌢ flatten(z) ⌢ #)#.

2. There are z1,z2 < x such that Term(z1), Term(z2), and x =

#=(# ⌢ z1 ⌢ #,# ⌢ z2 ⌢ #)#.

3. x = #⊥#. □

Proposition 16.8. The relation Frm(x) which holds iff x is the
Gödel number of a formula is primitive recursive.

Proof. A sequence of symbols s is a formula iff there is formation
sequence s0, . . . , sk−1 = s of formula which records how s was
formed from atomic formulas according to the formation rules.
The code for each si (and indeed of the code of the sequence
⟨s0, . . . ,sk−1⟩) is less than the code x of s . □

Proposition 16.9. The relation FreeOcc(x ,z ,i), which holds iff the
i -th symbol of the formula with Gödel number x is a free occurrence of
the variable with Gödel number z , is primitive recursive.

Proof. Exercise. □

Proposition 16.10. The property Sent(x) which holds iff x is the
Gödel number of a sentence is primitive recursive.

CHAPTER 16. ARITHMETIZATION OF SYNTAX 330

Proof. A sentence is a formula without free occurrences of vari-
ables. So Sent(x) holds iff

(∀i < len(x)) (∀z < x)
((∃ j < z) z = #v j

→¬FreeOcc(x ,z ,i)). □

16.5 Substitution

Recall that substitution is the operation of replacing all free oc-
currences of a variable u in a formula A by a term t , written
A[t/u]. This operation, when carried out on Gödel numbers of
variables, formulas, and terms, is primitive recursive.

Proposition 16.11. There is a primitive recursive function
Subst(x ,y ,z) with the property that

Subst(#A#, #t #, #u#) = #A[t/u]#.

Proof. We can then define a function hSubst by primitive recur-
sion as follows:

hSubst(x ,y ,z ,0) = 𝛬

hSubst(x ,y ,z ,i + 1) ={︄
hSubst(x ,y ,z ,i) ⌢ y if FreeOcc(x ,z ,i)
append(hSubst(x ,y ,z ,i), (x)i) otherwise.

Subst(x ,y ,z) can now be defined as hSubst(x ,y ,z , len(x)). □

Proposition 16.12. The relation FreeFor(x ,y ,z), which holds iff
the term with Gödel number y is free for the variable with Gödel num-
ber z in the formula with Gödel number x, is primitive recursive.

Proof. Exercise. □

CHAPTER 16. ARITHMETIZATION OF SYNTAX 331

16.6 Derivations in LK

In order to arithmetize derivations, we must represent derivations
as numbers. Since derivations are trees of sequents where each
inference carries also a label, a recursive representation is the
most obvious approach: we represent a derivation as a tuple,
the components of which are the end-sequent, the label, and the
representations of the sub-derivations leading to the premises of
the last inference.

Definition 16.13. If 𝛤 is a finite sequence of sentences, 𝛤 =

⟨A1, . . . ,An⟩, then #𝛤# = ⟨ #A1
#, . . . , #An#⟩.

If 𝛤 ⇒ 𝛥 is a sequent, then a Gödel number of 𝛤 ⇒ 𝛥 is

#𝛤 ⇒ 𝛥# = ⟨ #𝛤#, #𝛥#⟩

If 𝜋 is a derivation in LK, then #𝜋# is defined as follows:

1. If 𝜋 consists only of the initial sequent 𝛤 ⇒ 𝛥, then #𝜋# is

⟨0, #𝛤 ⇒ 𝛥#⟩.

2. If 𝜋 ends in an inference with one or two premises, has
𝛤 ⇒ 𝛥 as its conclusion, and 𝜋1 and 𝜋2 are the immediate
subproof ending in the premise of the last inference, then
#𝜋# is

⟨1, #𝜋1
#, #𝛤 ⇒ 𝛥#,k⟩ or

⟨2, #𝜋1
#, #𝜋2

#, #𝛤 ⇒ 𝛥#,k⟩,

respectively, where k is given by the following table accord-
ing to which rule was used in the last inference:

CHAPTER 16. ARITHMETIZATION OF SYNTAX 332

Rule: WL WR CL CR XL XR
k : 1 2 3 4 5 6

Rule: ¬L ¬R ∧L ∧R ∨L ∨R
k : 7 8 9 10 11 12

Rule: →L →R ∀L ∀R ∃L ∃R
k : 13 14 15 16 17 18

Rule: Cut =
k : 19 20

Example 16.14. Consider the very simple derivation

A ⇒ A ∧LA ∧ B ⇒ A →R⇒ (A ∧ B) → A

The Gödel number of the initial sequent would be p0 =

⟨0, #A ⇒ A#⟩. The Gödel number of the derivation ending in
the conclusion of ∧L would be p1 = ⟨1,p0,

#A ∧ B ⇒ A#,9⟩ (1
since ∧L has one premise, the Gödel number of the conclu-
sionA∧B ⇒ A, and 9 is the number coding ∧L). The Gödel num-
ber of the entire derivation then is ⟨1,p1,

#⇒ (A ∧ B) → A)#,14⟩,
i.e.,

⟨1, ⟨1, ⟨0, #A ⇒ A)#⟩, #A ∧ B ⇒ A#,9⟩, #⇒ (A ∧ B) → A#,14⟩.

Having settled on a representation of derivations, we must
also show that we can manipulate such derivations primitive re-
cursively, and express their essential properties and relations so.
Some operations are simple: e.g., given a Gödel number p of
a derivation, EndSeq(p) = (p) (p)0+1 gives us the Gödel number
of its end-sequent and LastRule(p) = (p) (p)0+2 the code of its last
rule. The property Sequent(s) defined by

len(s) = 2 ∧ (∀i < len((s)0) + len((s)1)) Sent(((s)0 ⌢ (s)1)i)

CHAPTER 16. ARITHMETIZATION OF SYNTAX 333

holds of s iff s is the Gödel number of a sequent consisting of
sentences. Some are much harder. We’ll at least sketch how to do
this. The goal is to show that the relation “𝜋 is a derivation of A
from 𝛤” is a primitive recursive relation of the Gödel numbers of
𝜋 and A.

Proposition 16.15. The property Correct(p) which holds iff the last
inference in the derivation 𝜋 with Gödel number p is correct, is primitive
recursive.

Proof. 𝛤 ⇒ 𝛥 is an initial sequent if either there is a sentence A
such that 𝛤 ⇒ 𝛥 is A ⇒ A, or there is a term t such that 𝛤 ⇒ 𝛥

is ∅ ⇒ t = t . In terms of Gödel numbers, InitSeq(s) holds iff

(∃x < s) (Sent(x) ∧ s = ⟨⟨x⟩, ⟨x⟩⟩) ∨
(∃t < s) (Term(t) ∧ s = ⟨0, ⟨ #=(# ⌢ t ⌢ #,# ⌢ t ⌢ #)#⟩⟩).

We also have to show that for each rule of inference R the re-
lation FollowsByR (p) is primitive recursive, where FollowsByR (p)
holds iff p is the Gödel number of derivation 𝜋, and the end-
sequent of 𝜋 follows by a correct application of R from the im-
mediate sub-derivations of 𝜋.

A simple case is that of the ∧R rule. If 𝜋 ends in a correct
∧R inference, it looks like this:

𝜋1

𝛤 ⇒ 𝛥,A

𝜋2

𝛤 ⇒ 𝛥,B ∧R
𝛤 ⇒ 𝛥,A ∧ B

So, the last inference in the derivation 𝜋 is a correct application
of ∧R iff there are sequences of sentences 𝛤 and 𝛥 as well as
two sentences A and B such that the end-sequent of 𝜋1 is 𝛤 ⇒
𝛥,A, the end-sequent of 𝜋2 is 𝛤 ⇒ 𝛥,B , and the end-sequent of
𝜋 is 𝛤 ⇒ 𝛥,A ∧ B . We just have to translate this into Gödel
numbers. If s = #𝛤 ⇒ 𝛥# then (s)0 = #𝛤# and (s)1 = #𝛥#. So,
FollowsBy∧R(p) holds iff

(∃g < p) (∃d < p) (∃a < p) (∃b < p)

CHAPTER 16. ARITHMETIZATION OF SYNTAX 334

EndSequent(p) = ⟨g ,d ⌢ ⟨ #(# ⌢ a ⌢ #∧# ⌢ b ⌢ #)#⟩⟩ ∧
EndSequent((p)1) = ⟨g ,d ⌢ ⟨a⟩⟩ ∧
EndSequent((p)2) = ⟨g ,d ⌢ ⟨b⟩⟩ ∧
(p)0 = 2 ∧ LastRule(p) = 10.

The individual lines express, respectively, “there is a se-
quence (𝛤) with Gödel number g , there is a sequence (𝛥) with
Gödel number d , a formula (A) with Gödel number a, and a for-
mula (B) with Gödel number b ,” such that “the end-sequent of
𝜋 is 𝛤 ⇒ 𝛥,A ∧ B ,” “the end-sequent of 𝜋1 is 𝛤 ⇒ 𝛥,A,” “the
end-sequent of 𝜋2 is 𝛤 ⇒ 𝛥,B ,” and “𝜋 has two immediate sub-
derivations and the last inference rule is ∧R (with number 10).”

The last inference in 𝜋 is a correct application of ∃R iff there
are sequences 𝛤 and 𝛥, a formula A, a variable x , and a term t ,
such that the end-sequent of 𝜋 is 𝛤 ⇒ 𝛥,∃x A and the end-sequent
of 𝜋1 is 𝛤 ⇒ 𝛥,A[t/x]. So in terms of Gödel numbers, we have
FollowsBy∃R(p) iff

(∃g < p) (∃d < p) (∃a < p) (∃x < p) (∃t < p)
EndSequent(p) = ⟨g ,d ⌢ ⟨ #∃# ⌢ x ⌢ a⟩⟩ ∧
EndSequent((p)1) = ⟨g ,d ⌢ ⟨Subst(a,t ,x)⟩⟩ ∧
(p)0 = 1 ∧ LastRule(p) = 18.

We then define Correct(p) as

Sequent(EndSequent(p)) ∧
[(LastRule(p) = 1 ∧ FollowsByWL(p)) ∨ · · · ∨

(LastRule(p) = 20 ∧ FollowsBy=(p)) ∨
(p)0 = 0 ∧ InitialSeq(EndSequent(p))]

The first line ensures that the end-sequent of d is actually a se-
quent consisting of sentences. The last line covers the case where
p is just an initial sequent. □

CHAPTER 16. ARITHMETIZATION OF SYNTAX 335

Proposition 16.16. The relation Deriv(p) which holds if p is the
Gödel number of a correct derivation 𝜋, is primitive recursive.

Proof. A derivation 𝜋 is correct if every one of its inferences
is a correct application of a rule, i.e., if every one of its sub-
derivations ends in a correct inference. So, Deriv(d) iff

(∀i < len(SubtreeSeq(p))) Correct((SubtreeSeq(p))i . □

Proposition 16.17. Suppose 𝛤 is a primitive recursive set of sentences.
Then the relation Prf𝛤 (x ,y) expressing “x is the code of a derivation 𝜋

of 𝛤0 ⇒ A for some finite 𝛤0 ⊆ 𝛤 and y is the Gödel number of A” is
primitive recursive.

Proof. Suppose “y ∈ 𝛤” is given by the primitive recursive pred-
icate R𝛤 (y). We have to show that Prf𝛤 (x ,y) which holds iff y
is the Gödel number of a sentence A and x is the code of an
LK-derivation with end-sequent 𝛤0 ⇒ A is primitive recursive.

By the previous proposition, the property Deriv(x) which
holds iff x is the code of a correct derivation 𝜋 in LK is primitive
recursive. If x is such a code, then EndSequent(x) is the code of
the end-sequent of 𝜋, and so (EndSequent(x))0 is the code of the
left side of the end sequent and (EndSequent(x))1 the right side.
So we can express “the right side of the end-sequent of 𝜋 is A” as
len((EndSequent(x))1) = 1 ∧ ((EndSequent(x))1)0 = x . The left
side of the end-sequent of 𝜋 is of course automatically finite, we
just have to express that every sentence in it is in 𝛤 . Thus we can
define Prf𝛤 (x ,y) by

Prf𝛤 (x ,y) ⇔ Deriv(x) ∧
(∀i < len((EndSequent(x))0)) R𝛤 (((EndSequent(x))0)i) ∧
len((EndSequent(x))1) = 1 ∧ ((EndSequent(x))1)0 = y .□

CHAPTER 16. ARITHMETIZATION OF SYNTAX 336

16.7 Derivations in Natural Deduction

In order to arithmetize derivations, we must represent derivations
as numbers. Since derivations are trees of formulas where each
inference carries one or two labels, a recursive representation
is the most obvious approach: we represent a derivation as a
tuple, the components of which are the number of immediate
sub-derivations leading to the premises of the last inference, the
representations of these sub-derivations, and the end-formula, the
discharge label of the last inference, and a number indicating the
type of the last inference.

Definition 16.18. If 𝛿 is a derivation in natural deduction, then
#𝛿# is defined inductively as follows:

1. If 𝛿 consists only of the assumption A, then #𝛿# is ⟨0, #A#,n⟩.
The number n is 0 if it is an undischarged assumption, and
the numerical label otherwise.

2. If 𝛿 ends in an inference with one, two, or three premises,
then #𝛿# is

⟨1, #𝛿1
#, #A#,n,k⟩,

⟨2, #𝛿1
#, #𝛿2

#, #A#,n,k⟩, or

⟨3, #𝛿1
#, #𝛿2

#, #𝛿3
#, #A#,n,k⟩,

respectively. Here 𝛿1, 𝛿2, 𝛿3 are the sub-derivations ending
in the premise(s) of the last inference in 𝛿, A is the conclu-
sion of the last inference in 𝛿, n is the discharge label of the
last inference (0 if the inference does not discharge any as-
sumptions), and k is given by the following table according
to which rule was used in the last inference.

CHAPTER 16. ARITHMETIZATION OF SYNTAX 337

Rule: ∧Intro ∧Elim ∨Intro ∨Elim
k : 1 2 3 4

Rule: →Intro →Elim ¬Intro ¬Elim
k : 5 6 7 8

Rule: ⊥I ⊥C ∀Intro ∀Elim
k : 9 10 11 12

Rule: ∃Intro ∃Elim =Intro =Elim
k : 13 14 15 16

Example 16.19. Consider the very simple derivation

[A ∧ B]1
∧ElimA

1 →Intro(A ∧ B) → A

The Gödel number of the assumption would be d0 =

⟨0, #A ∧ B#,1⟩. The Gödel number of the derivation ending in
the conclusion of ∧Elim would be d1 = ⟨1,d0,

#A#,0,2⟩ (1 since
∧Elim has one premise, the Gödel number of conclusion A, 0
because no assumption is discharged, and 2 is the number cod-
ing ∧Elim). The Gödel number of the entire derivation then is
⟨1,d1,

#((A ∧ B) → A)#,1,5⟩, i.e.,

⟨1, ⟨1, ⟨0, #(A ∧ B)#,1⟩, #A#,0,2⟩, #((A ∧ B) → A)#,1,5⟩.

Having settled on a representation of derivations, we must
also show that we can manipulate Gödel numbers of such deriva-
tions primitive recursively, and express their essential properties
and relations. Some operations are simple: e.g., given a Gödel
number d of a derivation, EndFmla(d) = (d) (d)0+1 gives us the
Gödel number of its end-formula, DischargeLabel(d) = (d) (d)0+2

gives us the discharge label and LastRule(d) = (d) (d)0+3 the num-
ber indicating the type of the last inference. Some are much
harder. We’ll at least sketch how to do this. The goal is to show
that the relation “𝛿 is a derivation of A from 𝛤” is a primitive
recursive relation of the Gödel numbers of 𝛿 and A.

CHAPTER 16. ARITHMETIZATION OF SYNTAX 338

Proposition 16.20. The following relations are primitive recursive:

1. A occurs as an assumption in 𝛿 with label n.

2. All assumptions in 𝛿 with label n are of the form A (i.e., we can
discharge the assumption A using label n in 𝛿).

Proof. We have to show that the corresponding relations between
Gödel numbers of formulas and Gödel numbers of derivations
are primitive recursive.

1. We want to show that Assum(x ,d ,n), which holds if x is
the Gödel number of an assumption of the derivation with
Gödel number d labelled n, is primitive recursive. This
is the case if the derivation with Gödel number ⟨0,x ,n⟩
is a sub-derivation of d . Note that the way we code
derivations is a special case of the coding of trees intro-
duced in section 15.12, so the primitive recursive function
SubtreeSeq(d) gives a sequence of Gödel numbers of all
sub-derivations of d (of length a most d). So we can define

Assum(x ,d ,n) ⇔ (∃i < d) (SubtreeSeq(d))i = ⟨0,x ,n⟩.

2. We want to show that Discharge(x ,d ,n), which holds if all
assumptions with label n in the derivation with Gödel num-
ber d all are the formula with Gödel number x . But this
relation holds iff (∀y < d) (Assum(y ,d ,n) → y = x). □

Proposition 16.21. The property Correct(d) which holds iff the last
inference in the derivation 𝛿 with Gödel number d is correct, is primitive
recursive.

Proof. Here we have to show that for each rule of infer-
ence R the relation FollowsByR (d) is primitive recursive, where
FollowsByR (d) holds iff d is the Gödel number of derivation 𝛿,
and the end-formula of 𝛿 follows by a correct application of R
from the immediate sub-derivations of 𝛿.

CHAPTER 16. ARITHMETIZATION OF SYNTAX 339

A simple case is that of the ∧Intro rule. If 𝛿 ends in a correct
∧Intro inference, it looks like this:

𝛿1

A

𝛿2

B ∧IntroA ∧ B

Then the Gödel number d of 𝛿 is ⟨2,d1,d2,
#(A ∧ B)#,0,k⟩ where

EndFmla(d1) = #A#, EndFmla(d2) = #B#, n = 0, and k = 1. So we
can define FollowsBy∧Intro(d) as

(d)0 = 2 ∧ DischargeLabel(d) = 0 ∧ LastRule(d) = 1 ∧
EndFmla(d) = #(# ⌢ EndFmla((d)1) ⌢ #∧# ⌢ EndFmla((d)2) ⌢ #)#.

Another simple example if the =Intro rule. Here the premise
is an empty derivation, i.e., (d)1 = 0, and no discharge label, i.e.,
n = 0. However, A must be of the form t = t , for a closed term t .
Here, a primitive recursive definition is

(d)0 = 1 ∧ (d)1 = 0 ∧ DischargeLabel(d) = 0 ∧
(∃t < d) (ClTerm(t)∧EndFmla(d) = #=(# ⌢ t ⌢ #,# ⌢ t ⌢ #)#)

For a more complicated example, FollowsBy→Intro(d) holds
iff the end-formula of 𝛿 is of the form (A→ B), where the end-
formula of 𝛿1 is B , and any assumption in 𝛿 labelled n is of the
form A. We can express this primitive recursively by

(d)0 = 1 ∧
(∃a < d) (Discharge(a, (d)1,DischargeLabel(d)) ∧

EndFmla(d) = (#(# ⌢ a ⌢ #→# ⌢ EndFmla((d)1) ⌢ #)#))

(Think of a as the Gödel number of A).
For another example, consider ∃Intro. Here, the last infer-

ence in 𝛿 is correct iff there is a formula A, a closed term t and

CHAPTER 16. ARITHMETIZATION OF SYNTAX 340

a variable x such that A[t/x] is the end-formula of the deriva-
tion 𝛿1 and ∃x A is the conclusion of the last inference. So,
FollowsBy∃Intro(d) holds iff

(d)0 = 1 ∧ DischargeLabel(d) = 0 ∧
(∃a < d) (∃x < d) (∃t < d) (ClTerm(t) ∧ Var(x) ∧

Subst(a,t ,x) = EndFmla((d)1)∧EndFmla(d) = (#∃# ⌢ x ⌢ a)).

We then define Correct(d) as

Sent(EndFmla(d)) ∧
(LastRule(d) = 1 ∧ FollowsBy∧Intro(d)) ∨ · · · ∨
(LastRule(d) = 16 ∧ FollowsBy=Elim(d)) ∨

(∃n < d) (∃x < d) (d = ⟨0,x ,n⟩).

The first line ensures that the end-formula of d is a sentence. The
last line covers the case where d is just an assumption. □

Proposition 16.22. The relation Deriv(d) which holds if d is the
Gödel number of a correct derivation 𝛿, is primitive recursive.

Proof. A derivation 𝛿 is correct if every one of its inferences
is a correct application of a rule, i.e., if every one of its sub-
derivations ends in a correct inference. So, Deriv(d) iff

(∀i < len(SubtreeSeq(d))) Correct((SubtreeSeq(d))i) □

Proposition 16.23. The relation OpenAssum(z ,d) that holds if z
is the Gödel number of an undischarged assumption A of the deriva-
tion 𝛿 with Gödel number d , is primitive recursive.

Proof. An occurrence of an assumption is discharged if it occurs
with label n in a sub-derivation of 𝛿 that ends in a rule with dis-
charge label n. So A is an undischarged assumption of 𝛿 if at

CHAPTER 16. ARITHMETIZATION OF SYNTAX 341

least one of its occurrences is not discharged in 𝛿. We must be
careful: 𝛿 may contain both discharged and undischarged occur-
rences of A.

Consider a sequence 𝛿0, . . . , 𝛿k where 𝛿0 = 𝛿, 𝛿k is the
assumption [A]n (for some n), and 𝛿i+1 is an immediate sub-
derivation of 𝛿i . If such a sequence exists in which no 𝛿i ends
in an inference with discharge label n, then A is an undischarged
assumption of 𝛿.

The primitive recursive function SubtreeSeq(d) provides us
with a sequence of Gödel numbers of all sub-derivations of 𝛿. Any
sequence of Gödel numbers of sub-derivations of 𝛿 is a subse-
quence of it. Being a subsequence of is a primitive recursive rela-
tion: Subseq(s ,s ′) holds iff (∀i < len(s)) ∃ j < len(s ′) (s)i = (s) j .
Being an immediate sub-derivation is as well: Subderiv(d ,d ′) iff
(∃ j < (d ′)0) d = (d ′) j . So we can define OpenAssum(z ,d) by

(∃s < SubtreeSeq(d)) (Subseq(s ,SubtreeSeq(d)) ∧ (s)0 = d ∧
(∃n < d) ((s)len(s) −̇1 = ⟨0,z ,n⟩ ∧

(∀i < (len(s) −̇ 1)) (Subderiv((s)i+1, (s)i)] ∧
DischargeLabel((s)i+1) ≠ n))). □

Proposition 16.24. Suppose 𝛤 is a primitive recursive set of sentences.
Then the relation Prf𝛤 (x ,y) expressing “x is the code of a derivation 𝛿

of A from undischarged assumptions in 𝛤 and y is the Gödel number
of A” is primitive recursive.

Proof. Suppose “y ∈ 𝛤” is given by the primitive recursive pred-
icate R𝛤 (y). We have to show that Prf𝛤 (x ,y) which holds iff y is
the Gödel number of a sentence A and x is the code of a natural
deduction derivation with end formula A and all undischarged
assumptions in 𝛤 is primitive recursive.

By Proposition 16.22, the property Deriv(x) which holds iff x
is the Gödel number of a correct derivation 𝛿 in natural deduction
is primitive recursive. Thus we can define Prf𝛤 (x ,y) by

Prf𝛤 (x ,y) ⇔ Deriv(x) ∧ EndFmla(x) = y ∧

CHAPTER 16. ARITHMETIZATION OF SYNTAX 342

(∀z < x) (OpenAssum(z ,x) →R𝛤 (z)). □

Summary

The proof of the incompleteness theorems requires that we have
a way to talk about provability in a theory (such as PA) in the
language of the theory itself, i.e., in the language of arithmetic.
But the language of arithmetic only deals with numbers, not with
formulas or derivations. The solution to this problem is to define
a systematic mapping from formulas and derivations to numbers.
The number associated with a formula or a derivation is called its
Gödel number. If A is a formula, #A# is its Gödel number. We
showed that important operations on formulas turn into primi-
tive recursive functions on the respective Gödel numbers. For
instance, A[t/x], the operation of substituting a term t for ev-
ery free occurrence of x in A, corresponds to an arithmetical
function subst(n,m,k) which, if applied to the Gödel numbers
of A, t , and x , yields the Gödel number of A[t/x]. In other
words, subst(#A#, #t #, #x#) = #A[t/x]#. Likewise, properties of
derivations turn into primitive recursive relations on the respec-
tive Gödel numbers. In particular, the property Deriv(n) that
holds of n if it is the Gödel number of a correct derivation in
natural deduction, is primitive recursive. Showing that these are
primitive recursive required a fair amount of work, and at times
some ingenuity, and depended essentially on the fact that op-
erating with sequences is primitive recursive. If a theory T is
decidable, then we can use Deriv to define a decidable relation
PrfT(n,m) which holds if n is the Gödel number of a derivation
of the sentence with Gödel number m from T. This relation is
primitive recursive if the set of axioms of T is, and merely gen-
eral recursive if the axioms of T are decidable but not primitive
recursive.

CHAPTER 16. ARITHMETIZATION OF SYNTAX 343

Problems

Problem 16.1. Show that the function flatten(z), which turns the
sequence ⟨ #t1#, . . . , #tn#⟩ into #t1, . . . ,tn#, is primitive recursive.

Problem 16.2. Give a detailed proof of Proposition 16.8 along
the lines of the first proof of Proposition 16.5.

Problem 16.3. Prove Proposition 16.9. You may make use of
the fact that any substring of a formula which is a formula is a
sub-formula of it.

Problem 16.4. Prove Proposition 16.12

Problem 16.5. Define the following properties as in Proposi-
tion 16.15:

1. FollowsByCut(p),

2. FollowsBy→L(p),

3. FollowsBy=(p),

4. FollowsBy∀R(p).

For the last one, you will have to also show that you can test
primitive recursively if the last inference of the derivation with
Gödel number p satisfies the eigenvariable condition, i.e., the
eigenvariable a of the ∀R does not occur in the end-sequent.

Problem 16.6. Define the following properties as in Proposi-
tion 16.21:

1. FollowsBy→Elim(d),

2. FollowsBy=Elim(d),

3. FollowsBy∨Elim(d),

4. FollowsBy∀Intro(d).

CHAPTER 16. ARITHMETIZATION OF SYNTAX 344

For the last one, you will have to also show that you can test
primitive recursively if the last inference of the derivation with
Gödel number d satisfies the eigenvariable condition, i.e., the
eigenvariable a of the ∀Intro inference occurs neither in the end-
formula of d nor in an open assumption of d . You may use the
primitive recursive predicate OpenAssum from Proposition 16.23
for this.

CHAPTER 17

Representability
in Q
17.1 Introduction

The incompleteness theorems apply to theories in which basic
facts about computable functions can be expressed and proved.
We will describe a very minimal such theory called “Q ” (or,
sometimes, “Robinson’s Q ,” after Raphael Robinson). We will
say what it means for a function to be representable in Q , and
then we will prove the following:

A function is representable in Q if and only if it is
computable.

For one thing, this provides us with another model of computabil-
ity. But we will also use it to show that the set {A : Q ⊢ A} is not
decidable, by reducing the halting problem to it. By the time we
are done, we will have proved much stronger things than this.

The language of Q is the language of arithmetic; Q consists
of the following axioms (to be used in conjunction with the other
axioms and rules of first-order logic with identity predicate):

∀x ∀y (x ′ = y ′ → x = y) (Q1)

∀x 0 ≠ x ′ (Q2)

345

CHAPTER 17. REPRESENTABILITY IN Q 346

∀x (x = 0 ∨ ∃y x = y ′) (Q3)

∀x (x + 0) = x (Q4)

∀x ∀y (x + y ′) = (x + y)′ (Q5)

∀x (x × 0) = 0 (Q6)

∀x ∀y (x × y ′) = ((x × y) + x) (Q7)

∀x ∀y (x < y ↔∃z (z ′ + x) = y) (Q8)

For each natural number n, define the numeral n to be the term
0′′...′ where there are n tick marks in all. So, 0 is the constant
symbol 0 by itself, 1 is 0′, 2 is 0′′, etc.

As a theory of arithmetic, Q is extremely weak; for example,
you can’t even prove very simple facts like ∀x x ≠ x ′ or ∀x ∀y (x +
y) = (y + x). But we will see that much of the reason that Q is so
interesting is because it is so weak. In fact, it is just barely strong
enough for the incompleteness theorem to hold. Another reason
Q is interesting is because it has a finite set of axioms.

A stronger theory than Q (called Peano arithmetic PA) is ob-
tained by adding a schema of induction to Q :

(A(0) ∧ ∀x (A(x) → A(x ′))) → ∀x A(x)

where A(x) is any formula. If A(x) contains free variables other
than x , we add universal quantifiers to the front to bind all of
them (so that the corresponding instance of the induction schema
is a sentence). For instance, if A(x ,y) also contains the variable y
free, the corresponding instance is

∀y ((A(0) ∧ ∀x (A(x) → A(x ′))) → ∀x A(x))

Using instances of the induction schema, one can prove much
more from the axioms of PA than from those of Q . In fact, it
takes a good deal of work to find “natural” statements about the
natural numbers that can’t be proved in Peano arithmetic!

CHAPTER 17. REPRESENTABILITY IN Q 347

Definition 17.1. A function f (x0, . . . ,xk) from the natural num-
bers to the natural numbers is said to be representable in Q if there
is a formula A f (x0, . . . ,xk ,y) such that whenever f (n0, . . . ,nk) =
m, Q proves

1. A f (n0, . . . ,nk ,m)

2. ∀y (A f (n0, . . . ,nk ,y) →m = y).

There are other ways of stating the definition; for example, we
could equivalently require that Q proves ∀y (A f (n0, . . . ,nk ,y) ↔
y = m).

Theorem 17.2. A function is representable in Q if and only if it is
computable.

There are two directions to proving the theorem. The left-
to-right direction is fairly straightforward once arithmetization
of syntax is in place. The other direction requires more work.
Here is the basic idea: we pick “general recursive” as a way of
making “computable” precise, and show that every general re-
cursive function is representable in Q . Recall that a function
is general recursive if it can be defined from zero, the successor
function succ, and the projection functions P ni , using composi-
tion, primitive recursion, and regular minimization. So one way
of showing that every general recursive function is representable
in Q is to show that the basic functions are representable, and
whenever some functions are representable, then so are the func-
tions defined from them using composition, primitive recursion,
and regular minimization. In other words, we might show that
the basic functions are representable, and that the representable
functions are “closed under” composition, primitive recursion,
and regular minimization. This guarantees that every general
recursive function is representable.

It turns out that the step where we would show that repre-
sentable functions are closed under primitive recursion is hard.

CHAPTER 17. REPRESENTABILITY IN Q 348

In order to avoid this step, we show first that in fact we can do
without primitive recursion. That is, we show that every gen-
eral recursive function can be defined from basic functions using
composition and regular minimization alone. To do this, we show
that primitive recursion can actually be done by a specific regular
minimization. However, for this to work, we have to add some
additional basic functions: addition, multiplication, and the char-
acteristic function of the identity relation 𝜒=. Then, we can prove
the theorem by showing that all of these basic functions are repre-
sentable in Q , and the representable functions are closed under
composition and regular minimization.

17.2 Functions Representable in Q are
Computable

We’ll prove that every function that is representable in Q is com-
putable. We first have to establish a lemma about functions rep-
resentable in Q .

Lemma 17.3. If f (x0, . . . ,xk) is representable in Q , there is a for-
mula A(x0, . . . ,xk ,y) such that

Q ⊢ A f (n0, . . . ,nk ,m) iff m = f (n0, . . . ,nk).

Proof. The “if” part is Definition 17.1(1). The “only if”
part is seen as follows: Suppose Q ⊢ A f (n0, . . . ,nk ,m) but
m ≠ f (n0, . . . ,nk). Let k = f (n0, . . . ,nk). By Defini-
tion 17.1(1), Q ⊢ A f (n0, . . . ,nk ,k). By Definition 17.1(2),
∀y (A f (n0, . . . ,nk ,y) → k = y). Using logic and the assumption
that Q ⊢ A f (n0, . . . ,nk ,m), we get that Q ⊢ k = m. On the
other hand, by Lemma 17.14, Q ⊢ k ≠ m. So Q is inconsis-
tent. But that is impossible, since Q is satisfied by the standard
model (see Definition 14.2), N ⊨ Q , and satisfiable theories are
always consistent by the Soundness Theorem (Corollaries 11.29
and 10.31). □

CHAPTER 17. REPRESENTABILITY IN Q 349

Lemma 17.4. Every function that is representable in Q is com-
putable.

Proof. Let’s first give the intuitive idea for why this is true. To
compute f , we do the following. List all the possible deriva-
tions 𝛿 in the language of arithmetic. This is possible to do me-
chanically. For each one, check if it is a derivation of a formula
of the form A f (n0, . . . ,nk ,m) (the formula representing f in Q
from Lemma 17.3). If it is, m = f (n0, . . . ,nk) by Lemma 17.3,
and we’ve found the value of f . The search terminates because
Q ⊢ A f (n0, . . . ,nk , f (n0, . . . ,nk)), so eventually we find a 𝛿 of the
right sort.

This is not quite precise because our procedure operates on
derivations and formulas instead of just on numbers, and we
haven’t explained exactly why “listing all possible derivations”
is mechanically possible. But as we’ve seen, it is possible to code
terms, formulas, and derivations by Gödel numbers. We’ve also
introduced a precise model of computation, the general recursive
functions. And we’ve seen that the relation PrfQ (d ,y), which
holds iff d is the Gödel number of a derivation of the formula
with Gödel number y from the axioms of Q , is (primitive) re-
cursive. Other primitive recursive functions we’ll need are num
(Proposition 16.6) and Subst (Proposition 16.11). From these, it
is possible to define f by minimization; thus, f is recursive.

First, define

A(n0, . . . ,nk ,m) =
Subst(Subst(. . . Subst(#A f

#,num(n0), #x0
#),

. . .),num(nk), #xk
#),num(m), #y#)

This looks complicated, but it’s just the function
A(n0, . . . ,nk ,m) = #A f (n0, . . . ,nk ,m)#.

Now, consider the relation R (n0, . . . ,nk ,s) which holds
if (s)0 is the Gödel number of a derivation from Q of
A f (n0, . . . ,nk , (s)1):

R (n0, . . . ,nk ,s) iff PrfQ ((s)0,A(n0, . . . ,nk , (s)1))

CHAPTER 17. REPRESENTABILITY IN Q 350

If we can find an s such that R (n0, . . . ,nk ,s) hold, we have found
a pair of numbers—(s)0 and (s1)—such that (s)0 is the Gödel
number of a derivation of A f (n0, . . . ,nk , (s)1). So looking for s
is like looking for the pair d and m in the informal proof. And a
computable function that “looks for” such an s can be defined by
regular minimization. Note that R is regular: for every n0, . . . ,
nk , there is a derivation 𝛿 of Q ⊢ A f (n0, . . . ,nk , f (n0, . . . ,nk)),
so R (n0, . . . ,nk ,s) holds for s = ⟨ #𝛿#, f (n0, . . . ,nk)⟩. So, we can
write f as

f (n0, . . . ,nk) = (𝜇s R (n0, . . . ,nk ,s))1. □

17.3 The Beta Function Lemma

In order to show that we can carry out primitive recursion if ad-
dition, multiplication, and 𝜒= are available, we need to develop
functions that handle sequences. (If we had exponentiation as
well, our task would be easier.) When we had primitive recur-
sion, we could define things like the “n-th prime,” and pick a
fairly straightforward coding. But here we do not have primi-
tive recursion—in fact we want to show that we can do primitive
recursion using minimization—so we need to be more clever.

Lemma 17.5. There is a function 𝛽 (d ,i) such that for every sequence
a0, . . . , an there is a number d , such that for every i ≤ n, 𝛽 (d ,i) = ai .
Moreover, 𝛽 can be defined from the basic functions using just composi-
tion and regular minimization.

Think of d as coding the sequence ⟨a0, . . . ,an⟩, and 𝛽 (d ,i) re-
turning the i -th element. (Note that this “coding” does not use the
power-of-primes coding we’re already familiar with!). The lemma
is fairly minimal; it doesn’t say we can concatenate sequences or
append elements, or even that we can compute d from a0, . . . , an
using functions definable by composition and regular minimiza-
tion. All it says is that there is a “decoding” function such that
every sequence is “coded.”

CHAPTER 17. REPRESENTABILITY IN Q 351

The use of the notation 𝛽 is Gödel’s. To repeat, the hard
part of proving the lemma is defining a suitable 𝛽 using the
seemingly restricted resources, i.e., using just composition and
minimization—however, we’re allowed to use addition, multipli-
cation, and 𝜒=. There are various ways to prove this lemma, but
one of the cleanest is still Gödel’s original method, which used a
number-theoretic fact called the Chinese Remainder theorem.

Definition 17.6. Two natural numbers a and b are relatively
prime iff their greatest common divisor is 1; in other words, they
have no other divisors in common.

Definition 17.7. Natural numbers a and b are congruent mod-
ulo c , a ≡ b mod c , iff c | (a − b), i.e., a and b have the same
remainder when divided by c .

Here is the Chinese Remainder theorem:

Theorem 17.8. Suppose x0, . . . , xn are (pairwise) relatively prime.
Let y0, . . . , yn be any numbers. Then there is a number z such that

z ≡ y0 mod x0

z ≡ y1 mod x1

...

z ≡ yn mod xn .

Here is how we will use the Chinese Remainder theorem: if
x0, . . . , xn are bigger than y0, . . . , yn respectively, then we can
take z to code the sequence ⟨y0, . . . ,yn⟩. To recover yi , we need
only divide z by xi and take the remainder. To use this coding,
we will need to find suitable values for x0, . . . , xn .

A couple of observations will help us in this regard. Given y0,
. . . , yn , let

j = max(n,y0, . . . ,yn) + 1,

CHAPTER 17. REPRESENTABILITY IN Q 352

and let

x0 = 1 + j !

x1 = 1 + 2 · j !

x2 = 1 + 3 · j !
...

xn = 1 + (n + 1) · j !

Then two things are true:

1. x0, . . . , xn are relatively prime.

2. For each i , yi < xi .

To see that (1) is true, note that if p is a prime number and p | xi
and p | xk , then p | 1 + (i + 1) j ! and p | 1 + (k + 1) j !. But then p
divides their difference,

(1 + (i + 1) j !) − (1 + (k + 1) j !) = (i − k) j !.

Since p divides 1+ (i + 1) j !, it can’t divide j ! as well (otherwise,
the first division would leave a remainder of 1). So p divides i −k ,
since p divides (i − k) j !. But |i − k | is at most n, and we have
chosen j > n, so this implies that p | j !, again a contradiction.
So there is no prime number dividing both xi and xk . Clause (2)
is easy: we have yi < j < j ! < xi .

Now let us prove the 𝛽 function lemma. Remember that we
can use 0, successor, plus, times, 𝜒=, projections, and any func-
tion defined from them using composition and minimization ap-
plied to regular functions. We can also use a relation if its charac-
teristic function is so definable. As before we can show that these
relations are closed under Boolean combinations and bounded
quantification; for example:

not(x) = 𝜒=(x ,0)
(min x ≤ z)R (x ,y) = 𝜇x (R (x ,y) ∨ x = z)

CHAPTER 17. REPRESENTABILITY IN Q 353

(∃x ≤ z) R (x ,y) ⇔ R ((min x ≤ z)R (x ,y),y)

We can then show that all of the following are also definable
without primitive recursion:

1. The pairing function, J (x ,y) = 1
2 [(x + y) (x + y + 1)] + x ;

2. the projection functions

K (z) = (min x ≤ z) (∃y ≤ z) z = J (x ,y),
L(z) = (min y ≤ z) (∃x ≤ z) z = J (x ,y);

3. the less-than relation x < y ;

4. the divisibility relation x | y ;

5. the function rem(x ,y) which returns the remainder when y
is divided by x .

Now define

𝛽 ∗(d0,d1,i) = rem(1 + (i + 1)d1,d0) and

𝛽 (d ,i) = 𝛽 ∗(K (d),L(d),i).

This is the function we want. Given a0, . . . , an as above, let

j = max(n,a0, . . . ,an) + 1,

and let d1 = j !. By (1) above, we know that 1 + d1, 1 + 2d1, . . . ,
1 + (n + 1)d1 are relatively prime, and by (2) that all are greater
than a0, . . . , an . By the Chinese Remainder theorem there is a
value d0 such that for each i ,

d0 ≡ ai mod (1 + (i + 1)d1)

and so (because d1 is greater than ai),

ai = rem(1 + (i + 1)d1,d0).

CHAPTER 17. REPRESENTABILITY IN Q 354

Let d = J (d0,d1). Then for each i ≤ n, we have

𝛽 (d ,i) = 𝛽 ∗(d0,d1,i)
= rem(1 + (i + 1)d1,d0)
= ai

which is what we need. This completes the proof of the 𝛽 -function
lemma.

17.4 Simulating Primitive Recursion

Now we can show that definition by primitive recursion can be
“simulated” by regular minimization using the beta function.
Suppose we have f (x⃗) and g (x⃗ ,y ,z). Then the function h (x , z⃗)
defined from f and g by primitive recursion is

h (x⃗ ,0) = f (z⃗)
h (x⃗ ,y + 1) = g (x⃗ ,y ,h (x⃗ ,y)).

We need to show that h can be defined from f and g using just
composition and regular minimization, using the basic functions
and functions defined from them using composition and regular
minimization (such as 𝛽).

Lemma 17.9. If h can be defined from f and g using primitive re-
cursion, it can be defined from f , g , the functions zero, succ, P ni , add,
mult, 𝜒=, using composition and regular minimization.

Proof. First, define an auxiliary function ĥ (x⃗ ,y) which returns the
least number d such that d codes a sequence which satisfies

1. (d)0 = f (x⃗), and

2. for each i < y , (d)i+1 = g (x⃗ ,i , (d)i),

CHAPTER 17. REPRESENTABILITY IN Q 355

where now (d)i is short for 𝛽 (d ,i). In other words, ĥ returns the
sequence ⟨h (x⃗ ,0),h (x⃗ ,1), . . . ,h (x⃗ ,y)⟩. We can write ĥ as

ĥ (x⃗ ,y) = 𝜇d (𝛽 (d ,0) = f (x⃗)∧(∀i < y) 𝛽 (d ,i+1) = g (x⃗ ,i , 𝛽 (d ,i)).

Note: no primitive recursion is needed here, just minimization.
The function we minimize is regular because of the beta function
lemma Lemma 17.5.

But now we have

h (x⃗ ,y) = 𝛽 (ĥ (x⃗ ,y),y),

so h can be defined from the basic functions using just composi-
tion and regular minimization. □

17.5 Basic Functions are Representable
in Q

First we have to show that all the basic functions are representable
in Q . In the end, we need to show how to assign to each k -ary
basic function f (x0, . . . ,xk−1) a formula A f (x0, . . . ,xk−1,y) that
represents it.

We will be able to represent zero, successor, plus, times, the
characteristic function for equality, and projections. In each case,
the appropriate representing function is entirely straightforward;
for example, zero is represented by the formula y = 0, successor is
represented by the formula x ′0 = y , and addition is represented by
the formula (x0 + x1) = y . The work involves showing that Q can
prove the relevant sentences; for example, saying that addition is
represented by the formula above involves showing that for every
pair of natural numbers m and n, Q proves

n +m = n +m and

∀y ((n +m) = y → y = n +m).

CHAPTER 17. REPRESENTABILITY IN Q 356

Proposition 17.10. The zero function zero(x) = 0 is represented
in Q by Azero(x ,y) ≡ y = 0.

Proposition 17.11. The successor function succ(x) = x + 1 is repre-
sented in Q by Asucc(x ,y) ≡ y = x ′.

Proposition 17.12. The projection function P ni (x0, . . . ,xn−1) = xi
is represented in Q by

AP ni (x0, . . . ,xn−1,y) ≡ y = xi .

Proposition 17.13. The characteristic function of =,

𝜒=(x0,x1) =
{︄
1 if x0 = x1

0 otherwise

is represented in Q by

A𝜒=
(x0,x1,y) ≡ (x0 = x1 ∧ y = 1) ∨ (x0 ≠ x1 ∧ y = 0).

The proof requires the following lemma.

Lemma 17.14. Given natural numbers n and m, if n ≠ m, then
Q ⊢ n ≠ m.

Proof. Use induction on n to show that for every m, if n ≠ m, then
Q ⊢ n ≠ m.

In the base case, n = 0. If m is not equal to 0, then m = k + 1
for some natural number k . We have an axiom that says ∀x 0 ≠ x ′.
By a quantifier axiom, replacing x by k , we can conclude 0 ≠ k

′
.

But k
′

is just m.
In the induction step, we can assume the claim is true for n,

and consider n + 1. Let m be any natural number. There are

CHAPTER 17. REPRESENTABILITY IN Q 357

two possibilities: either m = 0 or for some k we have m = k + 1.
The first case is handled as above. In the second case, suppose
n + 1 ≠ k + 1. Then n ≠ k . By the induction hypothesis for n we
have Q ⊢ n ≠ k . We have an axiom that says ∀x ∀y x ′ = y ′ → x =

y . Using a quantifier axiom, we have n′ = k
′
→ n = k . Using

propositional logic, we can conclude, in Q , n ≠ k → n′ ≠ k
′
.

Using modus ponens, we can conclude n′ ≠ k
′
, which is what we

want, since k
′

is m. □

Note that the lemma does not say much: in essence it says
that Q can prove that different numerals denote different objects.
For example, Q proves 0′′ ≠ 0′′′. But showing that this holds in
general requires some care. Note also that although we are using
induction, it is induction outside of Q .

Proof of Proposition 17.13. If n = m, then n and m are the same
term, and 𝜒=(n,m) = 1. But Q ⊢ (n = m ∧ 1 = 1), so it proves
A=(n,m,1). If n ≠ m, then 𝜒=(n,m) = 0. By Lemma 17.14,
Q ⊢ n ≠ m and so also (n ≠ m ∧ 0 = 0). Thus Q ⊢ A=(n,m,0).

For the second part, we also have two cases. If n = m, we have
to show that Q ⊢ ∀y (A=(n,m,y) → y = 1). Arguing informally,
suppose A=(n,m,y), i.e.,

(n = n ∧ y = 1) ∨ (n ≠ n ∧ y = 0)

The left disjunct implies y = 1 by logic; the right contradicts n = n
which is provable by logic.

Suppose, on the other hand, that n ≠ m. Then A=(n,m,y) is

(n = m ∧ y = 1) ∨ (n ≠ m ∧ y = 0)

Here, the left disjunct contradicts n ≠ m, which is provable in Q
by Lemma 17.14; the right disjunct entails y = 0. □

CHAPTER 17. REPRESENTABILITY IN Q 358

Proposition 17.15. The addition function add(x0,x1) = x0 + x1 is
represented in Q by

Aadd(x0,x1,y) ≡ y = (x0 + x1).

Lemma 17.16. Q ⊢ (n +m) = n +m

Proof. We prove this by induction on m. If m = 0, the claim is
that Q ⊢ (n +0) = n. This follows by axiom Q4. Now suppose the
claim for m; let’s prove the claim for m + 1, i.e., prove that Q ⊢
(n + m + 1) = n +m + 1. Note that m + 1 is just m′, and n +m + 1
is just n +m′. By axiom Q5, Q ⊢ (n+m′) = (n+m)′. By induction
hypothesis, Q ⊢ (n +m) = n +m. So Q ⊢ (n +m′) = n +m′. □

Proof of Proposition 17.15. The formula Aadd(x0,x1,y) represent-
ing add is y = (x0 + x1). First we show that if add(n,m) = k ,
then Q ⊢ Aadd(n,m,k), i.e., Q ⊢ k = (n + m). But since
k = n + m, k just is n +m, and we’ve shown in Lemma 17.16
that Q ⊢ (n +m) = n +m.

We also have to show that if add(n,m) = k , then

Q ⊢ ∀y (Aadd(n,m,y) → y = k).

Suppose we have (n +m) = y . Since

Q ⊢ (n +m) = n +m,

we can replace the left side with n +m and get n +m = y , for
arbitrary y . □

Proposition 17.17. The multiplication function mult(x0,x1) = x0 ·
x1 is represented in Q by

Amult(x0,x1,y) ≡ y = (x0 × x1).

Proof. Exercise. □

CHAPTER 17. REPRESENTABILITY IN Q 359

Lemma 17.18. Q ⊢ (n ×m) = n · m

Proof. Exercise. □

Recall that we use × for the function symbol of the language
of arithmetic, and · for the ordinary multiplication operation on
numbers. So · can appear between expressions for numbers (such
as in m · n) while × appears only between terms of the language
of arithmetic (such as in (m × n)). Even more confusingly, + is
used for both the function symbol and the addition operation.
When it appears between terms—e.g., in (n + m)—it is the 2-
place function symbol of the language of arithmetic, and when it
appears between numbers—e.g., in n+m—it is the addition oper-
ation. This includes the case n +m: this is the standard numeral
corresponding to the number n +m.

17.6 Composition is Representable in Q

Suppose h is defined by

h (x0, . . . ,xl−1) = f (g0(x0, . . . ,xl−1), . . . , gk−1(x0, . . . ,xl−1)).

where we have already found formulas A f ,Ag0 , . . . ,Agk−1 repre-
senting the functions f , and g0, . . . , gk−1, respectively. We have
to find a formula Ah representing h.

Let’s start with a simple case, where all functions are 1-
place, i.e., consider h (x) = f (g (x)). If A f (y ,z) represents f ,
and Ag (x ,y) represents g , we need a formula Ah (x ,z) that repre-
sents h. Note that h (x) = z iff there is a y such that both z = f (y)
and y = g (x). (If h (x) = z , then g (x) is such a y ; if such a y exists,
then since y = g (x) and z = f (y), z = f (g (x)).) This suggests
that ∃y (Ag (x ,y) ∧ A f (y ,z)) is a good candidate for Ah (x ,z). We
just have to verify that Q proves the relevant formulas.

CHAPTER 17. REPRESENTABILITY IN Q 360

Proposition 17.19. If h (n) = m, then Q ⊢ Ah (n,m).

Proof. Suppose h (n) = m, i.e., f (g (n)) = m. Let k = g (n). Then

Q ⊢ Ag (n,k)

since Ag represents g , and

Q ⊢ A f (k ,m)

since A f represents f . Thus,

Q ⊢ Ag (n,k) ∧ A f (k ,m)

and consequently also

Q ⊢ ∃y (Ag (n,y) ∧ A f (y ,m)),

i.e., Q ⊢ Ah (n,m). □

Proposition 17.20. If h (n) = m, then Q ⊢ ∀z (Ah (n,z)→ z = m).

Proof. Suppose h (n) = m, i.e., f (g (n)) = m. Let k = g (n). Then

Q ⊢ ∀y (Ag (n,y) → y = k)

since Ag represents g , and

Q ⊢ ∀z (A f (k ,z) → z = m)

since A f represents f . Using just a little bit of logic, we can show
that also

Q ⊢ ∀z (∃y (Ag (n,y) ∧ A f (y ,z)) → z = m).

i.e., Q ⊢ ∀y (Ah (n,y) → y = m). □

The same idea works in the more complex case where f
and gi have arity greater than 1.

CHAPTER 17. REPRESENTABILITY IN Q 361

Proposition 17.21. If A f (y0, . . . ,yk−1,z) represents
f (y0, . . . ,yk−1) in Q , and Agi (x0, . . . ,xl−1,y) represents
gi (x0, . . . ,xl−1) in Q , then

∃y0 . . . ∃yk−1 (Ag0 (x0, . . . ,xl−1,y0) ∧ · · · ∧
Agk−1 (x0, . . . ,xl−1,yk−1) ∧ A f (y0, . . . ,yk−1,z))

represents

h (x0, . . . ,xl−1) = f (g0(x0, . . . ,xl−1), . . . , gk−1(x0, . . . ,xl−1)).

Proof. Exercise. □

17.7 Regular Minimization is
Representable in Q

Let’s consider unbounded search. Suppose g (x ,z) is regular and
representable in Q , say by the formula Ag (x ,z ,y). Let f be de-
fined by f (z) = 𝜇x [g (x ,z) = 0]. We would like to find a for-
mula A f (z ,y) representing f . The value of f (z) is that number x
which (a) satisfies g (x ,z) = 0 and (b) is the least such, i.e., for
any w < x , g (w ,z) ≠ 0. So the following is a natural choice:

A f (z ,y) ≡ Ag (y ,z ,0) ∧ ∀w (w < y →¬Ag (w ,z ,0)).

In the general case, of course, we would have to replace z with
z0, . . . , zk .

The proof, again, will involve some lemmas about things Q
is strong enough to prove.

Lemma 17.22. For every constant symbol a and every natural num-
ber n,

Q ⊢ (a′ + n) = (a + n)′.

Proof. The proof is, as usual, by induction on n. In the base case,
n = 0, we need to show that Q proves (a′ + 0) = (a + 0)′. But we

CHAPTER 17. REPRESENTABILITY IN Q 362

have:

Q ⊢ (a′ + 0) = a′ by axiom Q4 (17.1)

Q ⊢ (a + 0) = a by axiom Q4 (17.2)

Q ⊢ (a + 0)′ = a′ by eq. (17.2) (17.3)

Q ⊢ (a′ + 0) = (a + 0)′ by eq. (17.1) and eq. (17.3)

In the induction step, we can assume that we have shown that
Q ⊢ (a′ + n) = (a + n)′. Since n + 1 is n′, we need to show that
Q proves (a′ + n′) = (a + n′)′. We have:

Q ⊢ (a′ + n′) = (a′ + n)′ by axiom Q5 (17.4)

Q ⊢ (a′ + n′) = (a + n′)′ inductive hypothesis (17.5)

Q ⊢ (a′ + n)′ = (a + n′)′ by eq. (17.4) and eq. (17.5). □

It is again worth mentioning that this is weaker than saying
that Q proves ∀x ∀y (x ′ + y) = (x + y)′. Although this sentence is
true in N, Q does not prove it.

Lemma 17.23. Q ⊢ ∀x ¬x < 0.

Proof. We give the proof informally (i.e., only giving hints as to
how to construct the formal derivation).

We have to prove ¬a < 0 for an arbitrary a. By the definition
of <, we need to prove ¬∃y (y ′ + a) = 0 in Q . We’ll assume
∃y (y ′ + a) = 0 and prove a contradiction. Suppose (b ′ + a) = 0.
Using Q3, we have that a = 0 ∨ ∃y a = y ′. We distinguish cases.

Case 1: a = 0 holds. From (b ′ + a) = 0, we have (b ′ + 0) = 0.
By axiom Q4 of Q , we have (b ′ + 0) = b ′, and hence b ′ = 0. But
by axiom Q2 we also have b ′ ≠ 0, a contradiction.

Case 2: For some c , a = c ′. But then we have (b ′ + c ′) = 0. By
axiom Q5, we have (b ′ + c)′ = 0, again contradicting axiom Q2.□

CHAPTER 17. REPRESENTABILITY IN Q 363

Lemma 17.24. For every natural number n,

Q ⊢ ∀x (x < n + 1 → (x = 0 ∨ · · · ∨ x = n)).

Proof. We use induction on n. Let us consider the base case,
when n = 0. In that case, we need to show a < 1 → a = 0, for
arbitrary a. Suppose a < 1. Then by the defining axiom for <,
we have ∃y (y ′ + a) = 0′ (since 1 ≡ 0′).

Suppose b has that property, i.e., we have (b ′ + a) = 0′. We
need to show a = 0. By axiom Q3, we have either a = 0 or that
there is a c such that a = c ′. In the former case, there is nothing to
show. So suppose a = c ′. Then we have (b ′+c ′) = 0′. By axiomQ5

of Q , we have (b ′+c)′ = 0′. By axiomQ1, we have (b ′+c) = 0. But
this means, by axiom Q8, that c < 0, contradicting Lemma 17.23.

Now for the inductive step. We prove the case for n + 1, as-
suming the case for n. So suppose a < n + 2. Again using Q3 we
can distinguish two cases: a = 0 and for some b , a = c ′. In the
first case, a = 0 ∨ · · · ∨ a = n + 1 follows trivially. In the second
case, we have c ′ < n + 2, i.e., c ′ < n + 1

′
. By axiom Q8, for some

d , (d ′ + c ′) = n + 1
′
. By axiom Q5, (d ′ + c)′ = n + 1

′
. By axiom Q1,

(d ′ + c) = n + 1, and so c < n + 1 by axiom Q8. By inductive hy-
pothesis, c = 0∨· · ·∨c = n. From this, we get c ′ = 0′∨· · ·∨c ′ = n′
by logic, and so a = 1 ∨ · · · ∨ a = n + 1 since a = c ′. □

Lemma 17.25. For every natural number m,

Q ⊢ ∀y ((y < m ∨m < y) ∨ y = m).

Proof. By induction on m. First, consider the case m = 0. Q ⊢
∀y (y = 0 ∨ ∃z y = z ′) by Q3. Let a be arbitrary. Then either
a = 0 or for some b , a = b ′. In the former case, we also have
(a < 0∨0 < a) ∨a = 0. But if a = b ′, then (b ′ +0) = (a +0) by the
logic of =. By Q4, (a + 0) = a, so we have (b ′ + 0) = a, and hence
∃z (z ′ + 0) = a. By the definition of < in Q8, 0 < a. If 0 < a, then
also (0 < a ∨ a < 0) ∨ a = 0.

CHAPTER 17. REPRESENTABILITY IN Q 364

Now suppose we have

Q ⊢ ∀y ((y < m ∨m < y) ∨ y = m)

and we want to show

Q ⊢ ∀y ((y < m + 1 ∨m + 1 < y) ∨ y = m + 1)

Let a be arbitrary. By Q3, either a = 0 or for some b , a = b ′. In
the first case, we have m′ + a = m + 1 by Q4, and so a < m + 1 by
Q8.

Now consider the second case, a = b ′. By the induction hy-
pothesis, (b < m ∨m < b) ∨ b = m.

The first disjunct b < m is equivalent (byQ8) to ∃z (z ′+b) = m.
Suppose c has this property. If (c ′ + b) = m, then also (c ′ + b)′ =
m′. By Q5, (c ′ + b)′ = (c ′ + b ′). Hence, (c ′ + b ′) = m′. We get
∃u (u ′+b ′) = m + 1 by existentially generalizing on c ′ and keeping
in mind that m′ ≡ m + 1. Hence, if b < m then b ′ < m + 1 and so
a < m + 1.

Now suppose m < b , i.e., ∃z (z ′ + m) = b . Suppose c is such
a z , i.e., (c ′+m) = b . By logic, (c ′+m)′ = b ′. By Q5, (c ′+m′) = b ′.
Since a = b ′ and m′ ≡ m + 1, (c ′ +m + 1) = a. By Q8, m + 1 < a.

Finally, assume b = m. Then, by logic, b ′ = m′, and so a =

m + 1.
Hence, from each disjunct of the case for m and b , we can

obtain the corresponding disjunct for for m + 1 and a. □

Proposition 17.26. If Ag (x ,z ,y) represents g (x ,z) in Q , then

A f (z ,y) ≡ Ag (y ,z ,0) ∧ ∀w (w < y →¬Ag (w ,z ,0))

represents f (z) = 𝜇x [g (x ,z) = 0].

Proof. First we show that if f (n) = m, then Q ⊢ A f (n,m), i.e.,

Q ⊢ Ag (m,n,0) ∧ ∀w (w < m→¬Ag (w ,n,0)).

CHAPTER 17. REPRESENTABILITY IN Q 365

Since Ag (x ,z ,y) represents g (x ,z) and g (m,n) = 0 if f (n) = m,
we have

Q ⊢ Ag (m,n,0).

If f (n) = m, then for every k < m, g (k ,n) ≠ 0. So

Q ⊢ ¬Ag (k ,n,0).

We get that

Q ⊢ ∀w (w < m→¬Ag (w ,n,0)). (17.6)

by Lemma 17.23 in case m = 0 and by Lemma 17.24 otherwise.
Now let’s show that if f (n) = m, then Q ⊢ ∀y (A f (n,y) →

y = m). We again sketch the argument informally, leaving the
formalization to the reader.

Suppose A f (n,b). From this we get (a) Ag (b ,n,0) and (b)
∀w (w < b → ¬Ag (w ,n,0)). By Lemma 17.25, (b < m ∨ m <

b) ∨ b = m. We’ll show that both b < m and m < b leads to a
contradiction.

If m < b , then ¬Ag (m,n,0) from (b). But m = f (n), so
g (m,n) = 0, and so Q ⊢ Ag (m,n,0) since Ag represents g . So
we have a contradiction.

Now suppose b < m. Then since Q ⊢ ∀w (w < m →
¬Ag (w ,n,0)) by eq. (17.6), we get ¬Ag (b ,n,0). This again con-
tradicts (a). □

17.8 Computable Functions are
Representable in Q

Theorem 17.27. Every computable function is representable in Q .

Proof. For definiteness, and using the Church-Turing Thesis, let’s
say that a function is computable iff it is general recursive. The

CHAPTER 17. REPRESENTABILITY IN Q 366

general recursive functions are those which can be defined from
the zero function zero, the successor function succ, and the pro-
jection function P ni using composition, primitive recursion, and
regular minimization. By Lemma 17.9, any function h that can
be defined from f and g can also be defined using composition
and regular minimization from f , g , and zero, succ, P ni , add,
mult, 𝜒=. Consequently, a function is general recursive iff it can
be defined from zero, succ, P ni , add, mult, 𝜒= using composition
and regular minimization.

We’ve furthermore shown that the basic functions in ques-
tion are representable in Q (Propositions 17.10 to 17.13, 17.15
and 17.17), and that any function defined from representable
functions by composition or regular minimization (Proposi-
tion 17.21, Proposition 17.26) is also representable. Thus every
general recursive function is representable in Q . □

We have shown that the set of computable functions can be
characterized as the set of functions representable in Q . In fact,
the proof is more general. From the definition of representability,
it is not hard to see that any theory extending Q (or in which
one can interpret Q) can represent the computable functions.
But, conversely, in any derivation system in which the notion of
derivation is computable, every representable function is com-
putable. So, for example, the set of computable functions can be
characterized as the set of functions representable in Peano arith-
metic, or even Zermelo-Fraenkel set theory. As Gödel noted, this
is somewhat surprising. We will see that when it comes to prov-
ability, questions are very sensitive to which theory you consider;
roughly, the stronger the axioms, the more you can prove. But
across a wide range of axiomatic theories, the representable func-
tions are exactly the computable ones; stronger theories do not
represent more functions as long as they are axiomatizable.

17.9 Representing Relations

Let us say what it means for a relation to be representable.

CHAPTER 17. REPRESENTABILITY IN Q 367

Definition 17.28. A relation R (x0, . . . ,xk) on the natural num-
bers is representable in Q if there is a formula AR (x0, . . . ,xk) such
that wheneverR (n0, . . . ,nk) is true, Q proves AR (n0, . . . ,nk), and
whenever R (n0, . . . ,nk) is false, Q proves ¬AR (n0, . . . ,nk).

Theorem 17.29. A relation is representable in Q if and only if it is
computable.

Proof. For the forwards direction, suppose R (x0, . . . ,xk) is repre-
sented by the formula AR (x0, . . . ,xk). Here is an algorithm for
computing R: on input n0, . . . , nk , simultaneously search for a
proof of AR (n0, . . . ,nk) and a proof of ¬AR (n0, . . . ,nk). By our
hypothesis, the search is bound to find one or the other; if it is
the first, report “yes,” and otherwise, report “no.”

In the other direction, suppose R (x0, . . . ,xk) is computable.
By definition, this means that the function 𝜒R (x0, . . . ,xk) is
computable. By Theorem 17.2, 𝜒R is represented by a for-
mula, say A𝜒R (x0, . . . ,xk ,y). Let AR (x0, . . . ,xk) be the formula
A𝜒R (x0, . . . ,xk ,1). Then for any n0, . . . , nk , if R (n0, . . . ,nk)
is true, then 𝜒R (n0, . . . ,nk) = 1, in which case Q proves
A𝜒R (n0, . . . ,nk ,1), and so Q proves AR (n0, . . . ,nk). On the other
hand, if R (n0, . . . ,nk) is false, then 𝜒R (n0, . . . ,nk) = 0. This
means that Q proves

∀y (A𝜒R (n0, . . . ,nk ,y) → y = 0).

Since Q proves 0 ≠ 1, Q proves ¬A𝜒R (n0, . . . ,nk ,1), and so it
proves ¬AR (n0, . . . ,nk). □

17.10 Undecidability

We call a theory T undecidable if there is no computational pro-
cedure which, after finitely many steps and unfailingly, provides
a correct answer to the question “does T prove A?” for any
sentence A in the language of T. So Q would be decidable iff

CHAPTER 17. REPRESENTABILITY IN Q 368

there were a computational procedure which decides, given a sen-
tence A in the language of arithmetic, whether Q ⊢ A or not. We
can make this more precise by asking: Is the relation ProvQ (y),
which holds of y iff y is the Gödel number of a sentence provable
in Q , recursive? The answer is: no.

Theorem 17.30. Q is undecidable, i.e., the relation

ProvQ (y) ⇔ Sent(y) ∧ ∃x PrfQ (x ,y)

is not recursive.

Proof. Suppose it were. Then we could solve the halting prob-
lem as follows: Given e and n, we know that 𝜑e (n) ↓ iff there
is an s such that T (e ,n,s), where T is Kleene’s predicate from
Theorem 15.28. Since T is primitive recursive it is representable
in Q by a formula BT , that is, Q ⊢ BT (e ,n,s) iff T (e ,n,s). If
Q ⊢ BT (e ,n,s) then also Q ⊢ ∃y BT (e ,n,y). If no such s exists,
then Q ⊢ ¬BT (e ,n,s) for every s . But Q is 𝜔-consistent, i.e.,
if Q ⊢ ¬A(n) for every n ∈ N, then Q ⊬ ∃y A(y). We know
this because the axioms of Q are true in the standard model N.
So, Q ⊬ ∃y BT (e ,n,y). In other words, Q ⊢ ∃y BT (e ,n,y) iff
there is an s such that T (e ,n,s), i.e., iff 𝜑e (n) ↓. From e and n we
can compute #∃y BT (e ,n,y)#, let g (e ,n) be the primitive recursive
function which does that. So

h (e ,n) =
{︄
1 if ProvQ (g (e ,n))
0 otherwise.

This would show that h is recursive if ProvQ is. But h is not
recursive, by Theorem 15.29, so ProvQ cannot be either. □

Corollary 17.31. First-order logic is undecidable.

Proof. If first-order logic were decidable, provability in Q would
be as well, since Q ⊢ A iff ⊢ O → A, where O is the conjunction
of the axioms of Q . □

CHAPTER 17. REPRESENTABILITY IN Q 369

Summary

In order to show how theories like Q can “talk” about com-
putable functions—and especially about provability (via Gödel
numbers)—we established that Q represents all computable
functions. By “Q represents f (n)” we mean that there is a for-
mula A f (x ,y) in LA which expresses that f (x) = y , and Q can
prove that it does. This, in turn, means that whenever f (n) = m,
then Q ⊢ A f (n,m) and Q ⊢ ∀y (A f (n,y)→y = m). (Here, n is the
standard numeral for n, i.e., the term 0′...′ with n ′s. The term n
picks out the number n in the standard model N, so it’s a conve-
nient way of representing the number n in LA.) To prove that Q
represents all computable functions we go back to the characteri-
zation of computable functions as those that can be defined from
zero, succ, and the projection functions, by composition, prim-
itive recursion, and regular minimization. While it is relatively
easy to prove that the basic functions are representable and that
functions defined by composition and regular minimization from
representable functions are also representable, primitive recur-
sion is harder. We showed that we can actually avoid definition
by primitive recursion, if we allow a few additional basic functions
(namely, addition, multiplication, and the characteristic function
of =). This required a beta function which allows us to deal with
sequences of numbers in a rudimentary way, and which can be
defined without using primitive recursion.

Problems

Problem 17.1. Show that the relations x < y , x | y , and the func-
tion rem(x ,y) can be defined without primitive recursion. You
may use 0, successor, plus, times, 𝜒=, projections, and bounded
minimization and quantification.

Problem 17.2. Prove that y = 0, y = x ′, and y = xi represent
zero, succ, and P ni , respectively.

CHAPTER 17. REPRESENTABILITY IN Q 370

Problem 17.3. Prove Lemma 17.18.

Problem 17.4. Use Lemma 17.18 to prove Proposition 17.17.

Problem 17.5. Using the proofs of Proposition 17.20 and Propo-
sition 17.20 as a guide, carry out the proof of Proposition 17.21
in detail.

Problem 17.6. Show that if R is representable in Q , so is 𝜒R .

CHAPTER 18

Incompleteness
and Provability
18.1 Introduction

Hilbert thought that a system of axioms for a mathematical struc-
ture, such as the natural numbers, is inadequate unless it allows
one to derive all true statements about the structure. Combined
with his later interest in formal systems of deduction, this suggests
that he thought that we should guarantee that, say, the formal sys-
tems we are using to reason about the natural numbers is not only
consistent, but also complete, i.e., every statement in its language
is either derivable or its negation is. Gödel’s first incomplete-
ness theorem shows that no such system of axioms exists: there
is no complete, consistent, axiomatizable formal system for arith-
metic. In fact, no “sufficiently strong,” consistent, axiomatizable
mathematical theory is complete.

A more important goal of Hilbert’s, the centerpiece of his
program for the justification of modern (“classical”) mathemat-
ics, was to find finitary consistency proofs for formal systems rep-
resenting classical reasoning. With regard to Hilbert’s program,
then, Gödel’s second incompleteness theorem was a much bigger
blow. The second incompleteness theorem can be stated in vague
terms, like the first incompleteness theorem. Roughly speaking,

371

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 372

it says that no sufficiently strong theory of arithmetic can prove
its own consistency. We will have to take “sufficiently strong” to
include a little bit more than Q .

The idea behind Gödel’s original proof of the incompleteness
theorem can be found in the Epimenides paradox. Epimenides,
a Cretan, asserted that all Cretans are liars; a more direct form of
the paradox is the assertion “this sentence is false.” Essentially,
by replacing truth with derivability, Gödel was able to formalize
a sentence which, in a roundabout way, asserts that it itself is not
derivable. If that sentence were derivable, the theory would then
be inconsistent. Gödel showed that the negation of that sentence
is also not derivable from the system of axioms he was consider-
ing. (For this second part, Gödel had to assume that the theory T
is what’s called “𝜔-consistent.” 𝜔-Consistency is related to consis-
tency, but is a stronger property.1 A few years after Gödel, Rosser
showed that assuming simple consistency of T is enough.)

The first challenge is to understand how one can construct
a sentence that refers to itself. For every formula A in the lan-
guage of Q , let ⌜A⌝ denote the numeral corresponding to #A#.
Think about what this means: A is a formula in the language
of Q , #A# is a natural number, and ⌜A⌝ is a term in the language
of Q . So every formula A in the language of Q has a name, ⌜A⌝,
which is a term in the language of Q ; this provides us with a
conceptual framework in which formulas in the language of Q
can “say” things about other formulas. The following lemma is
known as the fixed-point lemma.

Lemma 18.1. Let T be any theory extending Q , and let B (x) be any
formula with only the variable x free. Then there is a sentence A such
that T ⊢ A↔ B (⌜A⌝).

The lemma asserts that given any property B (x), there is
a sentence A that asserts “B (x) is true of me,” and T “knows”
this.

1That is, any 𝜔-consistent theory is consistent, but not vice versa.

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 373

How can we construct such a sentence? Consider the follow-
ing version of the Epimenides paradox, due to Quine:

“Yields falsehood when preceded by its quotation”
yields falsehood when preceded by its quotation.

This sentence is not directly self-referential. It simply makes an
assertion about the syntactic objects between quotes, and, in do-
ing so, it is on par with sentences like

1. “Robert” is a nice name.

2. “I ran.” is a short sentence.

3. “Has three words” has three words.

But what happens when one takes the phrase “yields falsehood
when preceded by its quotation,” and precedes it with a quoted
version of itself? Then one has the original sentence! In short,
the sentence asserts that it is false.

18.2 The Fixed-Point Lemma

The fixed-point lemma says that for any formula B (x), there is
a sentence A such that T ⊢ A↔B (⌜A⌝), provided T extends Q .
In the case of the liar sentence, we’d want A to be equivalent
(provably in T) to “⌜A⌝ is false,” i.e., the statement that #A# is
the Gödel number of a false sentence. To understand the idea
of the proof, it will be useful to compare it with Quine’s infor-
mal gloss of A as, “‘yields a falsehood when preceded by its own
quotation’ yields a falsehood when preceded by its own quota-
tion.” The operation of taking an expression, and then forming a
sentence by preceding this expression by its own quotation may
be called diagonalizing the expression, and the result its diago-
nalization. So, the diagonalization of ‘yields a falsehood when
preceded by its own quotation’ is “‘yields a falsehood when pre-
ceded by its own quotation’ yields a falsehood when preceded by

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 374

its own quotation.” Now note that Quine’s liar sentence is not the
diagonalization of ‘yields a falsehood’ but of ‘yields a falsehood
when preceded by its own quotation.’ So the property being diag-
onalized to yield the liar sentence itself involves diagonalization!

In the language of arithmetic, we form quotations of a formula
with one free variable by computing its Gödel numbers and then
substituting the standard numeral for that Gödel number into
the free variable. The diagonalization of E (x) is E (n), where
n = #E (x)#. (From now on, let’s abbreviate #E (x)# as ⌜E (x)⌝.)
So if B (x) is “is a falsehood,” then “yields a falsehood if pre-
ceded by its own quotation,” would be “yields a falsehood when
applied to the Gödel number of its diagonalization.” If we had a
symbol diag for the function diag(n) which computes the Gödel
number of the diagonalization of the formula with Gödel num-
ber n, we could write E (x) as B (diag(x)). And Quine’s version
of the liar sentence would then be the diagonalization of it, i.e.,
E (⌜E (x)⌝) or B (diag(⌜B (diag(x))⌝)). Of course, B (x) could
now be any other property, and the same construction would
work. For the incompleteness theorem, we’ll take B (x) to be “x is
not derivable in T.” Then E (x) would be “yields a sentence not
derivable in T when applied to the Gödel number of its diago-
nalization.”

To formalize this in T, we have to find a way to formalize
diag. The function diag(n) is computable, in fact, it is primitive
recursive: if n is the Gödel number of a formula E (x), diag(n)
returns the Gödel number of E (⌜E (x)⌝). (Recall, ⌜E (x)⌝ is the
standard numeral of the Gödel number of E (x), i.e., #E (x)#).
If diag were a function symbol in T representing the function
diag, we could take A to be the formula B (diag(⌜B (diag(x))⌝)).
Notice that

diag(#B (diag(x))#) = #B (diag(⌜B (diag(x))⌝))#

= #A#.

Assuming T can derive

diag(⌜B (diag(x))⌝) = ⌜A⌝,

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 375

it can derive B (diag(⌜B (diag(x))⌝))↔B (⌜A⌝). But the left hand
side is, by definition, A.

Of course, diag will in general not be a function symbol of
T, and certainly is not one of Q . But, since diag is computable,
it is representable in Q by some formula Ddiag(x ,y). So instead of
writing B (diag(x)) we can write ∃y (Ddiag(x ,y) ∧ B (y)). Other-
wise, the proof sketched above goes through, and in fact, it goes
through already in Q .

Lemma 18.2. Let B (x) be any formula with one free variable x.
Then there is a sentence A such that Q ⊢ A↔ B (⌜A⌝).

Proof. Given B (x), let E (x) be the formula ∃y (Ddiag(x ,y) ∧B (y))
and let A be its diagonalization, i.e., the formula E (⌜E (x)⌝).

Since Ddiag represents diag, and diag(#E (x)#) = #A#, Q can
derive

Ddiag(⌜E (x)⌝,⌜A⌝) (18.1)

∀y (Ddiag(⌜E (x)⌝,y) → y = ⌜A⌝). (18.2)

Now we show that Q ⊢ A↔B (⌜A⌝). We argue informally, using
just logic and facts derivable in Q .

First, supposeA, i.e., E (⌜E (x)⌝). Going back to the definition
of E (x), we see that E (⌜E (x)⌝) just is

∃y (Ddiag(⌜E (x)⌝,y) ∧ B (y)).

Consider such a y . Since Ddiag(⌜E (x)⌝,y), by eq. (18.2), y = ⌜A⌝.
So, from B (y) we have B (⌜A⌝).

Now suppose B (⌜A⌝). By eq. (18.1), we have

Ddiag(⌜E (x)⌝,⌜A⌝) ∧ B (⌜A⌝).

It follows that

∃y (Ddiag(⌜E (x)⌝,y) ∧ B (y)).

But that’s just E (⌜E (x)⌝), i.e., A. □

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 376

You should compare this to the proof of the fixed-point lemma
in computability theory. The difference is that here we want to
define a statement in terms of itself, whereas there we wanted to
define a function in terms of itself; this difference aside, it is really
the same idea.

18.3 The First Incompleteness Theorem

We can now describe Gödel’s original proof of the first incom-
pleteness theorem. Let T be any computably axiomatized theory
in a language extending the language of arithmetic, such that T
includes the axioms of Q . This means that, in particular, T rep-
resents computable functions and relations.

We have argued that, given a reasonable coding of formu-
las and proofs as numbers, the relation PrfT (x ,y) is computable,
where PrfT (x ,y) holds if and only if x is the Gödel number of
a derivation of the formula with Gödel number y in T. In fact,
for the particular theory that Gödel had in mind, Gödel was able
to show that this relation is primitive recursive, using the list of
45 functions and relations in his paper. The 45th relation, xBy ,
is just PrfT (x ,y) for his particular choice of T. Remember that
where Gödel uses the word “recursive” in his paper, we would
now use the phrase “primitive recursive.”

Since PrfT (x ,y) is computable, it is representable in T. We
will use PrfT (x ,y) to refer to the formula that represents it. Let
ProvT (y) be the formula ∃x PrfT (x ,y). This describes the 46th
relation, Bew(y), on Gödel’s list. As Gödel notes, this is the only
relation that “cannot be asserted to be recursive.” What he prob-
ably meant is this: from the definition, it is not clear that it is
computable; and later developments, in fact, show that it isn’t.

Let T be an axiomatizable theory containing Q . Then
PrfT (x ,y) is decidable, hence representable in Q by a for-
mula PrfT (x ,y). Let ProvT (y) be the formula we described above.
By the fixed-point lemma, there is a formulaGT such that Q (and

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 377

hence T) derives

GT ↔¬ProvT (⌜GT⌝). (18.3)

Note that GT says, in essence, “GT is not derivable in T.”

Lemma 18.3. IfT is a consistent, axiomatizable theory extendingQ ,
then T ⊬ GT.

Proof. Suppose T derives GT. Then there is a derivation, and
so, for some number m, the relation PrfT (m, #GT

#) holds. But
then Q derives the sentence PrfT (m,⌜GT⌝). So Q derives
∃x PrfT (x ,⌜GT⌝), which is, by definition, ProvT (⌜GT⌝). By
eq. (18.3), Q derives ¬GT, and since T extends Q , so does T.
We have shown that if T derives GT, then it also derives ¬GT,
and hence it would be inconsistent. □

Definition 18.4. A theory T is 𝜔-consistent if the following holds:
if ∃x A(x) is any sentence and T derives ¬A(0), ¬A(1), ¬A(2),
. . . then T does not prove ∃x A(x).

Note that every 𝜔-consistent theory is also consistent. This
follows simply from the fact that if T is inconsistent, then T ⊢ A
for every A. In particular, if T is inconsistent, it derives both
¬A(n) for every n and also derives ∃x A(x). So, if T is inconsis-
tent, it is 𝜔-inconsistent. By contraposition, if T is 𝜔-consistent,
it must be consistent.

Lemma 18.5. If T is an 𝜔-consistent, axiomatizable theory extend-
ing Q , then T ⊬ ¬GT.

Proof. We show that if T derives ¬GT, then it is 𝜔-inconsistent.
Suppose T derives ¬GT. If T is inconsistent, it is 𝜔-inconsistent,
and we are done. Otherwise, T is consistent, so it does not derive
GT by Lemma 18.3. Since there is no derivation of GT in T, Q
derives

¬PrfT (0,⌜GT⌝),¬PrfT (1,⌜GT⌝),¬PrfT (2,⌜GT⌝), . . .

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 378

and so does T. On the other hand, by eq. (18.3), ¬GT is equiva-
lent to ∃x PrfT (x ,⌜GT⌝). So T is 𝜔-inconsistent. □

Theorem 18.6. Let T be any 𝜔-consistent, axiomatizable theory ex-
tending Q . Then T is not complete.

Proof. If T is 𝜔-consistent, it is consistent, so T ⊬ GT by
Lemma 18.3. By Lemma 18.5, T ⊬ ¬GT. This means that T
is incomplete, since it derives neither GT nor ¬GT. □

18.4 Rosser’s Theorem

Can we modify Gödel’s proof to get a stronger result, replacing
“𝜔-consistent” with simply “consistent”? The answer is “yes,”
using a trick discovered by Rosser. Rosser’s trick is to use a
“modified” derivability predicate RProvT (y) instead of ProvT (y).

Theorem 18.7. Let T be any consistent, axiomatizable theory extend-
ing Q . Then T is not complete.

Proof. Recall that ProvT (y) is defined as ∃x PrfT (x ,y), where
PrfT (x ,y) represents the decidable relation which holds iff x is the
Gödel number of a derivation of the sentence with Gödel num-
ber y . The relation that holds between x and y if x is the Gödel
number of a refutation of the sentence with Gödel number y is
also decidable. Let not(x) be the primitive recursive function
which does the following: if x is the code of a formula A, not(x)
is a code of ¬A. Then RefT (x ,y) holds iff PrfT (x ,not(y)). Let
RefT (x ,y) represent it. Then, if T ⊢ ¬A and 𝛿 is a corresponding
derivation, Q ⊢ RefT (⌜𝛿⌝,⌜A⌝). We define RProvT (y) as

∃x (PrfT (x ,y) ∧ ∀z (z < x →¬RefT (z ,y))).

Roughly, RProvT (y) says “there is a proof of y in T, and there is
no shorter refutation of y .” Assuming T is consistent, RProvT (y)
is true of the same numbers as ProvT (y); but from the point of

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 379

view of provability in T (and we now know that there is a differ-
ence between truth and provability!) the two have different prop-
erties. If T is inconsistent, then the two do not hold of the same
numbers! (RProvT (y) is often read as “y is Rosser provable.”
Since, as just discussed, Rosser provability is not some special
kind of provability—in inconsistent theories, there are sentences
that are provable but not Rosser provable—this may be confus-
ing. To avoid the confusion, you could instead read it as “y is
shmovable.”)

By the fixed-point lemma, there is a formula RT such that

Q ⊢ RT ↔¬RProvT (⌜RT⌝). (18.4)

In contrast to the proof of Theorem 18.6, here we claim that ifT is
consistent, T doesn’t derive RT, and T also doesn’t derive ¬RT.
(In other words, we don’t need the assumption of 𝜔-consistency.)

First, let’s show that T ⊬ RT . Suppose it did, so there is
a derivation of RT from T ; let n be its Gödel number. Then
Q ⊢ PrfT (n,⌜RT ⌝), since PrfT represents PrfT in Q . Also, for
each k < n, k is not the Gödel number of a derivation of ¬RT ,
since T is consistent. So for each k < n, Q ⊢ ¬RefT (k ,⌜RT ⌝).
By Lemma 17.24, Q ⊢ ∀z (z < n→¬RefT (z ,⌜RT ⌝)). Thus,

Q ⊢ ∃x (PrfT (x ,⌜RT ⌝) ∧ ∀z (z < x →¬RefT (z ,⌜RT ⌝))),

but that’s just RProvT (⌜RT ⌝). By eq. (18.4), Q ⊢ ¬RT . Since T
extends Q , also T ⊢ ¬RT . We’ve assumed that T ⊢ RT , so T
would be inconsistent, contrary to the assumption of the theorem.

Now, let’s show that T ⊬ ¬RT . Again, suppose it did,
and suppose n is the Gödel number of a derivation of ¬RT .
Then RefT (n, #RT #) holds, and since RefT represents RefT in
Q , Q ⊢ RefT (n,⌜RT ⌝). We’ll again show that T would then be
inconsistent because it would also derive RT . Since

Q ⊢ RT ↔¬RProvT (⌜RT ⌝),

and since T extends Q , it suffices to show that

Q ⊢ ¬RProvT (⌜RT ⌝).

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 380

The sentence ¬RProvT (⌜RT ⌝), i.e.,

¬∃x (PrfT (x ,⌜RT ⌝) ∧ ∀z (z < x →¬RefT (z ,⌜RT ⌝))),

is logically equivalent to

∀x (PrfT (x ,⌜RT ⌝) → ∃z (z < x ∧ RefT (z ,⌜RT ⌝))).

We argue informally using logic, making use of facts about what
Q derives. Suppose x is arbitrary and PrfT (x ,⌜RT ⌝). We already
know that T ⊬ RT , and so for every k , Q ⊢ ¬PrfT (k ,⌜RT ⌝).
Thus, for every k it follows that x ≠ k . In particular, we have (a)
that x ≠ n. We also have ¬(x = 0∨ x = 1∨ · · · ∨ x = n − 1) and so
by Lemma 17.24, (b) ¬(x < n). By Lemma 17.25, n < x . Since
Q ⊢ RefT (n,⌜RT ⌝), we have n < x ∧ RefT (n,⌜RT ⌝), and from
that ∃z (z < x ∧RefT (z ,⌜RT ⌝)). Since x was arbitrary we get, as
required, that

∀x (PrfT (x ,⌜RT ⌝) → ∃z (z < x ∧ RefT (z ,⌜RT ⌝))). □

18.5 Comparison with Gödel’s Original
Paper

It is worthwhile to spend some time with Gödel’s 1931 paper.
The introduction sketches the ideas we have just discussed. Even
if you just skim through the paper, it is easy to see what is go-
ing on at each stage: first Gödel describes the formal system P
(syntax, axioms, proof rules); then he defines the primitive recur-
sive functions and relations; then he shows that xBy is primitive
recursive, and argues that the primitive recursive functions and
relations are represented in P. He then goes on to prove the in-
completeness theorem, as above. In Section 3, he shows that one
can take the unprovable assertion to be a sentence in the lan-
guage of arithmetic. This is the origin of the 𝛽 -lemma, which is

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 381

what we also used to handle sequences in showing that the recur-
sive functions are representable in Q . Gödel doesn’t go so far
to isolate a minimal set of axioms that suffice, but we now know
that Q will do the trick. Finally, in Section 4, he sketches a proof
of the second incompleteness theorem.

18.6 The Derivability Conditions for PA

Peano arithmetic, or PA, is the theory extending Q with induc-
tion axioms for all formulas. In other words, one adds to Q
axioms of the form

(A(0) ∧ ∀x (A(x) → A(x ′))) → ∀x A(x)

for every formula A. Notice that this is really a schema, which is to
say, infinitely many axioms (and it turns out that PA is not finitely
axiomatizable). But since one can effectively determine whether
or not a string of symbols is an instance of an induction axiom,
the set of axioms for PA is computable. PA is a much more robust
theory than Q . For example, one can easily prove that addition
and multiplication are commutative, using induction in the usual
way. In fact, most finitary number-theoretic and combinatorial
arguments can be carried out in PA.

Since PA is computably axiomatized, the derivability predi-
cate PrfPA(x ,y) is computable and hence represented in Q (and
so, in PA). As before, we will take PrfPA(x ,y) to denote the for-
mula representing the relation. Let ProvPA(y) be the formula
∃x PrfPA(x ,y), which, intuitively says, “y is derivable from the
axioms of PA.” The reason we need a little bit more than the
axioms of Q is we need to know that the theory we are using is
strong enough to derive a few basic facts about this derivability
predicate. In fact, what we need are the following facts:

P1. If PA ⊢ A, then PA ⊢ ProvPA(⌜A⌝).

P2. For all formulas A and B ,

PA ⊢ ProvPA(⌜A→ B⌝) → (ProvPA(⌜A⌝) →ProvPA(⌜B⌝)).

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 382

P3. For every formula A,

PA ⊢ ProvPA(⌜A⌝) → ProvPA(⌜ProvPA(⌜A⌝)⌝).

The only way to verify that these three properties hold is to de-
scribe the formula ProvPA(y) carefully and use the axioms of
PA to describe the relevant formal derivations. Conditions (1)
and (2) are easy; it is really condition (3) that requires work.
(Think about what kind of work it entails . . .) Carrying out the
details would be tedious and uninteresting, so here we will ask
you to take it on faith that PA has the three properties listed
above. A reasonable choice of ProvPA(y) will also satisfy

P4. If PA ⊢ ProvPA(⌜A⌝), then PA ⊢ A.

But we will not need this fact.
Incidentally, Gödel was lazy in the same way we are being

now. At the end of the 1931 paper, he sketches the proof of
the second incompleteness theorem, and promises the details in
a later paper. He never got around to it; since everyone who
understood the argument believed that it could be carried out
(he did not need to fill in the details.)

18.7 The Second Incompleteness Theorem

How can we express the assertion that PA doesn’t prove its own
consistency? Saying PA is inconsistent amounts to saying that
PA ⊢ 0 = 1. So we can take the consistency statement ConPA to be
the sentence ¬ProvPA(⌜0 = 1⌝), and then the following theorem
does the job:

Theorem 18.8. Assuming PA is consistent, then PA does not derive
ConPA.

It is important to note that the theorem depends on the par-
ticular representation of ConPA (i.e., the particular representa-
tion of ProvPA(y)). All we will use is that the representation of

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 383

ProvPA(y) satisfies the three derivability conditions, so the theo-
rem generalizes to any theory with a derivability predicate having
these properties.

It is informative to read Gödel’s sketch of an argument, since
the theorem follows like a good punch line. It goes like this. Let
GPA be the Gödel sentence that we constructed in the proof of
Theorem 18.6. We have shown “If PA is consistent, then PA does
not derive GPA.” If we formalize this in PA, we have a proof of

ConPA →¬ProvPA(⌜GPA⌝).

Now suppose PA derives ConPA. Then it derives
¬ProvPA(⌜GPA⌝). But since GPA is a Gödel sentence, this is
equivalent to GPA. So PA derives GPA.

But: we know that if PA is consistent, it doesn’t derive GPA!
So if PA is consistent, it can’t derive ConPA.

To make the argument more precise, we will let GPA be the
Gödel sentence for PA and use the derivability conditions (P1)–
(P3) to show that PA derives ConPA →GPA. This will show that
PA doesn’t derive ConPA. Here is a sketch of the proof, in PA.
(For simplicity, we drop the PA subscripts.)

G ↔¬Prov(⌜G ⌝) (18.5)

G is a Gödel sentence

G →¬Prov(⌜G ⌝) (18.6)

from eq. (18.5)

G → (Prov(⌜G ⌝) → ⊥) (18.7)

from eq. (18.6) by logic

Prov(⌜G → (Prov(⌜G ⌝) → ⊥)⌝) (18.8)

by from eq. (18.7) by condition P1

Prov(⌜G ⌝) → Prov(⌜(Prov(⌜G ⌝) → ⊥)⌝) (18.9)

from eq. (18.8) by condition P2

Prov(⌜G ⌝) → (Prov(⌜Prov(⌜G ⌝)⌝) → Prov(⌜⊥⌝)) (18.10)

from eq. (18.9) by condition P2 and logic

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 384

Prov(⌜G ⌝) → Prov(⌜Prov(⌜G ⌝)⌝) (18.11)

by P3

Prov(⌜G ⌝) → Prov(⌜⊥⌝) (18.12)

from eq. (18.10) and eq. (18.11) by logic

Con →¬Prov(⌜G ⌝) (18.13)

contraposition of eq. (18.12) and Con ≡ ¬Prov(⌜⊥⌝)
Con →G

from eq. (18.5) and eq. (18.13) by logic

The use of logic in the above just elementary facts from proposi-
tional logic, e.g., eq. (18.7) uses ⊢ ¬A↔ (A→⊥) and eq. (18.12)
uses A → (B → C),A → B ⊢ A → C . The use of condi-
tion P2 in eq. (18.9) and eq. (18.10) relies on instances of P2,
Prov(⌜A→ B⌝) → (Prov(⌜A⌝) → Prov(⌜B⌝)). In the first one,
A ≡ G and B ≡ Prov(⌜G ⌝) → ⊥; in the second, A ≡ Prov(⌜G ⌝)
and B ≡ ⊥.

The more abstract version of the second incompleteness the-
orem is as follows:

Theorem 18.9. Let T be any consistent, axiomatized theory extend-
ing Q and let ProvT (y) be any formula satisfying derivability condi-
tions P1–P3 for T. Then T does not derive ConT .

The moral of the story is that no “reasonable” consistent the-
ory for mathematics can derive its own consistency statement.
Suppose T is a theory of mathematics that includes Q and
Hilbert’s “finitary” reasoning (whatever that may be). Then, the
whole of T cannot derive the consistency statement of T, and
so, a fortiori, the finitary fragment can’t derive the consistency
statement of T either. In that sense, there cannot be a finitary
consistency proof for “all of mathematics.”

There is some leeway in interpreting the term “finitary,” and
Gödel, in the 1931 paper, grants the possibility that something we
may consider “finitary” may lie outside the kinds of mathematics
Hilbert wanted to formalize. But Gödel was being charitable;

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 385

today, it is hard to see how we might find something that can
reasonably be called finitary but is not formalizable in, say, ZFC,
Zermelo-Fraenkel set theory with the axiom of choice.

18.8 Löb’s Theorem

The Gödel sentence for a theory T is a fixed point of ¬ProvT (y),
i.e., a sentence G such that

T ⊢ ¬ProvT (⌜G ⌝) ↔G .

It is not derivable, because if T ⊢ G , (a) by derivability con-
dition (1), T ⊢ ProvT (⌜G ⌝), and (b) T ⊢ G together with
T ⊢ ¬ProvT (⌜G ⌝) ↔G gives T ⊢ ¬ProvT (⌜G ⌝), and so T would
be inconsistent. Now it is natural to ask about the status of a
fixed point of ProvT (y), i.e., a sentence H such that

T ⊢ ProvT (⌜H ⌝) ↔H .

If it were derivable, T ⊢ ProvT (⌜H ⌝) by condition (1), but the
same conclusion follows if we apply modus ponens to the equiv-
alence above. Hence, we don’t get that T is inconsistent, at least
not by the same argument as in the case of the Gödel sentence.
This of course does not show that T does derive H .

We can make headway on this question if we generalize it
a bit. The left-to-right direction of the fixed point equivalence,
ProvT (⌜H ⌝) → H , is an instance of a general schema called a
reflection principle: ProvT (⌜A⌝) → A. It is called that because it
expresses, in a sense, thatT can “reflect” about what it can derive;
basically it says, “If T can derive A, then A is true,” for any A.
This is true for sound theories only, of course, and this suggests
that theories will in general not derive every instance of it. So
which instances can a theory (strong enough, and satisfying the
derivability conditions) derive? Certainly all those where A itself
is derivable. And that’s it, as the next result shows.

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 386

Theorem 18.10. Let T be an axiomatizable theory extending Q ,
and suppose ProvT (y) is a formula satisfying conditions P1–P3 from
section 18.7. If T derives ProvT (⌜A⌝) → A, then in fact T derives A.

Put differently, if T ⊬ A, then T ⊬ ProvT (⌜A⌝) → A. This
result is known as Löb’s theorem.

The heuristic for the proof of Löb’s theorem is a clever proof
that Santa Claus exists. (If you don’t like that conclusion, you
are free to substitute any other conclusion you would like.) Here
it is:

1. Let X be the sentence, “If X is true, then Santa Claus ex-
ists.”

2. Suppose X is true.

3. Then what it says holds; i.e., we have: if X is true, then
Santa Claus exists.

4. Since we are assuming X is true, we can conclude that
Santa Claus exists, by modus ponens from (2) and (3).

5. We have succeeded in deriving (4), “Santa Claus exists,”
from the assumption (2), “X is true.” By conditional proof,
we have shown: “If X is true, then Santa Claus exists.”

6. But this is just the sentence X . So we have shown that X is
true.

7. But then, by the argument (2)–(4) above, Santa Claus ex-
ists.

A formalization of this idea, replacing “is true” with “is deriv-
able,” and “Santa Claus exists” with A, yields the proof of Löb’s
theorem. The trick is to apply the fixed-point lemma to the for-
mula ProvT (y) → A. The fixed point of that corresponds to the
sentence X in the preceding sketch.

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 387

Proof of Theorem 18.10. Suppose A is a sentence such that T de-
rives ProvT (⌜A⌝) → A. Let B (y) be the formula ProvT (y) → A,
and use the fixed-point lemma to find a sentence D such that T
derives D ↔ B (⌜D⌝). Then each of the following is derivable in
T:

D ↔ (ProvT (⌜D⌝) → A) (18.14)

D is a fixed point of B (y)
D → (ProvT (⌜D⌝) → A) (18.15)

from eq. (18.14)

ProvT (⌜D → (ProvT (⌜D⌝) → A)⌝) (18.16)

from eq. (18.15) by condition P1

ProvT (⌜D⌝) → ProvT (⌜ProvT (⌜D⌝) → A⌝) (18.17)

from eq. (18.16) using condition P2

ProvT (⌜D⌝) → (ProvT (⌜ProvT (⌜D⌝)⌝) → ProvT (⌜A⌝))
(18.18)

from eq. (18.17) using P2 again

ProvT (⌜D⌝) → ProvT (⌜ProvT (⌜D⌝)⌝) (18.19)

by derivability condition P3

ProvT (⌜D⌝) → ProvT (⌜A⌝) (18.20)

from eq. (18.18) and eq. (18.19)

ProvT (⌜A⌝) → A (18.21)

by assumption of the theorem

ProvT (⌜D⌝) → A (18.22)

from eq. (18.20) and eq. (18.21)

(ProvT (⌜D⌝) → A) →D (18.23)

from eq. (18.14)

D (18.24)

from eq. (18.22) and eq. (18.23)

ProvT (⌜D⌝) (18.25)

from eq. (18.24) by condition P1

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 388

A from eq. (18.21) and eq. (18.25) □

With Löb’s theorem in hand, there is a short proof of the sec-
ond incompleteness theorem (for theories having a derivability
predicate satisfying conditions P1–P3): if T ⊢ ProvT (⌜⊥⌝) → ⊥,
then T ⊢ ⊥. If T is consistent, T ⊬ ⊥. So, T ⊬ ProvT (⌜⊥⌝) → ⊥,
i.e., T ⊬ ConT. We can also apply it to show that H , the fixed
point of ProvT (x), is derivable. For since

T ⊢ ProvT (⌜H ⌝) ↔H

in particular

T ⊢ ProvT (⌜H ⌝) →H

and so by Löb’s theorem, T ⊢ H .

18.9 The Undefinability of Truth

The notion of definability depends on having a formal semantics
for the language of arithmetic. We have described a set of formu-
las and sentences in the language of arithmetic. The “intended
interpretation” is to read such sentences as making assertions
about the natural numbers, and such an assertion can be true or
false. Let N be the structure with domain N and the standard in-
terpretation for the symbols in the language of arithmetic. Then
N ⊨ A means “A is true in the standard interpretation.”

Definition 18.11. A relation R (x1, . . . ,xk) of natural numbers
is definable in N if and only if there is a formula A(x1, . . . ,xk)
in the language of arithmetic such that for every n1, . . . ,nk ,
R (n1, . . . ,nk) if and only if N ⊨ A(n1, . . . ,nk).

Put differently, a relation is definable in N if and only if it
is representable in the theory TA, where TA = {A : N ⊨ A} is
the set of true sentences of arithmetic. (If this is not immediately
clear to you, you should go back and check the definitions and
convince yourself that this is the case.)

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 389

Lemma 18.12. Every computable relation is definable in N.

Proof. It is easy to check that the formula representing a relation
in Q defines the same relation in N. □

Now one can ask, is the converse also true? That is, is ev-
ery relation definable in N computable? The answer is no. For
example:

Lemma 18.13. The halting relation is definable in N.

Proof. Let H be the halting relation, i.e.,

H = {⟨e ,x⟩ : ∃s T (e ,x ,s)}.

Let DT define T in N. Then

H = {⟨e ,x⟩ : N ⊨ ∃s DT (e ,x ,s)},

so ∃s DT (z ,x ,s) defines H in N. □

What about TA itself? Is it definable in arithmetic? That is:
is the set { #A# : N ⊨ A} definable in arithmetic? Tarski’s theorem
answers this in the negative.

Theorem 18.14. The set of true sentences of arithmetic is not defin-
able in arithmetic.

Proof. Suppose D (x) defined it, i.e., N ⊨ A iff N ⊨ D (⌜A⌝). By
the fixed-point lemma, there is a formula A such that Q ⊢ A↔
¬D (⌜A⌝), and hence N ⊨ A ↔ ¬D (⌜A⌝). But then N ⊨ A if
and only if N ⊨ ¬D (⌜A⌝), which contradicts the fact that D (y) is
supposed to define the set of true statements of arithmetic. □

Tarski applied this analysis to a more general philosophical
notion of truth. Given any language L, Tarski argued that an
adequate notion of truth for L would have to satisfy, for each
sentence X ,

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 390

‘X ’ is true if and only if X .

Tarski’s oft-quoted example, for English, is the sentence

‘Snow is white’ is true if and only if snow is white.

However, for any language strong enough to represent the diago-
nal function, and any linguistic predicate T (x), we can construct
a sentence X satisfying “X if and only if not T (‘X ’).” Given that
we do not want a truth predicate to declare some sentences to be
both true and false, Tarski concluded that one cannot specify a
truth predicate for all sentences in a language without, somehow,
stepping outside the bounds of the language. In other words, a
the truth predicate for a language cannot be defined in the lan-
guage itself.

18.10 Tarski’s Theorem and Löb’s
Theorem

Tarski’s Theorem shows that there’s a gap between the notions
of “sentence provable in the theory PA” (focusing on PA as the best
theory of arithmetic we have and that of ‘sentence true in N ,
the standard structure of natural numbers’. The former notion is
definable in LA, and the latter is not definable. Remember, ‘true in
N ’ is really the same as ‘provable in TA’, so the difference, if you
want to put it this way, is between these two notions of provable.

Tarski’s paper “Truth and proof” (Tarski, 1969) makes the fol-
lowing interesting remarks, which emphasize this gap, but which
put an optimistic gloss on it:

Nothing is detracted from the significance of this
result [these results] by the fact that its philosophical
implications are essentially negative in character. The
result shows indeed that in no domain of mathematics is
the notion of provability a perfect substitute for the notion

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 391

of truth. The belief that formal proof can serve as an ade-
quate instrument for establishing truth of all mathemati-
cal statements has proved to be unfounded. The original
triumph of formal methods has been followed by a
serious setback.

Whatever can he said to conclude this discussion
is bound to be an anticlimax. The notion of truth for
formalized theories can now be introduced by means
of a precise and adequate definition. It can therefore
be used without any restrictions and reservations in
metalogical discussion. It has actually become a ba-
sic metalogical notion involved in important prob-
lems and results. On the other hand, the notion
of proof has not lost its significance either. Proof is
still the only method used to ascertain the truth of sen-
tences within any specific mathematical theory. We are
now aware of the fact, however, that there are sentences
formulated in the language of the theory which are true
but not provable, and we cannot discount the possibility
that some such sentences occur among those in which we
are interested and which we attempt to prove. Hence in
some situations we may wish to explore the possibil-
ity of widening the set of provable sentences. To this
end we enrich the given theory by including new sen-
tences in its axiom system or by providing it with new
rules of proof. In doing so we use the notion of truth
as a guide; for we do not wish to add a new axiom
or a new rule of proof if we have reason to believe
that the new axiom is not a true sentence, or that
the new rule of proof when applied to true sentences
may yield a false sentence. The process of extending
a theory may of course be repeated arbitrarily many
times. The notion of a true sentence functions thus as
an ideal limit which can never be reached but which
we try to approximate by gradually widening the set
of provable sentences. (It seems likely, although for

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 392

different reasons, that the notion of truth plays an
analogous role in the realm of empirical knowledge.)
There is no conflict between the notions of truth and
proof in the development of mathematics; the two no-
tions are not at war but live in peaceful coexistence.
(Tarski, 1969, p. 77, emphasis added).

What Tarski brings out here is the gap between truth and proof,
and the fact that there must be, in effect, a dialectical relationship
between the two, perhaps more than what he calls here ‘peaceful
coexistence’. This gap was dramatically emphasised by Gödel,
in a lecture in 1951, in a comment he made about the Second In-
completeness Theorem, a comment which supports Tarski’s point
that we should use “truth as a guide”:

It is this [the second] theorem which makes the incom-
pletability of mathematics particularly evident. For,
it makes it impossible that someone should set up a certain
well-defined system of axioms and rules and consistently
make the following assertion about it: All of these axioms
and rules I perceive (with mathematical certitude) to be cor-
rect, and moreover I believe that they contain all of mathe-
matics. If someone makes such a statement he contra-
dicts himself.2 For if he perceives the axioms under
consideration to be correct, he also perceives (with
the same certainty) that they are consistent. Hence
he has a mathematical insight not derivable from his
axioms. However, one has to be careful in order to
understand clearly the meaning of this state of af-
fairs. Does it mean that no well-defined system of cor-
rect axioms can contain all of mathematics proper?
It does, if by mathematics proper is understood the
system of all true mathematical propositions; it does

2[Gödel’s footnote:] If he only says “I believe I shall be able to perceive one
after the other to be true” (where their number is supposed to be infinite), he
does not contradict himself.

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 393

not, however, if one understands by it the system of
all demonstrable mathematical propositions. (Gödel,
1995, p. 309)

The juxtaposition of Tarski’s Theorem and the Gödel results
show us that the gap between truth and provability is large; what
Löb’s Theorem does is emphasise how large that gap really is, and
in particular how unlike the notion of truth the notion of proof
is. Above all it shows that proof can’t really act as a surrogate for
truth, that provability can’t be just a form of “supertruth”, like
logical truth or necessary truth.

Let us show how Löb’s Theorem brings out the difference.
First, if we proceeded with truth in much the same way as we

proceed in the prove of Löb’s Theorem we would get something
quite absurd, a proof of the existence of Santa Claus. Note the
fact that we have “Santa Claus exists” here plays no role whatso-
ever. It could be “The Dark Lord exists”, or any one of your
favourite nonsense claims, e.g., “The Moon is made of green
cheese”. We presented a version of this argument in the text-
book. Here is the same argument given by George Boolos in his
book The Logic of Provability:

Let Sam be the sentence “if Sam is true, SC” [where
“SC” abbreviates the sentence “Santa Claus exists”].
Assume that Sam is true; then “if Sam is true, SC”
is true; thus if Sam is true, SC; and so SC by modus
ponens. Thus we have shown that SC on the assump-
tion that Sam is true and have therefore shown out-
right that if Sam is true, SC. But then “If Sam is true,
SC” is true, i.e., Sam is true, and by modus ponens
again, SC. (Boolos, 1993, p. 56)

To reiterate, any statement can be proved this way. What this
means is that we can easily get a contradiction, which means that
we must be operating with inconsistent assumptions!But which
inconsistent assumptions? In fact, the argument above is just an

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 394

elaborate version of the Liar Paradox, and we are in fact operat-
ing with the same inconsistent assumption as is behind that.

We can show this as follows. If you look carefully at the argu-
ment Boolos presents, you will notice that several times we make
use of the principle:

“X ” is true iff X (T)

which we saw earlier illustrated through the particular instance
“ ‘Snow is white’ is true iff snow is white”. We use the principle
here in the shift (left-to-right) from “‘If Sam is true, SC’ is true”
to “If Sam is true, SC”. Then later we have the shift (right-to-
left here) from “If Sam is true, SC” to “‘If Sam is true, SC’ is
true”. The principle (T) (often referred to as “convention (T)”)
is the basic principle that a correct truth-definition has to sat-
isfy. Moreover, it is the principle which in English (taken as the
meta-language for discussion of English) allows us to deduce a
contradiction from “This sentence is false”, i.e., the statement
which gives us the Liar Paradox.

Let’s now go back to Tarski’s Theorem in the form that we
proved it, i.e., showing that no 1-place predicate of the language
can define the set of Gödel-numbers of sentences true in the stan-
dard model. Assume that there were such a predicate D (x).
We would have that n is the Gödel number of sentence A (so
n = #A#) true in the standard model if, and only if, N ⊨ D (⌜A⌝).
From this follows N ⊨ A iff N ⊨ D (⌜A⌝). But this means that
N ⊨ A ↔ D (⌜A⌝). And remember that saying “N ⊨ X ” is the
same as saying “TA ⊢ X ’. Put all this together and we have:

TA ⊢ A↔D (⌜A⌝), (TTA)

which, if we read D (x) as “is true”, really says that TA can pro-
duce the principle eq. (T) above. We often say that principles like
eq. (TTA) are “truth-definitions”, holding as they do for all sen-
tences of the language concerned. But this immediately gives rise
here to a contradiction, for we can apply the Diagonal Lemma to
¬D (x) and get a sentence L such that

TA ⊢ L↔¬D (⌜L⌝).

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 395

But eq. (TTA) above instantiated for L will give us:

TA ⊢ L↔D (⌜L⌝),

thus contradiction.
Let’s come back to the difference between truth and prov-

ability. First, as we’ve seen, what the principle eq. (T) allows is
switching as we please between “’X ’ is true” and “X ”. But the
reasoning presented in the proof of Löb’s Theorem “mimics” the
Santa Claus argument when “is true” replaced by “is provable”,
and where the requisite switching between “’X ’ is provable” and
“X ” is now provided by the derivability conditions. We do not,
of course, get a contradiction.

Second, we can use Löb’s Theorem to give us Tarski’s Theo-
rem in the form that we cannot have a truth-definition, i.e., that
“true in N” cannot be definable. The argument goes roughly like
this:

Suppose Tr(x) is a truth-predicate for an appropriate theory
T, and the truth-definition

T ⊢ A↔ Tr(⌜A⌝) (Tr)

holds. Then it’s clear using this that all of the derivability con-
ditions hold for Tr(x), which means that we must have a Löb
Theorem for Tr(x). (Remember, in the statement of Löb’s The-
orem, all we really need to know about the provability predicate
is that the derivability conditions hold for it. We know nothing
else about the “inner workings” of the predicate. Thus, if there
were a truth-predicate, it would satisfy the conditions of Löb’s
Theorem.) Now take any sentence A. Then by (Tr) we have
T ⊢ Tr(⌜A⌝) ↔ A, so in particular T ⊢ Tr(⌜A⌝) → A. By Löb’s
Theorem applied to Tr(x), this means that we have T ⊢ A. So
any sentence would be provable in T if T were equipped with
a truth-definition, which of course would make T inconsistent.
So a sufficient condition for a sentence A to be provable is that
T ⊢ Tr(⌜A⌝)→A, but (Tr) says that that must be the case for any

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 396

sentence. Hence, using Löb’s Theorem, we’ve shown that if T is
consistent, there can’t be a truth-definition for T.

In short, if we could get Löb for truth, we would get contra-
diction, but Löb for provability does not give us contradiction. But
if go further into the comparison, we can see how wide the gap
is.

Boolos has some comments on the remarkable nature of the
Löb Theorem which touch on what we’ve just observed, and
which emphasize just how big the gap really is. In reading these
comments, first think of “Prov(x)” as a natural replacement for
“truth(x)”; that will highlight the surprise. Boolos comments as
follows:

Löb’s theorem is utterly astonishing for at least
five reasons. In the first place, it is often hard to un-
derstand how vast the mathematical gap is between
truth and provability. And to one who lacks that un-
derstanding and does not distinguish between truth
and provability, Prov(⌜S ⌝)→S , which the hypothesis
of Löb’s theorem asserts to be provable, might ap-
pear to be trivially true in all cases, whether S is true
or false, provable or unprovable. But if S is false, S
had better not be provable. Thus it would seem that
S ought not always to be provable provided merely
that (the possibly trivial-seeming) Prov(⌜S ⌝) → S is
provable.

Secondly, Prov seems here to be working like nega-
tion. After all, if ¬S → S is provable, then so is S ;
proving S by proving ¬S → S is called reductio ad
absurdum (or, sometimes, the law of Clavius). More-
over, inferring S solely on the ground that (S → S)
is demonstrable is known as begging the question, or
reasoning in a circle. To one who conflates truth and
provability, it may then seem that Löb’s theorem as-
serts that begging the question is an admissible form
of reasoning in PA.

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 397

Thirdly, one might have thought that at least on
occasion, PA would claim to be sound with regard to
an unprovable sentence S , i.e., claim that if it proves
S , then S holds. But Löb’s theorem tells us that it
never does so: PA makes the claim Prov(⌜S ⌝)→S that
it is sound with regard to S only when it obviously
must, when the consequent S is actually provable.
As Rohit Parikh once put it, “PA couldn’t be more
modest about its own veracity”.

Fourthly, one might very naturally suppose that
provability is a kind of necessity, and therefore, just as
□(□p→p) always expresses a truth if the box is inter-
preted as “it is necessary that” — for then □(□p→ p)
says that it is necessarily true that if a statement is
necessarily true, it is true — Prov(⌜Prov(⌜S ⌝) → S ⌝)
would also always be true or at least true in some
cases in which S is false and not true only in the
rather exceptional cases in which S is actually prov-
able.

Finally, it seems wholly bizarre that the statement
that if S is provable, then S is true is not itself prov-
able, in general. For isn’t it perfectly obvious, for any
S , that S is true if provable? Why are we bothering
with PA if its theorems are false? And how could
any such (apparently) obvious truth not be provable?
(Boolos, 1993, pp. 54–55)3

Let’s elaborate a little on some of these points.
The first point. Take an example like “2 + 2 = 5”. We

certainly can’t have it that PA can prove 2 + 2 = 5, which
means (following Löb’s Theorem) that it can’t be the case that
PA ⊢ Prov(⌜2 + 2 = 5⌝) → 2 + 2 = 5! In other words, PA can’t
tell us that whatever it proves is true, or that the notion of proof
it recognizes is a good one! And haven’t we designed it so that

3We’ve replaced Boolos’ use of Gödel’s Bew with our ‘Prov’.

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 398

the formal provability predicate “Prov(x)” (for PA) matches “is
provable in PA”?

The third point extends this. Suppose we take something like
the Goldbach Conjecture (GC) or the Twin Prime Conjecture
(TPC), propositions that we don’t know to be provable in PA.
We would hope that PA would be able to prove of such propo-
sitions, at least some of the time, that Prov(⌜GC⌝) → GC or
Prov(⌜TPC⌝) → TPC, i.e., that it knows a PA proof of TPC would
show that TPC is correct. But Löb’s Theorem tells us it can’t do
that, or rather that it can only do that if there is already a PA
proof of GC or TPC !

Think about how different this is from truth. For a truth-
definition (if we have one), it has got to be the case that
Tr(⌜A⌝) ↔ A holds regardless of whether A is true, false, con-
tradictory or ridiculous: and therefore Tr(⌜A⌝) → A holds also,
regardless of what A asserts. In other words (switching to En-
glish) “‘The moon is made of green cheese’ is true ⇔ [or even
just ⇒] the moon is made of green cheese”, even though the sen-
tence involved here is not true, and is even faintly ludicrous, one
we’re only prepared to contemplate by reason of it’s syntactic for-
mulation. But Löb’s Theorem tells us that “T ⊢ S ” cannot be
a surrogate for truth in this sense, for we could then, it seems,
prove that the moon is made of green cheese (or any other kind of
cheese, or marshmallow or sphagnum moss . . .), or some arith-
metic equivalents. That shows us (Tarski’s Theorem) that we
can’t have a truth-definition for PA where (TPA) is provable in
PA. But if “provable” is a surrogate for “is true”, then we we
would certainly expect PA to be able to prove “Prov(⌜A⌝) → A”
in general. This is stressed in Point 5.

Lastly, consider the second point. As Boolos points out, sup-
pose we think that “Prov(⌜S ⌝)” is really some sort of strong
affirmation of S (“being true and more”). In this case, then
“Prov(⌜S ⌝) → S ” would be something like “S → S ” (or at least
this should follow from “Prov(⌜S ⌝) → S ”). But then using this
as a justification for “T ⊢ S ” is really like arguing by begging the
question! However, if “Prov(⌜S ⌝) → S ” really acts as a genuine

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 399

justification for S , then it looks as if “Prov(⌜S ⌝)” is behaving, not
like an affirmation at all, but really rather like like a negation, as
in the proof of “S ” given by proving “¬S → S ”! So it seems as if
it can’t be the case that “Prov(⌜S ⌝)” is like a strong affirmation
of S (“being true and more”) at all, and is actually more like a
denial of S .

Summary

The first incompleteness theorem states that for any consistent,
axiomatizable theory T that extends Q , there is a sentence GT

such that T ⊬ GT. GT is constructed in such a way that GT, in
a roundabout way, says “T does not prove GT.” Since T does
not, in fact, prove it, what it says is true. If N ⊨ T, then T
does not prove any false claims, so T ⊬ ¬GT. Such a sentence
is independent or undecidable in T. Gödel’s original proof
established that GT is independent on the assumption that T is
𝜔-consistent. Rosser improved the result by finding a different
sentence RT with is neither provable nor refutable in T as long
as T is simply consistent.

The construction of GT is effective: given an axiomatization
of T we could, in principle, write down GT. The “roundabout
way” in whichGT states its own unprovability, is a special case of
a general result, the fixed-point lemma. It states that for any for-
mula B (y) in LA, there is a sentenceA such that Q ⊢ A↔B (⌜A⌝).
(Here, ⌜A⌝ is the standard numeral for the Gödel number of A,
i.e., #A#.) To obtain GT, we use the formula ¬ProvT(y) as B (y).
We get ProvT as the culmination of our previous efforts: We know
that PrfT(n,m), which holds if n is the Gödel number of a deriva-
tion of the sentence with Gödel number m from T, is primitive
recursive. We also know that Q represents all primitive recur-
sive relations, and so there is some formula PrfT(x ,y) that repre-
sents PrfT in Q . The provability predicate for T is ProvT(y)
is ∃x PrfT(x ,y) then expresses provability in T. (It doesn’t rep-
resent it though: if T ⊢ A, then Q ⊢ ProvT(⌜A⌝); but if T ⊬ A,

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 400

then Q does not in general prove ¬ProvT(⌜A⌝).)
The second incompleteness theorem establishes that the

sentence ConT that expresses that T is consistent, i.e., T also
does not prove ¬ProvT(⌜⊥⌝). The proof of the second incom-
pleteness theorem requires some additional conditions on T, the
provability conditions. PA satisfies them, although Q does not.
Theories that satisfy the provability conditions also satisfy Löb’s
theorem: T ⊢ ProvT(⌜A⌝) → A iff T ⊢ A.

The fixed-point theorem also has another important conse-
quence. We say a relation R (n) is definable in LA if there is
a formula AR (x) such that N ⊨ AR (n) iff R (n) holds. For in-
stance, ProvT is definable, since ProvT defines it. The property n
has iff it is the Gödel number of a sentence true in N, however, is
not definable. This is Tarski’s theorem about the undefinability
of truth.

Problems

Problem 18.1. A formula A(x) is a truth definition if Q ⊢ B ↔
A(⌜B⌝) for all sentences B . Show that no formula is a truth
definition by using the fixed-point lemma.

Problem 18.2. Every 𝜔-consistent theory is consistent. Show
that the converse does not hold, i.e., that there are consistent
but 𝜔-inconsistent theories. Do this by showing that Q ∪ {¬GQ }
is consistent but 𝜔-inconsistent.

Problem 18.3. Two sets A and B of natural numbers are said to
be computably inseparable if there is no decidable set X such that
A ⊆ X and B ⊆ X (X is the complement, N \ X , of X). Let T
be a consistent axiomatizable extension of Q . Suppose A is the
set of Gödel numbers of sentences provable in T and B the set of
Gödel numbers of sentences refutable in T. Prove that A and B
are computably inseparable.

Problem 18.4. Show that PA derives GPA → ConPA.

CHAPTER 18. INCOMPLETENESS AND PROVABILITY 401

Problem 18.5. Let T be a computably axiomatized theory, and
let ProvT be a derivability predicate for T. Consider the following
four statements:

1. If T ⊢ A, then T ⊢ ProvT (⌜A⌝).

2. T ⊢ A→ ProvT (⌜A⌝).

3. If T ⊢ ProvT (⌜A⌝), then T ⊢ A.

4. T ⊢ ProvT (⌜A⌝) → A

Under what conditions are each of these statements true?

Problem 18.6. Show that Q (n) ⇔ n ∈ { #A# : Q ⊢ A} is defin-
able in arithmetic.

CHAPTER 19

Models of
Arithmetic
19.1 Introduction

The standard model of arithmetic is the structure N with |N | = N
in which 0, ′, +, ×, and < are interpreted as you would expect.
That is, 0 is 0, ′ is the successor function, + is interpeted as
addition and × as multiplication of the numbers inN. Specifically,

0N = 0

′N (n) = n + 1

+N (n,m) = n +m
×N (n,m) = nm

Of course, there are structures for LA that have domains other
than N. For instance, we can take M with domain |M | = {a}∗
(the finite sequences of the single symbol a, i.e., ∅, a, aa, aaa,
. . .), and interpretations

0M = ∅
′M (s) = s ⌢ a

+M (n,m) = an+m

402

CHAPTER 19. MODELS OF ARITHMETIC 403

×M (n,m) = anm

These two structures are “essentially the same” in the sense that
the only difference is the elements of the domains but not how
the elements of the domains are related among each other by
the interpretation functions. We say that the two structures are
isomorphic.

It is an easy consequence of the compactness theorem that
any theory true in N also has models that are not isomorphic
to N. Such structures are called non-standard. The interesting
thing about them is that while the elements of a standard model
(i.e., N, but also all structures isomorphic to it) are exhausted by
the values of the standard numerals n, i.e.,

|N | = {ValN (n) : n ∈ N}

that isn’t the case in non-standard models: if M is non-standard,
then there is at least one x ∈ |M | such that x ≠ ValM (n) for all n.

These non-standard elements are pretty neat: they are “in-
finite natural numbers.” But their existence also explains, in a
sense, the incompleteness phenomena. Consider an example,
e.g., the consistency statement for Peano arithmetic, ConPA, i.e.,
¬∃x PrfPA(x ,⌜⊥⌝). Since PA neither proves ConPA nor ¬ConPA,
either can be consistently added to PA. Since PA is consistent,
N ⊨ ConPA, and consequently N ⊭ ¬ConPA. So N is not a model
of PA∪{¬ConPA}, and all its models must be nonstandard. Mod-
els of PA ∪ {¬ConPA} must contain some element that serves as
the witness that makes ∃x PrfPA(⌜⊥⌝) true, i.e., a Gödel number
of a derivation of a contradiction from PA. Such an element can’t
be standard—since PA ⊢ ¬PrfPA(n,⌜⊥⌝) for every n.

19.2 Reducts and Expansions

Often it is useful or necessary to compare languages which have
symbols in common, as well as structures for these languages.
The most common case is when all the symbols in a language L

CHAPTER 19. MODELS OF ARITHMETIC 404

are also part of a language L′, i.e., L ⊆ L′. An L-structure M
can then always be expanded to an L′-structure by adding inter-
pretations of the additional symbols while leaving the interpre-
tations of the common symbols the same. On the other hand,
from an L′-structure M′ we can obtain an L-structure simply by
“forgetting” the interpretations of the symbols that do not occur
in L.

Definition 19.1. Suppose L ⊆ L′, M is an L-structure and M′

is an L′-structure. M is the reduct of M′ to L, and M′ is an
expansion of M to L′ iff

1. |M | = |M′ |

2. For every constant symbol c ∈ L, cM = cM′
.

3. For every function symbol f ∈ L, f M = f M′
.

4. For every predicate symbol P ∈ L, PM = PM′
.

Proposition 19.2. If an L-structure M is a reduct of an L′-
structure M′, then for all L-sentences A,

M ⊨ A iff M′ ⊨ A.

Proof. Exercise. □

Definition 19.3. When we have an L-structure M, and L′ =

L∪ {P } is the expansion of L obtained by adding a single n-
place predicate symbol P , and R ⊆ |M |n is an n-place relation,
then we write (M,R) for the expansion M′ of M with PM′

= R.

19.3 Isomorphic Structures

First-order structures can be alike in one of two ways. One way
in which the can be alike is that they make the same sentences

CHAPTER 19. MODELS OF ARITHMETIC 405

true. We call such structures elementarily equivalent. But structures
can be very different and still make the same sentences true—for
instance, one can be countable and the other not. This is because
there are lots of features of a structure that cannot be expressed
in first-order languages, either because the language is not rich
enough, or because of fundamental limitations of first-order logic
such as the Löwenheim-Skolem theorem. So another, stricter,
aspect in which structures can be alike is if they are fundamentally
the same, in the sense that they only differ in the objects that make
them up, but not in their structural features. A way of making
this precise is by the notion of an isomorphism.

Definition 19.4. Given two structures M and M′ for the same
language L, we say that M is elementarily equivalent to M′, written
M ≡ M′, if and only if for every sentence A of L, M ⊨ A iff
M′ ⊨ A.

Definition 19.5. Given two structures M and M′ for the same
language L, we say that M is isomorphic to M′, written M ≃ M′,
if and only if there is a function h : |M | → |M′ | such that:

1. h is injective: if h (x) = h (y) then x = y ;

2. h is surjective: for every y ∈ |M′ | there is x ∈ |M | such that
h (x) = y ;

3. for every constant symbol c : h (cM) = cM′
;

4. for every n-place predicate symbol P :

⟨a1, . . . ,an⟩ ∈ PM iff ⟨h (a1), . . . ,h (an)⟩ ∈ PM′
;

5. for every n-place function symbol f :

h (f M (a1, . . . ,an)) = f M′ (h (a1), . . . ,h (an)).

CHAPTER 19. MODELS OF ARITHMETIC 406

Theorem 19.6. If M ≃ M′ then M ≡ M′.

Proof. Let h be an isomorphism of M onto M′. For any assign-
ment s , h ◦ s is the composition of h and s , i.e., the assignment in
M′ such that (h ◦ s) (x) = h (s (x)). By induction on t and A one
can prove the stronger claims:

a. h (ValMs (t)) = ValM
′

h◦s (t).

b. M,s ⊨ A iff M′,h ◦ s ⊨ A.

The first is proved by induction on the complexity of t .

1. If t ≡ c , then ValMs (c) = cM and ValM
′

h◦s (c) = cM′
. Thus,

h (ValMs (t)) = h (cM) = cM′
(by (3) of Definition 19.5) =

ValM
′

h◦s (t).

2. If t ≡ x , then ValMs (x) = s (x) and ValM
′

h◦s (x) = h (s (x)).
Thus, h (ValMs (x)) = h (s (x)) = ValM

′

h◦s (x).

3. If t ≡ f (t1, . . . ,tn), then

ValMs (t) = f M (ValMs (t1), . . . ,ValMs (tn)) and

ValM
′

h◦s (t) = f
M (ValM

′

h◦s (t1), . . . ,ValM
′

h◦s (tn)).

The induction hypothesis is that for each i , h (ValMs (ti)) =
ValM

′

h◦s (ti). So,

h (ValMs (t)) = h (f M (ValMs (t1), . . . ,ValMs (tn))
= h (f M (ValM

′

h◦s (t1), . . . ,ValM
′

h◦s (tn)) (19.1)

= f M′ (ValM
′

h◦s (t1), . . . ,ValM
′

h◦s (tn)) (19.2)

= ValM
′

h◦s (t)

Here, eq. (19.1) follows by induction hypothesis and
eq. (19.2) by (5) of Definition 19.5.

Part (b) is left as an exercise.
If A is a sentence, the assignments s and h ◦ s are irrelevant,

and we have M ⊨ A iff M′ ⊨ A. □

CHAPTER 19. MODELS OF ARITHMETIC 407

Definition 19.7. An automorphism of a structure 𝔐 is an isomor-
phism of 𝔐 onto itself.

19.4 The Theory of a Structure

Every structure M makes some sentences true, and some false.
The set of all the sentences it makes true is called its theory. That
set is in fact a theory, since anything it entails must be true in all
its models, including M.

Definition 19.8. Given a structure M, the theory of M is the set
Th(M) of sentences that are true in M, i.e., Th(M) = {A : M ⊨
A}.

We also use the term “theory” informally to refer to sets of
sentences having an intended interpretation, whether deductively
closed or not.

Proposition 19.9. For any M, Th(M) is complete.

Proof. For any sentence A either M ⊨ A or M ⊨ ¬A, so either
A ∈ Th(M) or ¬A ∈ Th(M). □

Proposition 19.10. If N |= A for every A ∈ Th(M), then M ≡ N.

Proof. Since N ⊨ A for all A ∈ Th(M), Th(M) ⊆ Th(N). If
N ⊨ A, then N ⊭ ¬A, so ¬A ∉ Th(M). Since Th(M) is complete,
A ∈ Th(M). So, Th(N) ⊆ Th(M), and we have M ≡ N. □

Remark 1. Consider R = ⟨R,<⟩, the structure whose domain is
the set R of the real numbers, in the language comprising only a
2-place predicate symbol interpreted as the < relation over the re-
als. Clearly R is uncountable; however, since Th(R) is obviously
consistent, by the Löwenheim-Skolem theorem it has a countable
model, say S, and by Proposition 19.10, R ≡ S. Moreover, since
R and S are not isomorphic, this shows that the converse of The-
orem 19.6 fails in general.

CHAPTER 19. MODELS OF ARITHMETIC 408

19.5 Standard Models of Arithmetic

The language of arithmetic LA is obviously intended to be about
numbers, specifically, about natural numbers. So, “the” standard
model N is special: it is the model we want to talk about. But
in logic, we are often just interested in structural properties, and
any two structures that are isomorphic share those. So we can be
a bit more liberal, and consider any structure that is isomorphic
to N “standard.”

Definition 19.11. A structure for LA is standard if it is isomor-
phic to N.

Proposition 19.12. If a structure M is standard, then its domain is
the set of values of the standard numerals, i.e.,

|M | = {ValM (n) : n ∈ N}

Proof. Clearly, every ValM (n) ∈ |M |. We just have to show that ev-
ery x ∈ |M | is equal to ValM (n) for some n. Since M is standard,
it is isomorphic to N. Suppose g : N → |M | is an isomorphism.
Then g (n) = g (ValN (n)) = ValM (n). But for every x ∈ |M |, there
is an n ∈ N such that g (n) = x , since g is surjective. □

If a structure M for LA is standard, the elements of its do-
main can all be named by the standard numerals 0, 1, 2, . . . , i.e.,
the terms 0, 0′, 0′′, etc. Of course, this does not mean that the
elements of |M | are the numbers, just that we can pick them out
the same way we can pick out the numbers in |N |.

Proposition 19.13. If M ⊨ Q , and |M | = {ValM (n) : n ∈ N},
then M is standard.

Proof. We have to show that M is isomorphic to N. Consider the
function g : N→ |M | defined by g (n) = ValM (n). By the hypoth-
esis, g is surjective. It is also injective: Q ⊢ n ≠ m whenever

CHAPTER 19. MODELS OF ARITHMETIC 409

n ≠ m. Thus, since M ⊨ Q , M ⊨ n ≠ m, whenever n ≠ m. Thus,
if n ≠ m, then ValM (n) ≠ ValM (m), i.e., g (n) ≠ g (m).

We also have to verify that g is an isomorphism.

1. We have g (0N) = g (0) since, 0N = 0. By definition of g ,
g (0) = ValM (0). But 0 is just 0, and the value of a term
which happens to be a constant symbol is given by what the
structure assigns to that constant symbol, i.e., ValM (0) =

0M. So we have g (0N) = 0M as required.

2. g (′N (n)) = g (n + 1), since ′ in N is the successor function
on N. Then, g (n + 1) = ValM (n + 1) by definition of g . But
n + 1 is the same term as n′, so ValM (n + 1) = ValM (n′). By
the definition of the value function, this is = ′M (ValM (n)).
Since ValM (n) = g (n) we get g (′N (n)) = ′M (g (n)).

3. g (+N (n,m)) = g (n + m), since + in N is the addition
function on N. Then, g (n + m) = ValM (n +m) by defini-
tion of g . But Q ⊢ n +m = (n + m), so ValM (n +m) =

ValM (n + m). By the definition of the value function, this
is = +M (ValM (n),ValM (m)). Since ValM (n) = g (n) and
ValM (m) = g (m), we get g (+N (n,m)) = +M (g (n), g (m)).

4. g (×N (n,m)) = ×M (g (n), g (m)): Exercise.

5. ⟨n,m⟩ ∈ <N iff n < m. If n < m, then Q ⊢ n < m, and
also M ⊨ n < m. Thus ⟨ValM (n),ValM (m)⟩ ∈ <M, i.e.,
⟨g (n), g (m)⟩ ∈ <M. If n ≮ m, then Q ⊢ ¬n < m, and
consequently M ⊭ n < m. Thus, as before, ⟨g (n), g (m)⟩ ∉
<M. Together, we get: ⟨n,m⟩ ∈ <N iff ⟨g (n), g (m)⟩ ∈ <M.
□

The function g is the most obvious way of defining a mapping
from N to the domain of any other structure M for LA, since
every such M contains elements named by 0, 1, 2, etc. So it isn’t
surprising that if M makes at least some basic statements about
the n’s true in the same way that N does, and g is also bijective,

CHAPTER 19. MODELS OF ARITHMETIC 410

then g will turn into an isomorphism. In fact, if |M | contains no
elements other than what the n’s name, it’s the only one.

Proposition 19.14. If M is standard, then g from the proof of Propo-
sition 19.13 is the only isomorphism from N to M.

Proof. Suppose h : N → |M | is an isomorphism between N
and M. We show that g = h by induction on n. If n = 0, then
g (0) = 0M by definition of g . But since h is an isomorphism,
h (0) = h (0N) = 0M, so g (0) = h (0).

Now consider the case for n + 1. We have

g (n + 1) = ValM (n + 1) by definition of g

= ValM (n′) since n + 1 ≡ n′

= ′M (ValM (n)) by definition of ValM (t ′)
= ′M (g (n)) by definition of g

= ′M (h (n)) by induction hypothesis

= h (′N (n)) since h is an isomorphism

= h (n + 1) □

For any countably infinite set M , there’s a bijection between
N and M , so every such set M is potentially the domain of a
standard model M. In fact, once you pick an object z ∈ M and
a suitable function s as 0M and ′M, the interpretations of +, ×,
and < is already fixed. Only functions s : M → M \ {z } that
are both injective and surjective are suitable in a standard model
as ′M. The range of s cannot contain z , since otherwise ∀x 0 ≠ x ′
would be false. That sentence is true in N, and so M also has
to make it true. The function s has to be injective, since the
successor function ′N in N is, and that ′N is injective is expressed
by a sentence true in N. It has to be surjective because otherwise
there would be some x ∈ M \ {z } not in the domain of s , i.e., the
sentence ∀x (x = 0∨∃y y ′ = x) would be false in M—but it is true
in N.

CHAPTER 19. MODELS OF ARITHMETIC 411

19.6 Non-Standard Models

We call a structure for LA standard if it is isomorphic to N. If
a structure isn’t isomorphic to N, it is called non-standard.

Definition 19.15. A structure M for LA is non-standard if it is
not isomorphic to N. The elements x ∈ |M | which are equal to
ValM (n) for some n ∈ N are called standard numbers (of M), and
those not, non-standard numbers.

By Proposition 19.12, any standard structure for LA contains
only standard elements. Consequently, a non-standard structure
must contain at least one non-standard element. In fact, the ex-
istence of a non-standard element guarantees that the structure
is non-standard.

Proposition 19.16. If a structure M for LA contains a non-standard
number, M is non-standard.

Proof. Suppose not, i.e., suppose M standard but contains a non-
standard number x . Let g : N → |M | be an isomorphism. It is
easy to see (by induction on n) that g (ValN (n)) = ValM (n). In
other words, g maps standard numbers of N to standard num-
bers of M. If M contains a non-standard number, g cannot be
surjective, contrary to hypothesis. □

It is easy enough to specify non-standard structures for LA.
For instance, take the structure with domain Z and interpret all
non-logical symbols as usual. Since negative numbers are not
values of n for any n, this structure is non-standard. Of course,
it will not be a model of arithmetic in the sense that it makes
the same sentences true as N. For instance, ∀x x ′ ≠ 0 is false.
However, we can prove that non-standard models of arithmetic
exist easily enough, using the compactness theorem.

CHAPTER 19. MODELS OF ARITHMETIC 412

Proposition 19.17. Let TA = {A : N ⊨ A} be the theory of N. TA
has a countable non-standard model.

Proof. Expand LA by a new constant symbol c and consider the
set of sentences

𝛤 = TA ∪ {c ≠ 0,c ≠ 1,c ≠ 2, . . . }

Any model Mc of 𝛤 would contain an element x = cM which is
non-standard, since x ≠ ValM (n) for all n ∈ N. Also, obviously,
Mc ⊨ TA, since TA ⊆ 𝛤 . If we turn Mc into a structure M for
LA simply by forgetting about c , its domain still contains the non-
standard x , and also M ⊨ TA. The latter is guaranteed since c
does not occur in TA. So, it suffices to show that 𝛤 has a model.

We use the compactness theorem to show that 𝛤 has a model.
If every finite subset of 𝛤 is satisfiable, so is 𝛤 . Consider any finite
subset 𝛤0 ⊆ 𝛤 . 𝛤0 includes some sentences of TA and some of
the form c ≠ n, but only finitely many. Suppose k is the largest
number so that c ≠ k ∈ 𝛤0. Define Nk by expanding N to include
the interpretation cNk = k + 1. Nk ⊨ 𝛤0: if A ∈ TA, Nk ⊨ A since
Nk is just like N in all respects except c , and c does not occur
in A. And Nk ⊨ c ≠ n, since n ≤ k , and ValNk (c) = k + 1. Thus,
every finite subset of 𝛤 is satisfiable. □

19.7 Models of Q

We know that there are non-standard structures that make the
same sentences true as N does, i.e., is a model of TA. Since
N ⊨ Q , any model of TA is also a model of Q . Q is much
weaker than TA, e.g., Q ⊬ ∀x ∀y (x+y) = (y+x). Weaker theories
are easier to satisfy: they have more models. E.g., Q has models
which make ∀x ∀y (x + y) = (y + x) false, but those cannot also
be models of TA, or PA for that matter. Models of Q are also
relatively simple: we can specify them explicitly.

CHAPTER 19. MODELS OF ARITHMETIC 413

Example 19.18. Consider the structure K with domain |K | =
N ∪ {a} and interpretations

0K = 0

′K (x) =
{︄
x + 1 if x ∈ N
a if x = a

+K (x ,y) =
{︄
x + y if x , y ∈ N
a otherwise

×K (x ,y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xy if x , y ∈ N
0 if x = 0 or y = 0

a otherwise

<K = {⟨x ,y⟩ : x ,y ∈ N and x < y} ∪ {⟨x ,a⟩ : x ∈ |K |}

To show that K ⊨ Q we have to verify that all axioms of Q are
true in K. For convenience, let’s write x∗ for ′K (x) (the “succes-
sor” of x in K), x ⊕ y for +K (x ,y) (the “sum” of x and y in K,
x ⊗ y for ×K (x ,y) (the “product” of x and y in K), and x 4 y for
⟨x ,y⟩ ∈ <K. With these abbreviations, we can give the operations
in K more perspicuously as

x x∗

n n + 1
a a

x ⊕ y 0 m a
0 0 m a
n n n +m a
a a a a

x ⊗ y 0 m a
0 0 0 0
n 0 nm a
a 0 a a

We have n 4m iff n < m for n, m ∈ N and x 4 a for all x ∈ |K |.
K ⊨ ∀x ∀y (x ′ = y ′ → x = y) since ∗ is injective. K ⊨ ∀x 0 ≠ x ′

since 0 is not a ∗-successor in K. K ⊨ ∀x (x = 0 ∨ ∃y x = y ′) since
for every n > 0, n = (n − 1)∗, and a = a∗.

K ⊨ ∀x (x + 0) = x since n ⊕ 0 = n + 0 = n, and a ⊕ 0 = a by
definition of ⊕. K ⊨ ∀x ∀y (x + y ′) = (x + y)′ is a bit trickier. If n,
m are both standard, we have:

(n ⊕ m∗) = (n + (m + 1)) = (n +m) + 1 = (n ⊕ m)∗

CHAPTER 19. MODELS OF ARITHMETIC 414

since ⊕ and ∗ agree with + and ′ on standard numbers. Now
suppose x ∈ |K |. Then

(x ⊕ a∗) = (x ⊕ a) = a = a∗ = (x ⊕ a)∗

The remaining case is if y ∈ |K | but x = a. Here we also have to
distinguish cases according to whether y = n is standard or y = b :

(a ⊕ n∗) = (a ⊕ (n + 1)) = a = a∗ = (a ⊕ n)∗

(a ⊕ a∗) = (a ⊕ a) = a = a∗ = (a ⊕ a)∗

This is of course a bit more detailed than needed. For instance,
since a⊕z = a whatever z is, we can immediately conclude a⊕a∗ =
a. The remaining axioms can be verified the same way.

K is thus a model of Q . Its “addition” ⊕ is also commutative.
But there are other sentences true in N but false in K, and vice
versa. For instance, a 4 a, so K ⊨ ∃x x < x and K ⊭ ∀x ¬x < x .
This shows that Q ⊬ ∀x ¬x < x .

Example 19.19. Consider the structure L with domain |L| = N∪
{a,b} and interpretations ′L = ∗, +L = ⊕ given by

x x∗

n n + 1
a a
b b

x ⊕ y m a b
n n +m b a
a a b a
b b b a

Since ∗ is injective, 0 is not in its range, and every x ∈ |L| other
than 0 is, axioms Q1–Q3 are true in L. For any x , x ⊕ 0 = x , so
Q4 is true as well. For Q5, consider x ⊕ y∗ and (x ⊕ y)∗. They
are equal if x and y are both standard, since then ∗ and ⊕ agree
with ′ and +. If x is non-standard, and y is standard, we have
x ⊕ y∗ = x = x∗ = (x ⊕ y)∗. If x and y are both non-standard, we
have four cases:

a ⊕ a∗ = b = b∗ = (a ⊕ a)∗

b ⊕ b∗ = a = a∗ = (b ⊕ b)∗

CHAPTER 19. MODELS OF ARITHMETIC 415

b ⊕ a∗ = b = b∗ = (b ⊕ y)∗

a ⊕ b∗ = a = a∗ = (a ⊕ b)∗

If x is standard, but y is non-standard, we have

n ⊕ a∗ = n ⊕ a = b = b∗ = (n ⊕ a)∗

n ⊕ b∗ = n ⊕ b = a = a∗ = (n ⊕ b)∗

So, L ⊨ Q5. However, a ⊕ 0 ≠ 0 ⊕ a, so L ⊭ ∀x ∀y (x + y) = (y + x).

We’ve explicitly constructed models of Q in which the non-
standard elements live “beyond” the standard elements. In fact,
that much is required by the axioms. A non-standard element x
cannot be 4 0, since Q ⊢ ∀x ¬x < 0 (see Lemma 17.23). Also,
for every n, Q ⊢ ∀x (x < n′ → (x = 0 ∨ x = 1 ∨ · · · ∨ x = n))
(Lemma 17.24), so we can’t have a 4 n for any n > 0.

19.8 Models of PA

Any non-standard model of TA is also one of PA. We know that
non-standard models of TA and hence of PA exist. We also know
that such non-standard models contain non-standard “numbers,”
i.e., elements of the domain that are “beyond” all the standard
“numbers.” But how are they arranged? How many are there?
We’ve seen that models of the weaker theory Q can contain as
few as a single non-standard number. But these simple structures
are not models of PA or TA.

The key to understanding the structure of models of PA or
TA is to see what facts are derivable in these theories. For in-
stance, already PA proves that ∀x x ≠ x ′ and ∀x ∀y (x+y) = (y+x),
so this rules out simple structures (in which these sentences are
false) as models of PA.

Suppose M is a model of PA. Then if PA ⊢ A, M ⊨ A. Let’s
again use z for 0M, ∗ for ′M, ⊕ for +M, ⊗ for ×M, and 4 for <M.
Any sentence A then states some condition about z, ∗, ⊕, ⊗, and

CHAPTER 19. MODELS OF ARITHMETIC 416

4, and if M ⊨ A that condition must be satisfied. For instance,
if M ⊨ Q1, i.e., M ⊨ ∀x ∀y (x ′ = y ′ → x = y), then ∗ must be
injective.

Proposition 19.20. In M, 4 is a linear strict order, i.e., it satisfies:

1. Not x 4 x for any x ∈ |M |.

2. If x 4 y and y 4 z then x 4 z .

3. For any x ≠ y , x 4 y or y 4 x

Proof. PA proves:

1. ∀x ¬x < x

2. ∀x ∀y ∀z ((x < y ∧ y < z) → x < z)

3. ∀x ∀y ((x < y ∨ y < x) ∨ x = y)) □

Proposition 19.21. z is the least element of |M | in the 4-ordering.
For any x, x4x∗, and x∗ is the 4-least element with that property. For
any x, there is a unique y such that y∗ = x. (We call y the “predecessor”
of x in M, and denote it by ∗x.)

Proof. Exercise. □

Proposition 19.22. All standard elements of M are less than (ac-
cording to 4) all non-standard elements.

Proof. We’ll use n as short for ValM (n), a standard element of M.
Already Q proves that, for any n ∈ N, ∀x (x < n′ → (x = 0 ∨ x =

1 ∨ · · · ∨ x = n)). There are no elements that are 4z. So if n
is standard and x is non-standard, we cannot have x 4 n. By
definition, a non-standard element is one that isn’t ValM (n) for
any n ∈ N, so x ≠ n as well. Since 4 is a linear order, we must
have n 4 x . □

CHAPTER 19. MODELS OF ARITHMETIC 417

Proposition 19.23. Every nonstandard element x of |M | is an ele-
ment of the subset

. . .∗∗∗ x 4∗∗ x 4∗ x 4 x 4 x∗ 4 x∗∗ 4 x∗∗∗ 4 . . .

We call this subset the block of x and write it as [x]. It has no least and
no greatest element. It can be characterized as the set of those y ∈ |M |
such that, for some standard n, x ⊕ n = y or y ⊕ n = x.

Proof. Clearly, such a set [x] always exists since every element y
of |M | has a unique successor y∗ and unique predecessor ∗y . For
successive elements y , y∗ we have y 4 y∗ and y∗ is the 4-least
element of |M | such that y is 4-less than it. Since always ∗y 4 y
and y 4 y∗, [x] has no least or greatest element. If y ∈ [x] then
x ∈ [y], for then either y∗...∗ = x or x∗...∗ = y . If y∗...∗ = x (with n
∗’s), then y ⊕ n = x and conversely, since PA ⊢ ∀x x ′...′ = (x + n)
(if n is the number of ′’s). □

Proposition 19.24. If [x] ≠ [y] and x 4 y , then for any u ∈ [x]
and any v ∈ [y], u 4 v .

Proof. Note that PA ⊢ ∀x ∀y (x < y → (x ′ < y ∨ x ′ = y)). Thus, if
u 4 v , we also have u ⊕ n∗ 4 v for any n if [u] ≠ [v].

Any u ∈ [x] is 4y : x 4 y by assumption. If u 4 x , u 4 y by
transitivity. And if x 4 u but u ∈ [x], we have u = x ⊕ n∗ for
some n, and so u 4 y by the fact just proved.

Now suppose that v ∈ [y] is 4y , i.e., v ⊕ m∗ = y for some
standard m. This rules out v 4 x , otherwise y = v ⊕ m∗ 4 x .
Clearly also, x ≠ v , otherwise x ⊕ m∗ = v ⊕ m∗ = y and we would
have [x] = [y]. So, x 4 v . But then also x ⊕ n∗ 4 v for any n.
Hence, if x 4u and u ∈ [x], we have u 4v . If u 4 x then u 4v by
transitivity.

Lastly, if y 4v , u 4v since, as we’ve shown, u 4 y and y 4v .□

CHAPTER 19. MODELS OF ARITHMETIC 418

Corollary 19.25. If [x] ≠ [y], [x] ∩ [y] = ∅.

Proof. Suppose z ∈ [x] and x 4 y . Then z 4 u for all u ∈ [y]. If
z ∈ [y], we would have z 4 z . Similarly if y 4 x . □

This means that the blocks themselves can be ordered in a
way that respects 4: [x] 4 [y] iff x 4 y , or, equivalently, if u 4 v
for any u ∈ [x] and v ∈ [y]. Clearly, the standard block [0] is
the least block. It intersects with no non-standard block, and no
two non-standard blocks intersect either. Specifically, you cannot
“reach” a different block by taking repeated successors or prede-
cessors.

Proposition 19.26. If x and y are non-standard, then x4x ⊕ y and
x ⊕ y ∉ [x].

Proof. If y is nonstandard, then y ≠ z. PA ⊢ ∀x (y ≠ 0→ x <

(x + y)). Now suppose x ⊕ y ∈ [x]. Since x4x ⊕ y , we would have
x ⊕ n∗ = x ⊕ y . But PA ⊢ ∀x ∀y ∀z ((x + y) = (x + z) → y = z) (the
cancellation law for addition). This would mean y = n∗ for some
standard n; but y is assumed to be non-standard. □

Proposition 19.27. There is no least non-standard block.

Proof. PA ⊢ ∀x ∃y ((y + y) = x ∨ (y + y)′ = x), i.e., that every x is
divisible by 2 (possibly with remainder 1). If x is non-standard,
so is y . By the preceding proposition, y 4 y ⊕ y and y ⊕ y ∉ [y].
Then also y 4 (y ⊕ y)∗ and (y ⊕ y)∗ ∉ [y]. But x = y ⊕ y or
x = (y ⊕ y)∗, so y 4 x and y ∉ [x]. □

Proposition 19.28. There is no largest block.

Proof. Exercise. □

CHAPTER 19. MODELS OF ARITHMETIC 419

Proposition 19.29. The ordering of the blocks is dense. That is, if
x 4 y and [x] ≠ [y], then there is a block [z] distinct from both that
is between them.

Proof. Suppose x4y . As before, x ⊕ y is divisible by two (possibly
with remainder): there is a z ∈ |M | such that either x ⊕ y = z ⊕ z
or x ⊕ y = (z ⊕ z)∗. The element z is the “average” of x and y ,
and x 4 z and z 4 y . □

The non-standard blocks are therefore ordered like the ratio-
nals: they form a countably infinite dense linear ordering without
endpoints. One can show that any two such countably infinite
orderings are isomorphic. It follows that for any two countable
non-standard models M1 and M2 of true arithmetic, their reducts
to the language containing < and = only are isomorphic. Indeed,
an isomorphism h can be defined as follows: the standard parts
of M1 and M2 are isomorphic to the standard model N and hence
to each other. The blocks making up the non-standard part are
themselves ordered like the rationals and therefore isomorphic;
an isomorphism of the blocks can be extended to an isomorphism
within the blocks by matching up arbitrary elements in each, and
then taking the image of the successor of x in M1 to be the suc-
cessor of the image of x in M2. Note that it does not follow that
𝔐1 and 𝔐2 are isomorphic in the full language of arithmetic (in-
deed, isomorphism is always relative to a language), as there are
non-isomorphic ways to define addition and multiplication over
|M1 | and |M2 |. (This also follows from a famous theorem due
to Vaught that the number of countable models of a complete
theory cannot be 2.)

19.9 Computable Models of Arithmetic

The standard model N has two nice features. Its domain is the
natural numbers N, i.e., its elements are just the kinds of things
we want to talk about using the language of arithmetic, and the
standard numeral n actually picks out n. The other nice feature

CHAPTER 19. MODELS OF ARITHMETIC 420

is that the interpretations of the non-logical symbols of LA are
all computable. The successor, addition, and multiplication func-
tions which serve as ′N , +N , and ×N are computable functions
of numbers. (Computable by Turing machines, or definable by
primitive recursion, say.) And the less-than relation on N, i.e.,
<N , is decidable.

Non-standard models of arithmetical theories such as Q and
PAmust contain non-standard elements. Thus their domains typ-
ically include elements in addition to N. However, any countable
structure can be built on any countably infinite set, including N.
So there are also non-standard models with domain N. In such
models M, of course, at least some numbers cannot play the roles
they usually play, since some k must be different from ValM (n)
for all n ∈ N.

Definition 19.30. A structure M for LA is computable iff |M | = N
and ′M, +M, ×M are computable functions and <M is a decidable
relation.

Example 19.31. Recall the structure K from Example 19.18. Its
domain was |K | = N ∪ {a} and interpretations

0K = 0

′K (x) =
{︄
x + 1 if x ∈ N
a if x = a

+K (x ,y) =
{︄
x + y if x , y ∈ N
a otherwise

×K (x ,y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xy if x , y ∈ N
0 if x = 0 or y = 0

a otherwise

<K = {⟨x ,y⟩ : x ,y ∈ N and x < y} ∪ {⟨x ,a⟩ : n ∈ |K |}

But |K | is countably infinite and so is equinumerous with N. For
instance, g : N→ |K | with g (0) = a and g (n) = n + 1 for n > 0 is

CHAPTER 19. MODELS OF ARITHMETIC 421

a bijection. We can turn it into an isomorphism between a new
model K′ of Q and K. In K′, we have to assign different functions
and relations to the symbols of LA, since different elements of N
play the roles of standard and non-standard numbers.

Specifically, 0 now plays the role of a, not of the smallest
standard number. The smallest standard number is now 1. So
we assign 0K′

= 1. The successor function is also different now:
given a standard number, i.e., an n > 0, it still returns n+1. But 0
now plays the role of a, which is its own successor. So ′K′ (0) = 0.
For addition and multiplication we likewise have

+K′ (x ,y) =
{︄
x + y − 1 if x , y > 0

0 otherwise

×K′ (x ,y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if x = 1 or y = 1

xy − x − y + 2 if x , y > 1

0 otherwise

And we have ⟨x ,y⟩ ∈ <K′
iff x < y and x > 0 and y > 0, or if

y = 0.
All of these functions are computable functions of natural

numbers and <K′
is a decidable relation on N—but they are

not the same functions as successor, addition, and multiplication
on N, and <K′

is not the same relation as < on N.

Example 19.31 shows that Q has computable non-standard
models with domain N. However, the following result shows
that this is not true for models of PA (and thus also for mod-
els of TA).

Theorem 19.32 (Tennenbaum’s Theorem). N is the only com-
putable model of PA.

Summary

A model of arithmetic is a structure for the language LA of
arithmetic. There is one distinguished such model, the standard

CHAPTER 19. MODELS OF ARITHMETIC 422

model N, with |N | = N and interpretations of 0, ′, +, ×, and <

given by 0, the successor, addition, and multiplication functions
on N, and the less-than relation. N is a model of the theories Q
and PA.

More generally, a structure for LA is called standard iff it is
isomorphic to N. Two structures are isomorphic if there is an
isomorphism between them, i.e., a bijective function which pre-
serves the interpretations of constant symbols, function symbols,
and predicate symbols. By the isomorphism theorem, isomor-
phic structures are elementarily equivalent, i.e., they make the
same sentences true. In standard models, the domain is just the
set of values of all the numerals n.

Models of Q and PA that are not isomorphic to N are called
non-standard. In non-standard models, the domain is not ex-
hausted by the values of the numerals. An element x ∈ |M | where
x ≠ ValM (n) for all n ∈ N is called a non-standard element
of M. If M ⊨ Q , non-standard elements must obey the axioms
of Q , e.g., they have unique successors, they can be added and
multiplied, and compared using <. The standard elements of M
are all <M all the non-standard elements. Non-standard models
exist because of the compactness theorem, and for Q they can
relatively easily be given explicitly. Such models can be used
to show that, e.g., Q is not strong enough to prove certain sen-
tences, e.g., Q ⊬ ∀x ∀y (x +y) = (y +x). This is done by defining a
non-standard M in which non-standard elements don’t obey the
law of commutativity.

Non-standard models of PA cannot be so easily specified ex-
plicitly. By showing that PA proves certain sentences, we can in-
vestigate the structure of the non-standard part of a non-standard
model of PA. If a non-standard model M of PA is countable, ev-
ery non-standard element is part of a “block” of non-standard
elements which are ordered like Z by <M. These blocks them-
selves are arranged like Q, i.e., there is no smallest or largest
block, and there is always a block in between any two blocks.

Any countable model is isomorphic to one with domain N.
If the interpretations of ′, +, ×, and < in such a model are com-

CHAPTER 19. MODELS OF ARITHMETIC 423

putable functions, we say it is a computable model. The stan-
dard model N is computable, since the successor, addition, and
multiplication functions and the less-than relation on N are com-
putable. It is possible to define computable non-standard models
of Q , but N is the only computable model of PA. This is Tan-
nenbaum’s Theorem.

Problems

Problem 19.1. Prove Proposition 19.2.

Problem 19.2. Carry out the proof of (b) of Theorem 19.6 in
detail. Make sure to note where each of the five properties char-
acterizing isomorphisms of Definition 19.5 is used.

Problem 19.3. Show that for any structure M, if X is a definable
subset of M, and h is an automorphism of M, then X = {h (x) :
x ∈ X } (i.e., X is fixed under h).

Problem 19.4. Show that the converse of Proposition 19.12 is
false, i.e., give an example of a structure M with |M | = {ValM (n) :
n ∈ N} that is not isomorphic to N.

Problem 19.5. Recall that Q contains the axioms

∀x ∀y (x ′ = y ′ → x = y) (Q1)

∀x 0 ≠ x ′ (Q2)

∀x (x = 0 ∨ ∃y x = y ′) (Q3)

Give structures M1, M2, M3 such that

1. M1 ⊨ Q1, M1 ⊨ Q2, M1 ⊭ Q3;

2. M2 ⊨ Q1, M2 ⊭ Q2, M2 ⊨ Q3; and

3. M3 ⊭ Q1, M3 ⊨ Q2, M3 ⊨ Q3;

Obviously, you just have to specify 0Mi and ′Mi for each.

CHAPTER 19. MODELS OF ARITHMETIC 424

Problem 19.6. Prove that K from Example 19.18 satisifies the
remaining axioms of Q ,

∀x (x × 0) = 0 (Q6)

∀x ∀y (x × y ′) = ((x × y) + x) (Q7)

∀x ∀y (x < y ↔∃z (z ′ + x) = y) (Q8)

Find a sentence only involving ′ true in N but false in K.

Problem 19.7. Expand L of Example 19.19 to include ⊗ and 4
that interpret × and <. Show that your structure satisifies the
remaining axioms of Q ,

∀x (x × 0) = 0 (Q6)

∀x ∀y (x × y ′) = ((x × y) + x) (Q7)

∀x ∀y (x < y ↔∃z (z ′ + x) = y) (Q8)

Problem 19.8. In L of Example 19.19, a∗ = a and b∗ = b . Is
there a model of Q in which a∗ = b and b∗ = a?

Problem 19.9. Find sentences in LA derivable in PA (and hence
true in N) which guarantee the properties of z, ∗, and 4 in Propo-
sition 19.21

Problem 19.10. Show that in a non-standard model of PA, there
is no largest block.

Problem 19.11. Write out a detailed proof of Proposition 19.29.
Which sentence must PA derive in order to guarantee the exis-
tence of z? Why is x 4 z and z 4 y , and why is [x] ≠ [z] and
[z] ≠ [y]?

Problem 19.12. Give a structure L′ with |L′ | = N isomorphic
to L of Example 19.19.

APPENDIX A

Derivations in
Arithmetic
Theories
When we showed that all general recursive functions are repre-
sentable in Q , and in the proofs of the incompleteness theorems,
we claimed that various things are provable in Q and PA. The
proofs of these claims, however, just gave the arguments infor-
mally without exhibiting actual derivations in natural deduction.
We provide some of these derivations in this capter.

For instance, in Lemma 17.16 we proved that, for all n and
m ∈ N, Q ⊢ (n +m) = n +m. We did this by induction on m.

Proof of Lemma 17.16. Base case: m = 0. Then what has to be
proved is that, for all n, Q ⊢ n + 0 = n + 0. Since 0 is just 0 and
n + 0 is n, this amounts to showing that Q ⊢ (n + 0) = n. The
derivation

∀x (x + 0) = x
∀Elim(n + 0) = n

is a natural deduction derivation of (n + 0) = n with one undis-
charged assumption, and that undischarged assumption is an ax-

425

APPENDIX A. DERIVATIONS IN ARITHMETIC THEORIES 426

iom of Q .
Inductive step: Suppose that, for any n, Q ⊢ (n +m) = n +m

(say, by a derivation 𝛿n,m). We have to show that also Q ⊢ (n +
m + 1) = n +m + 1. Note that m + 1 ≡ m′, and that n +m + 1 ≡
n +m′. So we are looking for a derivation of (n + m′) = n +m′

from the axioms of Q . Our derivation may use the derivation
𝛿n,m which exists by inductive hypothesis.

𝛿n,m

(n +m) = n +m

∀x ∀y (x + y ′) = (x + y)′
∀Elim∀y (n + y ′) = (n + y)′

∀Elim(n +m′) = (n +m)′
=Elim(n +m′) = n +m′

In the last =Elim inference, we replace the subterm n + m of the
right side (n +m)′ of the right premise by the term n +m. □

In Lemma 17.23, we showed that Q ⊢ ∀x ¬x < 0. What does
an actual derivation look like?

Proof of Lemma 17.23. To prove a universal claim like this, we use
∀Intro, which requires a derivation of ¬a < 0. Looking at axiom
Q8, this means proving ¬∃z (z ′ + a) = 0. Specifically, if we had a
proof of the latter, Q8 would allow us to prove the former (recall
that A↔ B is short for (A→ B) ∧ (B → A).

¬∃z (z ′ + a) = 0

∀x ∀y (x < y ↔∃z (z ′ + x) = y)
∀Elim∀y (a < y ↔∃z (z ′ + a) = y)

∀Elim
a < 0↔∃z (z ′ + a) = 0

∧Elim
a < 0→∃z (z ′ + a) = 0 [a < 0]1

→Elim∃z (z ′ + a) = 0
¬Elim⊥

1 ¬Intro¬a < 0

This is a derivation of ¬a < 0 from ¬∃z (z ′ + a) = 0 (and Q8);
let’s call it 𝛿1.

Now how do we prove ¬∃z (z ′+a) = 0 from the axioms of Q ?
To prove a negated claim like this, we’d need a derivation of the
form

APPENDIX A. DERIVATIONS IN ARITHMETIC THEORIES 427

[∃z (z ′ + a) = 0]2

⊥
2 ¬Intro¬∃z (z ′ + a) = 0

To get a contradiction from an existential claim, we introduce
a constant b for the existentially quantified variable z and use
∃Elim:

[∃z (z ′ + a) = 0]2

[(b ′ + a) = 0]3

𝛿2

⊥
3 ∃Elim⊥

2 ¬Intro¬∃z (z ′ + a) = 0

Now the task is to fill in 𝛿2, i.e., prove ⊥ from (b ′ + a) = 0 and
the axioms of Q . Q2 says that 0 can’t be the successor of some
number, so one way of doing that would be to show that (b ′ + a)
is equal to the successor of some number. Since that expression
itself is a sum, the axioms for addition must come into play. If
a = 0, Q5 would tell us that (b ′+a) = b ′, i.e., b ′+a is the successor
of some number, namely of b . On the other hand, if a = c ′ for
some c , then (b ′ + a) = (b ′ + c ′) by =Elim, and (b ′ + c ′) = (b ′ + c)′
by Q6. So again, b ′ +a is the successor of a number—in this case,
b ′+c . So the strategy is to divide the task into these two cases. We
also have to verify that Q proves that one of these cases holds,
i.e., Q ⊢ a = 0 ∨ ∃y (a = y ′), but this follows directly from Q3 by
∀Elim. Here are the two cases:

Case 1: Prove ⊥ from a = 0 and (b ′ + a) = 0 (and axioms Q2,
Q5):

∀x ¬0 = x ′ ∀Elim¬0 = b ′

∀x (x + 0) = x
∀Elim(b ′ + 0) = b ′

a = 0 (b ′ + a) = 0
=Elim(b ′ + 0) = 0

0 = (b ′ + 0)
=Elim

0 = b ′ ¬Elim⊥

APPENDIX A. DERIVATIONS IN ARITHMETIC THEORIES 428

Call this derivation 𝛿3. (We’ve abbreviated the derivation of 0 =
(b ′ + 0) from (b ′ + 0) = 0 by a double inference line.)

Case 2: Prove ⊥ from ∃y a = y ′ and (b ′ + a) = 0 (and axioms
Q2,Q6). We first show how to derive ⊥ from a = c ′ and (b ′+a) = 0.

∀x ¬0 = x ′ ∀Elim¬0 = (b ′ + c)′

a = c ′ (b ′ + a) = 0
=Elim(b ′ + c ′) = 0

∀x ∀y (x + y ′) = (x + y)′
∀Elim∀y (b ′ + y ′) = (b ′ + y)′
∀Elim(b ′ + c ′) = (b ′ + c)′

=Elim
0 = (b ′ + c)′

¬Elim⊥

Call this 𝛿4. We get the required derivation 𝛿5 by applying ∃Elim
and discharging the assumption a = c ′:

∃y a = y ′

[a = c ′]6 (b ′ + a) = 0

𝛿4

⊥
6 ∃Elim⊥

Putting everything together, the full proof looks like this:

[∃z (z ′ + a) = 0]2

∀x (x = 0 ∨
∃y (a = y ′))

∀Elim
a = 0 ∨

∃y (a = y ′)

[a = 0]7

[(b ′ + a) = 0]3

𝛿3

⊥

[∃y a = y ′]7

[(b ′ + a) = 0]3

𝛿5

⊥
7 ∨Elim⊥

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
𝛿2

3 ∃Elim⊥
2 ¬Intro¬∃z (z ′ + a) = 0

𝛿1

¬a < 0 ∀Intro∀x ¬x < 0

□

APPENDIX A. DERIVATIONS IN ARITHMETIC THEORIES 429

In the proof of Theorem 18.7, we defined RProv(y) as

∃x (Prf(x ,y) ∧ ∀z (z < x →¬Ref(z ,y))).

Prf(x ,y) is the formula representing the proof relation of T (a
consistent, axiomatizable extension of Q) in Q , and Ref(z ,y) is
the formula representing the refutation relation. That means that
if n is the Gödel number of a proof of A, then Q ⊢ Prf(n,⌜A⌝),
and otherwise Q ⊢ ¬Prf(n,⌜A⌝). Similarly, if n is the Gödel
number of a proof of ¬A, then Q ⊢ Ref(n,⌜A⌝), and otherwise
Q ⊢ ¬Ref(n,⌜A⌝). We use the Diagonal Lemma to find a sen-
tence R such that Q ⊢ R ↔ ¬RProv(⌜R⌝). Rosser’s Theorem
states that T ⊬ R and T ⊬ ¬R. Both claims were proved indi-
rectly: we show that if T ⊢ R, T is inconsistent, i.e., T ⊢ ⊥, and
the same if T ⊢ ¬R.

Proof of Theorem 18.7. First we prove something things about <.
By Lemma 17.24, we know that Q ⊢ ∀x (x < n + 1 → (x = 0 ∨
· · · ∨ x = n)) for every n. So of course also (if n > 1), Q ⊢
∀x (x < n→ (x = 0 ∨ · · · ∨ x = n − 1)). We can use this to derive
a = 0 ∨ · · · ∨ a = n − 1 from a < n:

a < n

∀x (x < n→ (x = 0 ∨ · · · ∨ x = n − 1))
∀Elim

a < n→ (a = 0 ∨ · · · ∨ a = n − 1)
→Elim

a = 0 ∨ · · · ∨ a = n − 1

Let’s call this derivation 𝜆1.
Now, to show that T ⊬ R, we assume that T ⊢ R (with a

derivation 𝛿) and show that T then would be inconsistent. Let n
be the Gödel number of 𝛿. Since Prf represents the proof relation
in Q , there is a derivation 𝛿1 of Prf(n,⌜R⌝). Furthermore, no k <

n is the Gödel number of a refutation of R since T is assumed to
be consistent, so for each k < n, Q ⊢ ¬Ref(k ,⌜R⌝); let 𝜌k be the
corresponding derivation. We get a derivation of RProv(⌜R⌝):

APPENDIX A. DERIVATIONS IN ARITHMETIC THEORIES 430

𝛿1

Prf(n,⌜R⌝)

[a < n]1

𝜆1

a = 0 ∨ . . .

∨ a = n − 1 . . .

[a = k]2

𝜌k

¬Ref(k ,⌜R⌝)
=Elim¬Ref(a,⌜R⌝) . . .

2 ∨Elim∗
¬Ref(a,⌜R⌝)

1 →Intro
a < n→¬Ref(a,⌜R⌝)

∀Intro∀z (z < n→¬Ref(z ,⌜R⌝))
∧Intro

Prf(n,⌜R⌝) ∧ ∀z (z < n→¬Ref(z ,⌜R⌝))
∃Intro∃x (Prf(x ,⌜R⌝) ∧ ∀z (z < x →¬Ref(z ,⌜R⌝)))

(We abbreviate multiple applications of ∨Elim by ∨Elim∗ above.)
We’ve shown that if T ⊢ R there would be a derivation
of RProv(⌜R⌝). Then, since T ⊢ R ↔ ¬RProv(⌜R⌝), also
T ⊢ RProv(⌜R⌝)→¬R, we’d have T ⊢ ¬R and T would be incon-
sistent.

Now let’s show that T ⊬ ¬R. Again, suppose it did. Then
there is a derivation 𝜌 of ¬R with Gödel number m—a refutation
of R—and so Q ⊢ Ref(m,⌜R⌝) by a derivation 𝜌1. Since we
assume T is consistent, T ⊬ R. So for all k , k is not a Gödel
number of a derivation of R, and hence Q ⊢ ¬Prf(k ,⌜R⌝) by a
derivation 𝜋k . So we have:

APPENDIX A. DERIVATIONS IN ARITHMETIC THEORIES 431

𝜆2

a = 0 ∨ · · · ∨
a = m ∨m < a . . .

[Prf(a,⌜R⌝)]1

[a = k]2

𝜋′k

⊥ ⊥I
m < a . . . [m < a]2

2 ∨Elim∗
m < a

𝜌1

Ref(m,⌜R⌝)
∧Intro

m < a ∧ Ref(m,⌜R⌝)
∃Intro∃z (z < a ∧ Ref(z ,⌜R⌝))

1 →Intro
Prf(a,⌜R⌝) → ∃z (z < a ∧ Ref(z ,⌜R⌝))

∀Intro∀x (Prf(x ,⌜R⌝) → ∃z (z < x ∧ Ref(z ,⌜R⌝)))

¬∃x (Prf(x ,⌜R⌝) ∧ ∀z (z < x →¬Ref(z ,⌜R⌝)))

where 𝜋′k is the derivation

𝜋k

¬Prf(k ,⌜R⌝)
a = k Prf(a,⌜R⌝)

=Elim
Prf(k ,⌜R⌝)

¬Elim⊥

and 𝜆2 is

𝜆3

(a < m ∨
a = m) ∨
m < a

[a < m]3

𝜆1

a = 0 ∨ · · · ∨

a = m − 1

a = 0 ∨ · · · ∨
a = m ∨m < a

[a = m]3

a = 0 ∨ · · · ∨
a = m ∨m < a

[m < a]3
∨Intro∗

a = 0 ∨ · · · ∨
a = m ∨m < a

3 ∨Elim2

a = 0 ∨ · · · ∨ a = m ∨m < a

(The derivation 𝜆3 exists by Lemma 17.25. We abbreviate re-
peated use of ∨Intro by ∨Intro∗ and the double use of ∨Elim to

APPENDIX A. DERIVATIONS IN ARITHMETIC THEORIES 432

derive a = 0∨ · · · ∨ a = m ∨m < a from (a < m ∨ a = m) ∨m < a
as ∨Elim2.) □

APPENDIX B

Proofs
B.1 Introduction

Based on your experiences in introductory logic, you might be
comfortable with a derivation system—probably a natural de-
duction or Fitch style derivation system, or perhaps a proof-tree
system. You probably remember doing proofs in these systems,
either proving a formula or show that a given argument is valid.
In order to do this, you applied the rules of the system until you
got the desired end result. In reasoning about logic, we also prove
things, but in most cases we are not using a derivation system. In
fact, most of the proofs we consider are done in English (perhaps,
with some symbolic language thrown in) rather than entirely in
the language of first-order logic. When constructing such proofs,
you might at first be at a loss—how do I prove something without
a derivation system? How do I start? How do I know if my proof
is correct?

Before attempting a proof, it’s important to know what a proof
is and how to construct one. As implied by the name, a proof is
meant to show that something is true. You might think of this in
terms of a dialogue—someone asks you if something is true, say,
if every prime other than two is an odd number. To answer “yes”
is not enough; they might want to know why. In this case, you’d
give them a proof.

In everyday discourse, it might be enough to gesture at an

433

APPENDIX B. PROOFS 434

answer, or give an incomplete answer. In logic and mathematics,
however, we want rigorous proof—we want to show that some-
thing is true beyond any doubt. This means that every step in our
proof must be justified, and the justification must be cogent (i.e.,
the assumption you’re using is actually assumed in the statement
of the theorem you’re proving, the definitions you apply must be
correctly applied, the justifications appealed to must be correct
inferences, etc.).

Usually, we’re proving some statement. We call the statements
we’re proving by various names: propositions, theorems, lemmas,
or corollaries. A proposition is a basic proof-worthy statement:
important enough to record, but perhaps not particularly deep
nor applied often. A theorem is a significant, important proposi-
tion. Its proof often is broken into several steps, and sometimes it
is named after the person who first proved it (e.g., Cantor’s The-
orem, the Löwenheim-Skolem theorem) or after the fact it con-
cerns (e.g., the completeness theorem). A lemma is a proposition
or theorem that is used in the proof of a more important result.
Confusingly, sometimes lemmas are important results in them-
selves, and also named after the person who introduced them
(e.g., Zorn’s Lemma). A corollary is a result that easily follows
from another one.

A statement to be proved often contains assumptions that
clarify which kinds of things we’re proving something about. It
might begin with “Let A be a formula of the form B → C ” or
“Suppose 𝛤 ⊢ A” or something of the sort. These are hypotheses of
the proposition, theorem, or lemma, and you may assume these
to be true in your proof. They restrict what we’re proving, and
also introduce some names for the objects we’re talking about.
For instance, if your proposition begins with “Let A be a formula
of the form B→C ,” you’re proving something about all formulas
of a certain sort only (namely, conditionals), and it’s understood
that B → C is an arbitrary conditional that your proof will talk
about.

APPENDIX B. PROOFS 435

B.2 Starting a Proof

But where do you even start?
You’ve been given something to prove, so this should be the

last thing that is mentioned in the proof (you can, obviously, an-
nounce that you’re going to prove it at the beginning, but you don’t
want to use it as an assumption). Write what you are trying to
prove at the bottom of a fresh sheet of paper—this way you don’t
lose sight of your goal.

Next, you may have some assumptions that you are able to use
(this will be made clearer when we talk about the type of proof you
are doing in the next section). Write these at the top of the page
and make sure to flag that they are assumptions (i.e., if you are
assuming p, write “assume that p,” or “suppose that p”). Finally,
there might be some definitions in the question that you need
to know. You might be told to use a specific definition, or there
might be various definitions in the assumptions or conclusion
that you are working towards. Write these down and ensure that you
understand what they mean.

How you set up your proof will also be dependent upon the
form of the question. The next section provides details on how
to set up your proof based on the type of sentence.

B.3 Using Definitions

We mentioned that you must be familiar with all definitions that
may be used in the proof, and that you can properly apply them.
This is a really important point, and it is worth looking at in
a bit more detail. Definitions are used to abbreviate properties
and relations so we can talk about them more succinctly. The
introduced abbreviation is called the definiendum, and what it ab-
breviates is the definiens. In proofs, we often have to go back to
how the definiendum was introduced, because we have to exploit
the logical structure of the definiens (the long version of which
the defined term is the abbreviation) to get through our proof. By

APPENDIX B. PROOFS 436

unpacking definitions, you’re ensuring that you’re getting to the
heart of where the logical action is.

We’ll start with an example. Suppose you want to prove the
following:

Proposition B.1. For any sets A and B, A ∪ B = B ∪ A.

In order to even start the proof, we need to know what it
means for two sets to be identical; i.e., we need to know what
the “=” in that equation means for sets. Sets are defined to be
identical whenever they have the same elements. So the definition
we have to unpack is:

Definition B.2. Sets A and B are identical, A = B , iff every ele-
ment of A is an element of B , and vice versa.

This definition usesA and B as placeholders for arbitrary sets.
What it defines—the definiendum—is the expression “A = B” by
giving the condition under which A = B is true. This condition—
“every element of A is an element of B , and vice versa”—is the
definiens.1 The definition specifies that A = B is true if, and only
if (we abbreviate this to “iff”) the condition holds.

When you apply the definition, you have to match the A and
B in the definition to the case you’re dealing with. In our case, it
means that in order for A ∪B = B ∪A to be true, each z ∈ A ∪B
must also be in B∪A, and vice versa. The expression A∪B in the
proposition plays the role of A in the definition, and B ∪ A that
of B . Since A and B are used both in the definition and in the
statement of the proposition we’re proving, but in different uses,
you have to be careful to make sure you don’t mix up the two.
For instance, it would be a mistake to think that you could prove
the proposition by showing that every element of A is an element

1In this particular case—and very confusingly!—when A = B , the sets A
and B are just one and the same set, even though we use different letters for it
on the left and the right side. But the ways in which that set is picked out may
be different, and that makes the definition non-trivial.

APPENDIX B. PROOFS 437

of B , and vice versa—that would show thatA = B , not thatA∪B =

B ∪ A. (Also, since A and B may be any two sets, you won’t get
very far, because if nothing is assumed about A and B they may
well be different sets.)

Within the proof we are dealing with set-theoretic notions
such as union, and so we must also know the meanings of the
symbol ∪ in order to understand how the proof should pro-
ceed. And sometimes, unpacking the definition gives rise to
further definitions to unpack. For instance, A ∪ B is defined as
{z : z ∈ A or z ∈ B }. So if you want to prove that x ∈ A ∪ B ,
unpacking the definition of ∪ tells you that you have to prove
x ∈ {z : z ∈ A or z ∈ B }. Now you also have to remember that
x ∈ {z : . . . z . . .} iff . . . x So, further unpacking the definition
of the {z : . . . z . . .} notation, what you have to show is: x ∈ A or
x ∈ B . So, “every element of A ∪ B is also an element of B ∪ A”
really means: “for every x , if x ∈ A or x ∈ B , then x ∈ B or
x ∈ A.” If we fully unpack the definitions in the proposition, we
see that what we have to show is this:

Proposition B.3. For any sets A and B: (a) for every x, if x ∈ A or
x ∈ B, then x ∈ B or x ∈ A, and (b) for every x, if x ∈ B or x ∈ A,
then x ∈ A or x ∈ B.

What’s important is that unpacking definitions is a necessary
part of constructing a proof. Properly doing it is sometimes diffi-
cult: you must be careful to distinguish and match the variables
in the definition and the terms in the claim you’re proving. In
order to be successful, you must know what the question is ask-
ing and what all the terms used in the question mean—you will
often need to unpack more than one definition. In simple proofs
such as the ones below, the solution follows almost immediately
from the definitions themselves. Of course, it won’t always be this
simple.

APPENDIX B. PROOFS 438

B.4 Inference Patterns

Proofs are composed of individual inferences. When we make an
inference, we typically indicate that by using a word like “so,”
“thus,” or “therefore.” The inference often relies on one or two
facts we already have available in our proof—it may be something
we have assumed, or something that we’ve concluded by an in-
ference already. To be clear, we may label these things, and in
the inference we indicate what other statements we’re using in the
inference. An inference will often also contain an explanation of
why our new conclusion follows from the things that come before
it. There are some common patterns of inference that are used
very often in proofs; we’ll go through some below. Some patterns
of inference, like proofs by induction, are more involved (and will
be discussed later).

We’ve already discussed one pattern of inference: unpack-
ing, or applying, a definition. When we unpack a definition, we
just restate something that involves the definiendum by using the
definiens. For instance, suppose that we have already established
in the course of a proof that D = E (a). Then we may apply the
definition of = for sets and infer: “Thus, by definition from (a),
every element of D is an element of E and vice versa.”

Somewhat confusingly, we often do not write the justification
of an inference when we actually make it, but before. Suppose
we haven’t already proved that D = E, but we want to. If D = E
is the conclusion we aim for, then we can restate this aim also
by applying the definition: to prove D = E we have to prove
that every element of D is an element of E and vice versa. So
our proof will have the form: (a) prove that every element of D
is an element of E; (b) every element of E is an element of D ;
(c) therefore, from (a) and (b) by definition of =, D = E . But
we would usually not write it this way. Instead we might write
something like,

We want to show D = E . By definition of =, this
amounts to showing that every element of D is an el-

APPENDIX B. PROOFS 439

ement of E and vice versa.

(a) . . . (a proof that every element of D is an element
of E) . . .

(b) . . . (a proof that every element of E is an element
of D) . . .

Using a Conjunction

Perhaps the simplest inference pattern is that of drawing as con-
clusion one of the conjuncts of a conjunction. In other words:
if we have assumed or already proved that p and q , then we’re
entitled to infer that p (and also that q). This is such a basic
inference that it is often not mentioned. For instance, once we’ve
unpacked the definition of D = E we’ve established that every
element of D is an element of E and vice versa. From this we can
conclude that every element of E is an element of D (that’s the
“vice versa” part).

Proving a Conjunction

Sometimes what you’ll be asked to prove will have the form of a
conjunction; you will be asked to “prove p and q .” In this case,
you simply have to do two things: prove p, and then prove q . You
could divide your proof into two sections, and for clarity, label
them. When you’re making your first notes, you might write “(1)
Prove p” at the top of the page, and “(2) Prove q” in the middle of
the page. (Of course, you might not be explicitly asked to prove
a conjunction but find that your proof requires that you prove a
conjunction. For instance, if you’re asked to prove that D = E
you will find that, after unpacking the definition of =, you have to
prove: every element of D is an element of E and every element
of E is an element of D).

APPENDIX B. PROOFS 440

Proving a Disjunction

When what you are proving takes the form of a disjunction (i.e., it
is an statement of the form “p or q”), it is enough to show that one
of the disjuncts is true. However, it basically never happens that
either disjunct just follows from the assumptions of your theorem.
More often, the assumptions of your theorem are themselves dis-
junctive, or you’re showing that all things of a certain kind have
one of two properties, but some of the things have the one and
others have the other property. This is where proof by cases is
useful (see below).

Conditional Proof

Many theorems you will encounter are in conditional form (i.e.,
show that if p holds, then q is also true). These cases are nice and
easy to set up—simply assume the antecedent of the conditional
(in this case, p) and prove the conclusion q from it. So if your
theorem reads, “If p then q ,” you start your proof with “assume
p” and at the end you should have proved q .

Conditionals may be stated in different ways. So instead of “If
p then q ,” a theorem may state that “p only if q ,” “q if p,” or “q ,
provided p .” These all mean the same and require assuming p
and proving q from that assumption. Recall that a biconditional
(“p if and only if (iff) q”) is really two conditionals put together:
if p then q , and if q then p . All you have to do, then, is two
instances of conditional proof: one for the first conditional and
another one for the second. Sometimes, however, it is possible
to prove an “iff” statement by chaining together a bunch of other
“iff” statements so that you start with “p” an end with “q”—but
in that case you have to make sure that each step really is an “iff.”

Universal Claims

Using a universal claim is simple: if something is true for any-
thing, it’s true for each particular thing. So if, say, the hypothesis
of your proof is A ⊆ B , that means (unpacking the definition

APPENDIX B. PROOFS 441

of ⊆), that, for every x ∈ A, x ∈ B . Thus, if you already know
that z ∈ A, you can conclude z ∈ B .

Proving a universal claim may seem a little bit tricky. Usually
these statements take the following form: “If x has P , then it
has Q ” or “All P s are Q s.” Of course, it might not fit this form
perfectly, and it takes a bit of practice to figure out what you’re
asked to prove exactly. But: we often have to prove that all objects
with some property have a certain other property.

The way to prove a universal claim is to introduce names
or variables, for the things that have the one property and then
show that they also have the other property. We might put this
by saying that to prove something for all P s you have to prove
it for an arbitrary P . And the name introduced is a name for an
arbitrary P . We typically use single letters as these names for
arbitrary things, and the letters usually follow conventions: e.g.,
we use n for natural numbers, A for formulas, A for sets, f for
functions, etc.

The trick is to maintain generality throughout the proof. You
start by assuming that an arbitrary object (“x”) has the prop-
erty P , and show (based only on definitions or what you are al-
lowed to assume) that x has the property Q . Because you have
not stipulated what x is specifically, other that it has the property
P , then you can assert that all every P has the property Q . In
short, x is a stand-in for all things with property P .

Proposition B.4. For all sets A and B, A ⊆ A ∪ B.

Proof. Let A and B be arbitrary sets. We want to show that A ⊆
A ∪ B . By definition of ⊆, this amounts to: for every x , if x ∈ A
then x ∈ A ∪ B . So let x ∈ A be an arbitrary element of A. We
have to show that x ∈ A ∪ B . Since x ∈ A, x ∈ A or x ∈ B . Thus,
x ∈ {x : x ∈ A ∨ x ∈ B }. But that, by definition of ∪, means
x ∈ A ∪ B . □

APPENDIX B. PROOFS 442

Proof by Cases

Suppose you have a disjunction as an assumption or as an already
established conclusion—you have assumed or proved that p or q
is true. You want to prove r . You do this in two steps: first you
assume that p is true, and prove r , then you assume that q is true
and prove r again. This works because we assume or know that
one of the two alternatives holds. The two steps establish that
either one is sufficient for the truth of r . (If both are true, we
have not one but two reasons for why r is true. It is not neces-
sary to separately prove that r is true assuming both p and q .)
To indicate what we’re doing, we announce that we “distinguish
cases.” For instance, suppose we know that x ∈ B ∪C . B ∪C is
defined as {x : x ∈ B or x ∈ C }. In other words, by definition,
x ∈ B or x ∈ C . We would prove that x ∈ A from this by first
assuming that x ∈ B , and proving x ∈ A from this assumption,
and then assume x ∈ C , and again prove x ∈ A from this. You
would write “We distinguish cases” under the assumption, then
“Case (1): x ∈ B” underneath, and “Case (2): x ∈ C halfway
down the page. Then you’d proceed to fill in the top half and the
bottom half of the page.

Proof by cases is especially useful if what you’re proving is
itself disjunctive. Here’s a simple example:

Proposition B.5. Suppose B ⊆ D and C ⊆ E. Then B∪C ⊆ D∪E.

Proof. Assume (a) that B ⊆ D and (b) C ⊆ E . By definition, any
x ∈ B is also ∈ D (c) and any x ∈ C is also ∈ E (d). To show that
B ∪C ⊆ D ∪E, we have to show that if x ∈ B ∪C then x ∈ D ∪E
(by definition of ⊆). x ∈ B ∪ C iff x ∈ B or x ∈ C (by definition
of ∪). Similarly, x ∈ D ∪ E iff x ∈ D or x ∈ E . So, we have to
show: for any x , if x ∈ B or x ∈ C , then x ∈ D or x ∈ E .

So far we’ve only unpacked definitions! We’ve refor-
mulated our proposition without ⊆ and ∪ and are left
with trying to prove a universal conditional claim. By
what we’ve discussed above, this is done by assuming

APPENDIX B. PROOFS 443

that x is something about which we assume the “if”
part is true, and we’ll go on to show that the “then”
part is true as well. In other words, we’ll assume that
x ∈ B or x ∈ C and show that x ∈ D or x ∈ E .2

Suppose that x ∈ B or x ∈ C . We have to show that x ∈ D or
x ∈ E . We distinguish cases.

Case 1: x ∈ B . By (c), x ∈ D . Thus, x ∈ D or x ∈ E . (Here
we’ve made the inference discussed in the preceding subsection!)

Case 2: x ∈ C . By (d), x ∈ E . Thus, x ∈ D or x ∈ E . □

Proving an Existence Claim

When asked to prove an existence claim, the question will usually
be of the form “prove that there is an x such that . . . x . . . ”, i.e.,
that some object that has the property described by “. . . x . . . ”. In
this case you’ll have to identify a suitable object show that is has
the required property. This sounds straightforward, but a proof
of this kind can be tricky. Typically it involves constructing or
defining an object and proving that the object so defined has the
required property. Finding the right object may be hard, proving
that it has the required property may be hard, and sometimes it’s
even tricky to show that you’ve succeeded in defining an object
at all!

Generally, you’d write this out by specifying the object, e.g.,
“let x be . . . ” (where . . . specifies which object you have in mind),
possibly proving that . . . in fact describes an object that exists,
and then go on to show that x has the propertyQ . Here’s a simple
example.

Proposition B.6. Suppose that x ∈ B. Then there is an A such that
A ⊆ B and A ≠ ∅.

Proof. Assume x ∈ B . Let A = {x}.
2This paragraph just explains what we’re doing—it’s not part of the proof,

and you don’t have to go into all this detail when you write down your own
proofs.

APPENDIX B. PROOFS 444

Here we’ve defined the set A by enumerating its ele-
ments. Since we assume that x is an object, and we
can always form a set by enumerating its elements,
we don’t have to show that we’ve succeeded in defin-
ing a set A here. However, we still have to show that
A has the properties required by the proposition. The
proof isn’t complete without that!

Since x ∈ A, A ≠ ∅.

This relies on the definition of A as {x} and the ob-
vious facts that x ∈ {x} and x ∉ ∅.

Since x is the only element of {x}, and x ∈ B , every element of A
is also an element of B . By definition of ⊆, A ⊆ B . □

Using Existence Claims

Suppose you know that some existence claim is true (you’ve
proved it, or it’s a hypothesis you can use), say, “for some x ,
x ∈ A” or “there is an x ∈ A.” If you want to use it in your proof,
you can just pretend that you have a name for one of the things
which your hypothesis says exist. Since A contains at least one
thing, there are things to which that name might refer. You might
of course not be able to pick one out or describe it further (other
than that it is ∈ A). But for the purpose of the proof, you can
pretend that you have picked it out and give a name to it. It’s
important to pick a name that you haven’t already used (or that
appears in your hypotheses), otherwise things can go wrong. In
your proof, you indicate this by going from “for some x , x ∈ A”
to “Let a ∈ A.” Now you can reason about a, use some other hy-
potheses, etc., until you come to a conclusion, p . If p no longer
mentions a, p is independent of the asusmption that a ∈ A, and
you’ve shown that it follows just from the assumption “for some
x , x ∈ A.”

APPENDIX B. PROOFS 445

Proposition B.7. If A ≠ ∅, then A ∪ B ≠ ∅.

Proof. Suppose A ≠ ∅. So for some x , x ∈ A.

Here we first just restated the hypothesis of the propo-
sition. This hypothesis, i.e., A ≠ ∅, hides an existen-
tial claim, which you get to only by unpacking a few
definitions. The definition of = tells us that A = ∅ iff
every x ∈ A is also ∈ ∅ and every x ∈ ∅ is also ∈ A.
Negating both sides, we get: A ≠ ∅ iff either some
x ∈ A is ∉ ∅ or some x ∈ ∅ is ∉ A. Since nothing is
∈ ∅, the second disjunct can never be true, and “x ∈ A
and x ∉ ∅” reduces to just x ∈ A. So x ≠ ∅ iff for some
x , x ∈ A. That’s an existence claim. Now we use that
existence claim by introducing a name for one of the
elements of A:

Let a ∈ A.

Now we’ve introduced a name for one of the things ∈
A. We’ll continue to argue about a, but we’ll be care-
ful to only assume that a ∈ A and nothing else:

Since a ∈ A, a ∈ A∪B , by definition of ∪. So for some x , x ∈ A∪B ,
i.e., A ∪ B ≠ ∅.

In that last step, we went from “a ∈ A ∪ B” to “for
some x , x ∈ A∪B .” That doesn’t mention a anymore,
so we know that “for some x , x ∈ A ∪ B” follows
from “for some x , x ∈ A alone.” But that means that
A ∪ B ≠ ∅. □

It’s maybe good practice to keep bound variables like “x” sep-
arate from hypothetical names like a, like we did. In practice,
however, we often don’t and just use x , like so:

Suppose A ≠ ∅, i.e., there is an x ∈ A. By definition
of ∪, x ∈ A ∪ B . So A ∪ B ≠ ∅.

APPENDIX B. PROOFS 446

However, when you do this, you have to be extra careful that
you use different x ’s and y ’s for different existential claims. For
instance, the following is not a correct proof of “If A ≠ ∅ and
B ≠ ∅ then A ∩ B ≠ ∅” (which is not true).

Suppose A ≠ ∅ and B ≠ ∅. So for some x , x ∈ A
and also for some x , x ∈ B . Since x ∈ A and x ∈ B ,
x ∈ A ∩ B , by definition of ∩. So A ∩ B ≠ ∅.

Can you spot where the incorrect step occurs and explain why
the result does not hold?

B.5 An Example

Our first example is the following simple fact about unions and in-
tersections of sets. It will illustrate unpacking definitions, proofs
of conjunctions, of universal claims, and proof by cases.

Proposition B.8. For any sets A, B, and C , A ∪ (B ∩ C) = (A ∪
B) ∩ (A ∪C)

Let’s prove it!

Proof. We want to show that for any setsA, B , andC , A∪(B∩C) =
(A ∪ B) ∩ (A ∪C)

First we unpack the definition of “=” in the statement
of the proposition. Recall that proving sets identical
means showing that the sets have the same elements.
That is, all elements of A∪ (B ∩C) are also elements
of (A∪B) ∩ (A∪C), and vice versa. The “vice versa”
means that also every element of (A ∪ B) ∩ (A ∪ C)
must be an element ofA∪(B∩C). So in unpacking the
definition, we see that we have to prove a conjunction.
Let’s record this:

APPENDIX B. PROOFS 447

By definition, A ∪ (B ∩C) = (A ∪ B) ∩ (A ∪C) iff every element
of A ∪ (B ∩C) is also an element of (A ∪B) ∩ (A ∪C), and every
element of (A ∪ B) ∩ (A ∪C) is an element of A ∪ (B ∩C).

Since this is a conjunction, we must prove each con-
junct separately. Lets start with the first: let’s prove
that every element of A ∪ (B ∩C) is also an element
of (A ∪ B) ∩ (A ∪C).
This is a universal claim, and so we consider an ar-
bitrary element of A ∪ (B ∩C) and show that it must
also be an element of (A ∪B) ∩ (A ∪C). We’ll pick a
variable to call this arbitrary element by, say, z . Our
proof continues:

First, we prove that every element of A∪(B∩C) is also an element
of (A ∪ B) ∩ (A ∪C). Let z ∈ A ∪ (B ∩C). We have to show that
z ∈ (A ∪ B) ∩ (A ∪C).

Now it is time to unpack the definition of ∪ and ∩.
For instance, the definition of ∪ is: A ∪ B = {z :
z ∈ A or z ∈ B }. When we apply the definition to
“A ∪ (B ∩ C),” the role of the “B” in the definition
is now played by “B ∩ C ,” so A ∪ (B ∩ C) = {z :
z ∈ A or z ∈ B ∩ C }. So our assumption that z ∈
A∪ (B ∩C) amounts to: z ∈ {z : z ∈ A or z ∈ B ∩C }.
And z ∈ {z : . . . z . . .} iff . . . z . . . , i.e., in this case,
z ∈ A or z ∈ B ∩C .

By the definition of ∪, either z ∈ A or z ∈ B ∩C .

Since this is a disjunction, it will be useful to apply
proof by cases. We take the two cases, and show that
in each one, the conclusion we’re aiming for (namely,
“z ∈ (A ∪ B) ∩ (A ∪C)”) obtains.

Case 1: Suppose that z ∈ A.

APPENDIX B. PROOFS 448

There’s not much more to work from based on our
assumptions. So let’s look at what we have to work
with in the conclusion. We want to show that z ∈
(A ∪ B) ∩ (A ∪ C). Based on the definition of ∩, if
we want to show that z ∈ (A ∪ B) ∩ (A ∪C), we have
to show that it’s in both (A ∪ B) and (A ∪ C). But
z ∈ A ∪ B iff z ∈ A or z ∈ B , and we already have
(as the assumption of case 1) that z ∈ A. By the
same reasoning—switching C for B—z ∈ A∪C . This
argument went in the reverse direction, so let’s record
our reasoning in the direction needed in our proof.

Since z ∈ A, z ∈ A or z ∈ B , and hence, by definition of ∪, z ∈ A∪
B . Similarly, z ∈ A∪C . But this means that z ∈ (A∪B) ∩ (A∪C),
by definition of ∩.

This completes the first case of the proof by cases.
Now we want to derive the conclusion in the second
case, where z ∈ B ∩C .

Case 2: Suppose that z ∈ B ∩C .

Again, we are working with the intersection of two
sets. Let’s apply the definition of ∩:

Since z ∈ B ∩ C , z must be an element of both B and C , by
definition of ∩.

It’s time to look at our conclusion again. We have to
show that z is in both (A∪B) and (A∪C). And again,
the solution is immediate.

Since z ∈ B , z ∈ (A ∪ B). Since z ∈ C , also z ∈ (A ∪ C). So,
z ∈ (A ∪ B) ∩ (A ∪C).

Here we applied the definitions of ∪ and ∩ again,
but since we’ve already recalled those definitions, and
already showed that if z is in one of two sets it is in

APPENDIX B. PROOFS 449

their union, we don’t have to be as explicit in what
we’ve done.

We’ve completed the second case of the proof by
cases, so now we can assert our first conclusion.

So, if z ∈ A ∪ (B ∩C) then z ∈ (A ∪ B) ∩ (A ∪C).

Now we just want to show the other direction, that
every element of (A ∪ B) ∩ (A ∪ C) is an element of
A ∪ (B ∩C). As before, we prove this universal claim
by assuming we have an arbitrary element of the first
set and show it must be in the second set. Let’s state
what we’re about to do.

Now, assume that z ∈ (A ∪ B) ∩ (A ∪ C). We want to show that
z ∈ A ∪ (B ∩C).

We are now working from the hypothesis that z ∈
(A ∪ B) ∩ (A ∪ C). It hopefully isn’t too confusing
that we’re using the same z here as in the first part
of the proof. When we finished that part, all the as-
sumptions we’ve made there are no longer in effect,
so now we can make new assumptions about what z
is. If that is confusing to you, just replace z with a
different variable in what follows.

We know that z is in both A∪B and A∪C , by defini-
tion of ∩. And by the definition of ∪, we can further
unpack this to: either z ∈ A or z ∈ B , and also either
z ∈ A or z ∈ C . This looks like a proof by cases
again—except the “and” makes it confusing. You
might think that this amounts to there being three
possibilities: z is either in A, B or C . But that would
be a mistake. We have to be careful, so let’s consider
each disjunction in turn.

By definition of ∩, z ∈ A ∪ B and z ∈ A ∪ C . By definition of ∪,
z ∈ A or z ∈ B . We distinguish cases.

APPENDIX B. PROOFS 450

Since we’re focusing on the first disjunction, we
haven’t gotten our second disjunction (from unpack-
ing A ∪ C) yet. In fact, we don’t need it yet. The
first case is z ∈ A, and an element of a set is also
an element of the union of that set with any other. So
case 1 is easy:

Case 1: Suppose that z ∈ A. It follows that z ∈ A ∪ (B ∩C).

Now for the second case, z ∈ B . Here we’ll unpack
the second ∪ and do another proof-by-cases:

Case 2: Suppose that z ∈ B . Since z ∈ A ∪ C , either z ∈ A or
z ∈ C . We distinguish cases further:

Case 2a: z ∈ A. Then, again, z ∈ A ∪ (B ∩C).

Ok, this was a bit weird. We didn’t actually need the
assumption that z ∈ B for this case, but that’s ok.

Case 2b: z ∈ C . Then z ∈ B and z ∈ C , so z ∈ B ∩ C , and
consequently, z ∈ A ∪ (B ∩C).

This concludes both proofs-by-cases and so we’re
done with the second half.

So, if z ∈ (A ∪ B) ∩ (A ∪C) then z ∈ A ∪ (B ∩C). □

B.6 Another Example

Proposition B.9. If A ⊆ C , then A ∪ (C \ A) = C .

Proof. Suppose that A ⊆ C . We want to show that A∪(C \A) = C .

We begin by observing that this is a conditional state-
ment. It is tacitly universally quantified: the proposi-
tion holds for all sets A and C . So A and C are vari-
ables for arbitrary sets. To prove such a statement,
we assume the antecedent and prove the consequent.

APPENDIX B. PROOFS 451

We continue by using the assumption that A ⊆ C .
Let’s unpack the definition of ⊆: the assumption
means that all elements of A are also elements of C .
Let’s write this down—it’s an important fact that we’ll
use throughout the proof.

By the definition of ⊆, since A ⊆ C , for all z , if z ∈ A, then z ∈ C .

We’ve unpacked all the definitions that are given to
us in the assumption. Now we can move onto the
conclusion. We want to show that A ∪ (C \ A) = C ,
and so we set up a proof similarly to the last example:
we show that every element of A ∪ (C \ A) is also
an element of C and, conversely, every element of C
is an element of A ∪ (C \ A). We can shorten this to:
A ∪ (C \ A) ⊆ C and C ⊆ A ∪ (C \ A). (Here we’re
doing the opposite of unpacking a definition, but it
makes the proof a bit easier to read.) Since this is a
conjunction, we have to prove both parts. To show the
first part, i.e., that every element of A∪ (C \A) is also
an element of C , we assume that z ∈ A ∪ (C \ A) for
an arbitrary z and show that z ∈ C . By the definition
of ∪, we can conclude that z ∈ A or z ∈ C \ A from
z ∈ A ∪ (C \A). You should now be getting the hang
of this.

A ∪ (C \ A) = C iff A ∪ (C \ A) ⊆ C and C ⊆ (A ∪ (C \ A). First
we prove that A ∪ (C \ A) ⊆ C . Let z ∈ A ∪ (C \ A). So, either
z ∈ A or z ∈ (C \ A).

We’ve arrived at a disjunction, and from it we want
to prove that z ∈ C . We do this using proof by cases.

Case 1: z ∈ A. Since for all z , if z ∈ A, z ∈ C , we have that z ∈ C .

Here we’ve used the fact recorded earlier which fol-
lowed from the hypothesis of the proposition that
A ⊆ C . The first case is complete, and we turn to

APPENDIX B. PROOFS 452

the second case, z ∈ (C \ A). Recall that C \ A de-
notes the difference of the two sets, i.e., the set of all
elements of C which are not elements of A. But any
element ofC not in A is in particular an element ofC .

Case 2: z ∈ (C \ A). This means that z ∈ C and z ∉ A. So, in
particular, z ∈ C .

Great, we’ve proved the first direction. Now for the
second direction. Here we prove that C ⊆ A∪(C \A).
So we assume that z ∈ C and prove that z ∈ A ∪ (C \
A).

Now let z ∈ C . We want to show that z ∈ A or z ∈ C \ A.

Since all elements of A are also elements of C , and
C \A is the set of all things that are elements of C but
not A, it follows that z is either in A or in C \A. This
may be a bit unclear if you don’t already know why
the result is true. It would be better to prove it step-
by-step. It will help to use a simple fact which we can
state without proof: z ∈ A or z ∉ A. This is called the
“principle of excluded middle:” for any statement p,
either p is true or its negation is true. (Here, p is the
statement that z ∈ A.) Since this is a disjunction, we
can again use proof-by-cases.

Either z ∈ A or z ∉ A. In the former case, z ∈ A ∪ (C \A). In the
latter case, z ∈ C and z ∉ A, so z ∈ C \A. But then z ∈ A∪(C \A).

Our proof is complete: we have shown that A ∪ (C \
A) = C . □

B.7 Proof by Contradiction

In the first instance, proof by contradiction is an inference pat-
tern that is used to prove negative claims. Suppose you want to

APPENDIX B. PROOFS 453

show that some claim p is false, i.e., you want to show ¬p . The
most promising strategy is to (a) suppose that p is true, and (b)
show that this assumption leads to something you know to be
false. “Something known to be false” may be a result that con-
flicts with—contradicts—p itself, or some other hypothesis of the
overall claim you are considering. For instance, a proof of “if q
then ¬p” involves assuming that q is true and proving ¬p from
it. If you prove ¬p by contradiction, that means assuming p in
addition to q . If you can prove ¬q from p, you have shown that
the assumption p leads to something that contradicts your other
assumption q , since q and ¬q cannot both be true. Of course,
you have to use other inference patterns in your proof of the con-
tradiction, as well as unpacking definitions. Let’s consider an
example.

Proposition B.10. If A ⊆ B and B = ∅, then A has no elements.

Proof. Suppose A ⊆ B and B = ∅. We want to show that A has
no elements.

Since this is a conditional claim, we assume the an-
tecedent and want to prove the consequent. The con-
sequent is: A has no elements. We can make that a bit
more explicit: it’s not the case that there is an x ∈ A.

A has no elements iff it’s not the case that there is an x such that
x ∈ A.

So we’ve determined that what we want to prove is
really a negative claim ¬p, namely: it’s not the case
that there is an x ∈ A. To use proof by contradic-
tion, we have to assume the corresponding positive
claim p, i.e., there is an x ∈ A, and prove a contra-
diction from it. We indicate that we’re doing a proof
by contradiction by writing “by way of contradiction,
assume” or even just “suppose not,” and then state
the assumption p .

APPENDIX B. PROOFS 454

Suppose not: there is an x ∈ A.

This is now the new assumption we’ll use to obtain a
contradiction. We have two more assumptions: that
A ⊆ B and that B = ∅. The first gives us that x ∈ B :

Since A ⊆ B , x ∈ B .

But since B = ∅, every element of B (e.g., x) must
also be an element of ∅.

Since B = ∅, x ∈ ∅. This is a contradiction, since by definition ∅
has no elements.

This already completes the proof: we’ve arrived at
what we need (a contradiction) from the assumptions
we’ve set up, and this means that the assumptions
can’t all be true. Since the first two assumptions (A ⊆
B and B = ∅) are not contested, it must be the last
assumption introduced (there is an x ∈ A) that must
be false. But if we want to be thorough, we can spell
this out.

Thus, our assumption that there is an x ∈ A must be false, hence,
A has no elements by proof by contradiction. □

Every positive claim is trivially equivalent to a negative claim:
p iff ¬¬p . So proofs by contradiction can also be used to establish
positive claims “indirectly,” as follows: To prove p, read it as the
negative claim ¬¬p . If we can prove a contradiction from ¬p,
we’ve established ¬¬p by proof by contradiction, and hence p .

In the last example, we aimed to prove a negative claim,
namely that A has no elements, and so the assumption we made
for the purpose of proof by contradiction (i.e., that there is an
x ∈ A) was a positive claim. It gave us something to work with,
namely the hypothetical x ∈ A about which we continued to rea-
son until we got to x ∈ ∅.

APPENDIX B. PROOFS 455

When proving a positive claim indirectly, the assumption
you’d make for the purpose of proof by contradiction would be
negative. But very often you can easily reformulate a positive
claim as a negative claim, and a negative claim as a positive
claim. Our previous proof would have been essentially the same
had we proved “A = ∅” instead of the negative consequent “A
has no elements.” (By definition of =, “A = ∅” is a general claim,
since it unpacks to “every element of A is an element of ∅ and
vice versa”.) But it is easily seen to be equivalent to the negative
claim “not: there is an x ∈ A.”

So it is sometimes easier to work with ¬p as an assumption
than it is to prove p directly. Even when a direct proof is just as
simple or even simpler (as in the next examples), some people
prefer to proceed indirectly. If the double negation confuses you,
think of a proof by contradiction of some claim as a proof of a
contradiction from the opposite claim. So, a proof by contradic-
tion of ¬p is a proof of a contradiction from the assumption p; and
proof by contradiction of p is a proof of a contradiction from ¬p .

Proposition B.11. A ⊆ A ∪ B.

Proof. We want to show that A ⊆ A ∪ B .

On the face of it, this is a positive claim: every x ∈ A
is also in A ∪ B . The negation of that is: some x ∈
A is ∉ A ∪ B . So we can prove the claim indirectly
by assuming this negated claim, and showing that it
leads to a contradiction.

Suppose not, i.e., A ⊈ A ∪ B .

We have a definition of A ⊆ A ∪ B : every x ∈ A is
also ∈ A ∪ B . To understand what A ⊈ A ∪ B means,
we have to use some elementary logical manipulation
on the unpacked definition: it’s false that every x ∈ A
is also ∈ A ∪ B iff there is some x ∈ A that is ∉ C .
(This is a place where you want to be very careful:

APPENDIX B. PROOFS 456

many students’ attempted proofs by contradiction fail
because they analyze the negation of a claim like “all
As are Bs” incorrectly.) In other words, A ⊈ A ∪B iff
there is an x such that x ∈ A and x ∉ A ∪ B . From
then on, it’s easy.

So, there is an x ∈ A such that x ∉ A ∪ B . By definition of ∪,
x ∈ A ∪ B iff x ∈ A or x ∈ B . Since x ∈ A, we have x ∈ A ∪ B .
This contradicts the assumption that x ∉ A ∪ B . □

Proposition B.12. If A ⊆ B and B ⊆ C then A ⊆ C .

Proof. Suppose A ⊆ B and B ⊆ C . We want to show A ⊆ C .

Let’s proceed indirectly: we assume the negation of
what we want to etablish.

Suppose not, i.e., A ⊈ C .

As before, we reason that A ⊈ C iff not every x ∈ A
is also ∈ C , i.e., some x ∈ A is ∉ C . Don’t worry,
with practice you won’t have to think hard anymore
to unpack negations like this.

In other words, there is an x such that x ∈ A and x ∉ C .

Now we can use this to get to our contradiction. Of
course, we’ll have to use the other two assumptions
to do it.

Since A ⊆ B , x ∈ B . Since B ⊆ C , x ∈ C . But this contradicts
x ∉ C . □

APPENDIX B. PROOFS 457

Proposition B.13. If A ∪ B = A ∩ B then A = B.

Proof. Suppose A ∪ B = A ∩ B . We want to show that A = B .

The beginning is now routine:

Assume, by way of contradiction, that A ≠ B .

Our assumption for the proof by contradiction is that
A ≠ B . Since A = B iff A ⊆ B an B ⊆ A, we get that
A ≠ B iff A ⊈ B or B ⊈ A. (Note how important it is
to be careful when manipulating negations!) To prove
a contradiction from this disjunction, we use a proof
by cases and show that in each case, a contradiction
follows.

A ≠ B iff A ⊈ B or B ⊈ A. We distinguish cases.

In the first case, we assume A ⊈ B , i.e., for some x ,
x ∈ A but ∉ B . A ∩ B is defined as those elements
that A and B have in common, so if something isn’t
in one of them, it’s not in the intersection. A ∪ B is
A together with B , so anything in either is also in the
union. This tells us that x ∈ A∪B but x ∉ A∩B , and
hence that A ∩ B ≠ A ∪ B .

Case 1: A ⊈ B . Then for some x , x ∈ A but x ∉ B . Since
x ∉ B , then x ∉ A ∩B . Since x ∈ A, x ∈ A ∪B . So, A ∩B ≠ A ∪B ,
contradicting the assumption that A ∩ B = A ∪ B .

Case 2: B ⊈ A. Then for some y , y ∈ B but y ∉ A. As before,
we have y ∈ A ∪ B but y ∉ A ∩ B , and so A ∩ B ≠ A ∪ B , again
contradicting A ∩ B = A ∪ B . □

B.8 Reading Proofs

Proofs you find in textbooks and articles very seldom give all the
details we have so far included in our examples. Authors often

APPENDIX B. PROOFS 458

do not draw attention to when they distinguish cases, when they
give an indirect proof, or don’t mention that they use a definition.
So when you read a proof in a textbook, you will often have to
fill in those details for yourself in order to understand the proof.
Doing this is also good practice to get the hang of the various
moves you have to make in a proof. Let’s look at an example.

Proposition B.14 (Absorption). For all sets A, B,

A ∩ (A ∪ B) = A

Proof. If z ∈ A ∩ (A ∪ B), then z ∈ A, so A ∩ (A ∪ B) ⊆ A.
Now suppose z ∈ A. Then also z ∈ A ∪ B , and therefore also
z ∈ A ∩ (A ∪ B). □

The preceding proof of the absorption law is very condensed.
There is no mention of any definitions used, no “we have to prove
that” before we prove it, etc. Let’s unpack it. The proposition
proved is a general claim about any sets A and B , and when the
proof mentions A or B , these are variables for arbitrary sets. The
general claims the proof establishes is what’s required to prove
identity of sets, i.e., that every element of the left side of the
identity is an element of the right and vice versa.

“If z ∈ A ∩ (A ∪ B), then z ∈ A, so A ∩ (A ∪ B) ⊆ A.”

This is the first half of the proof of the identity: it estabishes
that if an arbitrary z is an element of the left side, it is also
an element of the right, i.e., A ∩ (A ∪ B) ⊆ A. Assume that
z ∈ A ∩ (A ∪ B). Since z is an element of the intersection of two
sets iff it is an element of both sets, we can conclude that z ∈ A
and also z ∈ A∪B . In particular, z ∈ A, which is what we wanted
to show. Since that’s all that has to be done for the first half, we
know that the rest of the proof must be a proof of the second half,
i.e., a proof that A ⊆ A ∩ (A ∪ B).

“Now suppose z ∈ A. Then also z ∈ A ∪ B , and
therefore also z ∈ A ∩ (A ∪ B).”

APPENDIX B. PROOFS 459

We start by assuming that z ∈ A, since we are showing that,
for any z , if z ∈ A then z ∈ A∩(A∪B). To show that z ∈ A∩(A∪B),
we have to show (by definition of “∩”) that (i) z ∈ A and also (ii)
z ∈ A ∪ B . Here (i) is just our assumption, so there is nothing
further to prove, and that’s why the proof does not mention it
again. For (ii), recall that z is an element of a union of sets
iff it is an element of at least one of those sets. Since z ∈ A,
and A ∪ B is the union of A and B , this is the case here. So
z ∈ A ∪B . We’ve shown both (i) z ∈ A and (ii) z ∈ A ∪B , hence,
by definition of “∩,” z ∈ A ∩ (A ∪B). The proof doesn’t mention
those definitions; it’s assumed the reader has already internalized
them. If you haven’t, you’ll have to go back and remind yourself
what they are. Then you’ll also have to recognize why it follows
from z ∈ A that z ∈ A ∪ B , and from z ∈ A and z ∈ A ∪ B that
z ∈ A ∩ (A ∪ B).

Here’s another version of the proof above, with everything
made explicit:

Proof. [By definition of = for sets, A∩(A∪B) = A we have to show
(a) A ∩ (A ∪ B) ⊆ A and (b) A ∩ (A ∪ B) ⊆ A. (a): By definition
of ⊆, we have to show that if z ∈ A ∩ (A ∪ B), then z ∈ A.] If
z ∈ A∩(A∪B), then z ∈ A [since by definition of ∩, z ∈ A∩(A∪B)
iff z ∈ A and z ∈ A ∪ B], so A ∩ (A ∪ B) ⊆ A. [(b): By definition
of ⊆, we have to show that if z ∈ A, then z ∈ A ∩ (A ∪ B).] Now
suppose [(1)] z ∈ A. Then also [(2)] z ∈ A ∪B [since by (1) z ∈ A
or z ∈ B , which by definition of ∪ means z ∈ A∪B], and therefore
also z ∈ A∩ (A∪B) [since the definition of ∩ requires that z ∈ A,
i.e., (1), and z ∈ A ∪ B), i.e., (2)]. □

B.9 I Can’t Do It!

We all get to a point where we feel like giving up. But you can do
it. Your instructor and teaching assistant, as well as your fellow
students, can help. Ask them for help! Here are a few tips to help
you avoid a crisis, and what to do if you feel like giving up.

APPENDIX B. PROOFS 460

To make sure you can solve problems successfully, do the fol-
lowing:

1. Start as far in advance as possible. We get busy throughout
the semester and many of us struggle with procrastination,
one of the best things you can do is to start your homework
assignments early. That way, if you’re stuck, you have time
to look for a solution (that isn’t crying).

2. Talk to your classmates. You are not alone. Others in the
class may also struggle—but the may struggle with differ-
ent things. Talking it out with your peers can give you
a different perspective on the problem that might lead to
a breakthrough. Of course, don’t just copy their solution:
ask them for a hint, or explain where you get stuck and ask
them for the next step. And when you do get it, recipro-
cate. Helping someone else along, and explaining things
will help you understand better, too.

3. Ask for help. You have many resources available to you—
your instructor and teaching assistant are there for you
and want you to succeed. They should be able to help
you work out a problem and identify where in the process
you’re struggling.

4. Take a break. If you’re stuck, it might be because you’ve been
staring at the problem for too long. Take a short break,
have a cup of tea, or work on a different problem for a
while, then return to the problem with a fresh mind. Sleep
on it.

Notice how these strategies require that you’ve started to work
on the proof well in advance? If you’ve started the proof at 2am
the day before it’s due, these might not be so helpful.

This might sound like doom and gloom, but solving a proof
is a challenge that pays off in the end. Some people do this as
a career—so there must be something to enjoy about it. Like

APPENDIX B. PROOFS 461

basically everything, solving problems and doing proofs is some-
thing that requires practice. You might see classmates who find
this easy: they’ve probably just had lots of practice already. Try
not to give in too easily.

If you do run out of time (or patience) on a particular prob-
lem: that’s ok. It doesn’t mean you’re stupid or that you will never
get it. Find out (from your instructor or another student) how it
is done, and identify where you went wrong or got stuck, so you
can avoid doing that the next time you encounter a similar issue.
Then try to do it without looking at the solution. And next time,
start (and ask for help) earlier.

B.10 Other Resources

There are many books on how to do proofs in mathematics which
may be useful. Check out How to Read and do Proofs: An Intro-
duction to Mathematical Thought Processes (Solow, 2013) and How
to Prove It: A Structured Approach (Velleman, 2019) in particular.
The Book of Proof (Hammack, 2013) and Mathematical Reasoning
(Sandstrum, 2019) are books on proof that are freely available
online. Philosophers might find More Precisely: The Math you need
to do Philosophy (Steinhart, 2018) to be a good primer on mathe-
matical reasoning.

There are also various shorter guides to proofs available on
the internet; e.g., “Introduction to Mathematical Arguments”
(Hutchings, 2003) and “How to write proofs” (Cheng, 2004).

Motivational Videos

Feel like you have no motivation to do your homework? Feeling
down? These videos might help!

• https://www.youtube.com/watch?v=ZXsQAXx_ao0

• https://www.youtube.com/watch?v=BQ4yd2W50No

• https://www.youtube.com/watch?v=StTqXEQ2l-Y

http://www.people.vcu.edu/~rhammack/BookOfProof/BookOfProof.pdf
https://scholarworks.gvsu.edu/books/7/
https://math.berkeley.edu/~hutching/teach/proofs.pdf
http://http://eugeniacheng.com/wp-content/uploads/2017/02/cheng-proofguide.pdf
https://www.youtube.com/watch?v=ZXsQAXx_ao0
https://www.youtube.com/watch?v=BQ4yd2W50No
https://www.youtube.com/watch?v=StTqXEQ2l-Y

APPENDIX B. PROOFS 462

Problems

Problem B.1. Suppose you are asked to prove that A ∩ B ≠ ∅.
Unpack all the definitions occuring here, i.e., restate this in a way
that does not mention “∩”, “=”, or “∅”.

Problem B.2. Prove indirectly that A ∩ B ⊆ A.

Problem B.3. Expand the following proof of A ∪ (A ∩ B) = A,
where you mention all the inference patterns used, why each step
follows from assumptions or claims established before it, and
where we have to appeal to which definitions.

Proof. If z ∈ A ∪ (A ∩ B) then z ∈ A or z ∈ A ∩ B . If z ∈ A ∩ B ,
z ∈ A. Any z ∈ A is also ∈ A ∪ (A ∩ B). □

APPENDIX C

Induction
C.1 Introduction

Induction is an important proof technique which is used, in dif-
ferent forms, in almost all areas of logic, theoretical computer
science, and mathematics. It is needed to prove many of the re-
sults in logic.

Induction is often contrasted with deduction, and character-
ized as the inference from the particular to the general. For in-
stance, if we observe many green emeralds, and nothing that we
would call an emerald that’s not green, we might conclude that
all emeralds are green. This is an inductive inference, in that it
proceeds from many particlar cases (this emerald is green, that
emerald is green, etc.) to a general claim (all emeralds are green).
Mathematical induction is also an inference that concludes a gen-
eral claim, but it is of a very different kind than this “simple
induction.”

Very roughly, an inductive proof in mathematics concludes
that all mathematical objects of a certain sort have a certain prop-
erty. In the simplest case, the mathematical objects an inductive
proof is concerned with are natural numbers. In that case an in-
ductive proof is used to establish that all natural numbers have
some property, and it does this by showing that

1. 0 has the property, and

463

APPENDIX C. INDUCTION 464

2. whenever a number k has the property, so does k + 1.

Induction on natural numbers can then also often be used to
prove general claims about mathematical objects that can be as-
signed numbers. For instance, finite sets each have a finite num-
ber n of elements, and if we can use induction to show that every
number n has the property “all finite sets of size n are . . . ” then
we will have shown something about all finite sets.

Induction can also be generalized to mathematical objects
that are inductively defined. For instance, expressions of a formal
language such as those of first-order logic are defined inductively.
Structural induction is a way to prove results about all such expres-
sions. Structural induction, in particular, is very useful—and
widely used—in logic.

C.2 Induction on N

In its simplest form, induction is a technique used to prove results
for all natural numbers. It uses the fact that by starting from 0
and repeatedly adding 1 we eventually reach every natural num-
ber. So to prove that something is true for every number, we can
(1) establish that it is true for 0 and (2) show that whenever it is
true for a number n, it is also true for the next number n+1. If we
abbreviate “number n has property P ” by P (n) (and “number k
has property P ” by P (k), etc.), then a proof by induction that
P (n) for all n ∈ N consists of:

1. a proof of P (0), and

2. a proof that, for any k , if P (k) then P (k + 1).

To make this crystal clear, suppose we have both (1) and (2).
Then (1) tells us that P (0) is true. If we also have (2), we know
in particular that if P (0) then P (0 + 1), i.e., P (1). This follows
from the general statement “for any k , if P (k) then P (k + 1)” by
putting 0 for k . So by modus ponens, we have that P (1). From (2)
again, now taking 1 for n, we have: if P (1) then P (2). Since we’ve

APPENDIX C. INDUCTION 465

just established P (1), by modus ponens, we have P (2). And so
on. For any number n, after doing this n times, we eventually
arrive at P (n). So (1) and (2) together establish P (n) for any
n ∈ N.

Let’s look at an example. Suppose we want to find out how
many different sums we can throw with n dice. Although it might
seem silly, let’s start with 0 dice. If you have no dice there’s only
one possible sum you can “throw”: no dots at all, which sums
to 0. So the number of different possible throws is 1. If you have
only one die, i.e., n = 1, there are six possible values, 1 through 6.
With two dice, we can throw any sum from 2 through 12, that’s 11
possibilities. With three dice, we can throw any number from 3 to
18, i.e., 16 different possibilities. 1, 6, 11, 16: looks like a pattern:
maybe the answer is 5n + 1? Of course, 5n + 1 is the maximum
possible, because there are only 5n + 1 numbers between n, the
lowest value you can throw with n dice (all 1’s) and 6n, the highest
you can throw (all 6’s).

Theorem C.1. With n dice one can throw all 5n + 1 possible values
between n and 6n.

Proof. Let P (n) be the claim: “It is possible to throw any number
between n and 6n using n dice.” To use induction, we prove:

1. The induction basis P (1), i.e., with just one die, you can
throw any number between 1 and 6.

2. The induction step, for all k , if P (k) then P (k + 1).

(1) Is proved by inspecting a 6-sided die. It has all 6 sides,
and every number between 1 and 6 shows up one on of the sides.
So it is possible to throw any number between 1 and 6 using a
single die.

To prove (2), we assume the antecedent of the conditional,
i.e., P (k). This assumption is called the inductive hypothesis. We
use it to prove P (k +1). The hard part is to find a way of thinking
about the possible values of a throw of k + 1 dice in terms of the

APPENDIX C. INDUCTION 466

possible values of throws of k dice plus of throws of the extra
k + 1-st die—this is what we have to do, though, if we want to use
the inductive hypothesis.

The inductive hypothesis says we can get any number between
k and 6k using k dice. If we throw a 1 with our (k +1)-st die, this
adds 1 to the total. So we can throw any value between k + 1 and
6k + 1 by throwing k dice and then rolling a 1 with the (k + 1)-st
die. What’s left? The values 6k + 2 through 6k + 6. We can get
these by rolling k 6s and then a number between 2 and 6 with
our (k + 1)-st die. Together, this means that with k + 1 dice we
can throw any of the numbers between k + 1 and 6(k + 1), i.e.,
we’ve proved P (k + 1) using the assumption P (k), the inductive
hypothesis. □

Very often we use induction when we want to prove something
about a series of objects (numbers, sets, etc.) that is itself defined
“inductively,” i.e., by defining the (n+1)-st object in terms of the n-
th. For instance, we can define the sum sn of the natural numbers
up to n by

s0 = 0

sn+1 = sn + (n + 1)

This definition gives:

s0 = 0,

s1 = s0 + 1 = 1,

s2 = s1 + 2 = 1 + 2 = 3

s3 = s2 + 3 = 1 + 2 + 3 = 6, etc.

Now we can prove, by induction, that sn = n (n + 1)/2.

Proposition C.2. sn = n (n + 1)/2.

Proof. We have to prove (1) that s0 = 0 · (0 + 1)/2 and (2) if
sk = k (k + 1)/2 then sk+1 = (k + 1) (k + 2)/2. (1) is obvious. To

APPENDIX C. INDUCTION 467

prove (2), we assume the inductive hypothesis: sk = k (k + 1)/2.
Using it, we have to show that sk+1 = (k + 1) (k + 2)/2.

What is sk+1? By the definition, sk+1 = sk + (k + 1). By in-
ductive hypothesis, sk = k (k + 1)/2. We can substitute this into
the previous equation, and then just need a bit of arithmetic of
fractions:

sk+1 =
k (k + 1)

2
+ (k + 1) =

=
k (k + 1)

2
+ 2(k + 1)

2
=

=
k (k + 1) + 2(k + 1)

2
=

=
(k + 2) (k + 1)

2
. □

The important lesson here is that if you’re proving something
about some inductively defined sequence an , induction is the ob-
vious way to go. And even if it isn’t (as in the case of the possibil-
ities of dice throws), you can use induction if you can somehow
relate the case for k + 1 to the case for k .

C.3 Strong Induction

In the principle of induction discussed above, we prove P (0) and
also if P (k), then P (k + 1). In the second part, we assume that
P (k) is true and use this assumption to prove P (k + 1). Equiva-
lently, of course, we could assume P (k − 1) and use it to prove
P (k)—the important part is that we be able to carry out the in-
ference from any number to its successor; that we can prove the
claim in question for any number under the assumption it holds
for its predecessor.

There is a variant of the principle of induction in which we
don’t just assume that the claim holds for the predecessor k − 1
of k , but for all numbers smaller than k , and use this assump-
tion to establish the claim for k . This also gives us the claim
P (n) for all n ∈ N. For once we have established P (0), we have

APPENDIX C. INDUCTION 468

thereby established that P holds for all numbers less than 1. And
if we know that if P (l) for all l < k , then P (k), we know this
in particular for k = 1. So we can conclude P (1). With this we
have proved P (0) and P (1), i.e., P (l) for all l < 2, and since we
have also the conditional, if P (l) for all l < 2, then P (2), we can
conclude P (2), and so on.

In fact, if we can establish the general conditional “for all k ,
if P (l) for all l < k , then P (k),” we do not have to establish P (0)
anymore, since it follows from it. For remember that a general
claim like “for all l < k , P (l)” is true if there are no l < k . This
is a case of vacuous quantification: “all As are Bs” is true if there
are no As, ∀x (A(x) → B (x)) is true if no x satisfies A(x). In this
case, the formalized version would be “∀l (l < k → P (l))”—and
that is true if there are no l < k . And if k = 0 that’s exactly the
case: no l < 0, hence “for all l < 0, P (0)” is true, whatever P is.
A proof of “if P (l) for all l < k , then P (k)” thus automatically
establishes P (0).

This variant is useful if establishing the claim for k can’t be
made to just rely on the claim for k − 1 but may require the
assumption that it is true for one or more l < k .

C.4 Inductive Definitions

In logic we very often define kinds of objects inductively, i.e., by
specifying rules for what counts as an object of the kind to be
defined which explain how to get new objects of that kind from
old objects of that kind. For instance, we often define special
kinds of sequences of symbols, such as the terms and formulas of
a language, by induction. For a simple example, consider strings
of consisting of letters a, b, c, d, the symbol ◦, and brackets [and
], such as “[[c◦d] [”, “[a[]◦]”, “a” or “[[a◦b] ◦d]”. You probably
feel that there’s something “wrong” with the first two strings: the
brackets don’t “balance” at all in the first, and you might feel that
the “◦” should “connect” expressions that themselves make sense.
The third and fourth string look better: for every “[” there’s a

APPENDIX C. INDUCTION 469

closing “]” (if there are any at all), and for any ◦ we can find “nice”
expressions on either side, surrounded by a pair of parentheses.

We would like to precisely specify what counts as a “nice
term.” First of all, every letter by itself is nice. Anything that’s
not just a letter by itself should be of the form “[t ◦ s]” where s
and t are themselves nice. Conversely, if t and s are nice, then we
can form a new nice term by putting a ◦ between them and sur-
round them by a pair of brackets. We might use these operations
to define the set of nice terms. This is an inductive definition.

Definition C.3 (Nice terms). The set of nice terms is induc-
tively defined as follows:

1. Any letter a, b, c, d is a nice term.

2. If s1 and s2 are nice terms, then so is [s1 ◦ s2].

3. Nothing else is a nice term.

This definition tells us that something counts as a nice term iff
it can be constructed according to the two conditions (1) and (2)
in some finite number of steps. In the first step, we construct all
nice terms just consisting of letters by themselves, i.e.,

a,b,c,d

In the second step, we apply (2) to the terms we’ve constructed.
We’ll get

[a ◦ a], [a ◦ b], [b ◦ a], . . . , [d ◦ d]

for all combinations of two letters. In the third step, we apply
(2) again, to any two nice terms we’ve constructed so far. We get
new nice term such as [a◦ [a◦a]]—where t is a from step 1 and s
is [a◦a] from step 2—and [[b◦c] ◦ [d◦b]] constructed out of the
two terms [b ◦ c] and [d ◦ b] from step 2. And so on. Clause (3)
rules out that anything not constructed in this way sneaks into
the set of nice terms.

APPENDIX C. INDUCTION 470

Note that we have not yet proved that every sequence of sym-
bols that “feels” nice is nice according to this definition. However,
it should be clear that everything we can construct does in fact
“feel nice”: brackets are balanced, and ◦ connects parts that are
themselves nice.

The key feature of inductive definitions is that if you want
to prove something about all nice terms, the definition tells you
which cases you must consider. For instance, if you are told that
t is a nice term, the inductive definition tells you what t can look
like: t can be a letter, or it can be [s1 ◦ s2] for some pair of
nice terms s1 and s2. Because of clause (3), those are the only
possibilities.

When proving claims about all of an inductively defined set,
the strong form of induction becomes particularly important. For
instance, suppose we want to prove that for every nice term of
length n, the number of [in it is < n/2. This can be seen as a
claim about all n: for every n, the number of [in any nice term
of length n is < n/2.

Proposition C.4. For any n, the number of [in a nice term of
length n is < n/2.

Proof. To prove this result by (strong) induction, we have to show
that the following conditional claim is true:

If for every l < k , any nice term of length l has < l/2
[’s, then any nice term of length k has < k/2 [’s.

To show this conditional, assume that its antecedent is true, i.e.,
assume that for any l < k , nice terms of length l contain < l/2
[’s. We call this assumption the inductive hypothesis. We want
to show the same is true for nice terms of length k .

So suppose t is a nice term of length k . Because nice terms
are inductively defined, we have two cases: (1) t is a letter by
itself, or (2) t is [s1 ◦ s2] for some nice terms s1 and s2.

1. t is a letter. Then k = 1, and the number of [in t is 0.
Since 0 < 1/2, the claim holds.

APPENDIX C. INDUCTION 471

2. t is [s1 ◦ s2] for some nice terms s1 and s2. Let’s let l1 be the
length of s1 and l2 be the length of s2. Then the length k of
t is l1 + l2 + 3 (the lengths of s1 and s2 plus three symbols
[, ◦,]). Since l1 + l2 + 3 is always greater than l1, l1 < k .
Similarly, l2 < k . That means that the induction hypothesis
applies to the terms s1 and s2: the number m1 of [in s1 is
< l1/2, and the number m2 of [in s2 is < l2/2.

The number of [in t is the number of [in s1, plus the
number of [in s2, plus 1, i.e., it is m1 + m2 + 1. Since
m1 < l1/2 and m2 < l2/2 we have:

m1 +m2 + 1 <
l1
2
+ l2

2
+ 1 =

l1 + l2 + 2
2

<
l1 + l2 + 3

2
= k/2.

In each case, we’ve shown that the number of [in t is < k/2 (on
the basis of the inductive hypothesis). By strong induction, the
proposition follows. □

C.5 Structural Induction

So far we have used induction to establish results about all natural
numbers. But a corresponding principle can be used directly to
prove results about all elements of an inductively defined set.
This often called structural induction, because it depends on the
structure of the inductively defined objects.

Generally, an inductive definition is given by (a) a list of “ini-
tial” elements of the set and (b) a list of operations which produce
new elements of the set from old ones. In the case of nice terms,
for instance, the initial objects are the letters. We only have one
operation: the operations are

o (s1,s2) =[s1 ◦ s2]

You can even think of the natural numbers N themselves as being
given by an inductive definition: the initial object is 0, and the
operation is the successor function x + 1.

APPENDIX C. INDUCTION 472

In order to prove something about all elements of an induc-
tively defined set, i.e., that every element of the set has a prop-
erty P , we must:

1. Prove that the initial objects have P

2. Prove that for each operation o, if the arguments have P ,
so does the result.

For instance, in order to prove something about all nice terms,
we would prove that it is true about all letters, and that it is true
about [s1 ◦ s2] provided it is true of s1 and s2 individually.

Proposition C.5. The number of [equals the number of] in any nice
term t .

Proof. We use structural induction. Nice terms are inductively
defined, with letters as initial objects and the operation o for con-
structing new nice terms out of old ones.

1. The claim is true for every letter, since the number of [in
a letter by itself is 0 and the number of] in it is also 0.

2. Suppose the number of [in s1 equals the number of], and
the same is true for s2. The number of [in o (s1,s2), i.e.,
in [s1 ◦ s2], is the sum of the number of [in s1 and s2 plus
one. The number of] in o (s1,s2) is the sum of the number
of] in s1 and s2 plus one. Thus, the number of [in o (s1,s2)
equals the number of] in o (s1,s2). □

Let’s give another proof by structural induction: a proper
initial segment of a string t of symbols is any string s that agrees
with t symbol by symbol, read from the left, but t is longer. So,
e.g., [a ◦ is a proper initial segment of [a ◦ b], but neither are
[b ◦ (they disagree at the second symbol) nor [a ◦ b] (they are
the same length).

APPENDIX C. INDUCTION 473

Proposition C.6. Every proper initial segment of a nice term t has
more [’s than]’s.

Proof. By induction on t :

1. t is a letter by itself: Then t has no proper initial segments.

2. t = [s1 ◦ s2] for some nice terms s1 and s2. If r is a proper
initial segment of t , there are a number of possibilities:

a) r is just [: Then r has one more [than it does].
b) r is [r1 where r1 is a proper initial segment of s1: Since

s1 is a nice term, by induction hypothesis, r1 has more
[than] and the same is true for [r1.

c) r is [s1 or [s1 ◦ : By the previous result, the number
of [and] in s1 are equal; so the number of [in [s1 or
[s1 ◦ is one more than the number of].

d) r is [s1 ◦ r2 where r2 is a proper initial segment of s2:
By induction hypothesis, r2 contains more [than]. By
the previous result, the number of [and of] in s1 are
equal. So the number of [in [s1 ◦ r2 is greater than
the number of].

e) r is [s1 ◦ s2: By the previous result, the number of [
and] in s1 are equal, and the same for s2. So there is
one more [in [s1 ◦ s2 than there are]. □

C.6 Relations and Functions

When we have defined a set of objects (such as the natural num-
bers or the nice terms) inductively, we can also define relations on
these objects by induction. For instance, consider the following
idea: a nice term t1 is a subterm of a nice term t2 if it occurs as
a part of it. Let’s use a symbol for it: t1 ⊑ t2. Every nice term
is a subterm of itself, of course: t ⊑ t . We can give an inductive
definition of this relation as follows:

APPENDIX C. INDUCTION 474

Definition C.7. The relation of a nice term t1 being a subterm
of t2, t1 ⊑ t2, is defined by induction on t2 as follows:

1. If t2 is a letter, then t1 ⊑ t2 iff t1 = t2.

2. If t2 is [s1 ◦ s2], then t1 ⊑ t2 iff t1 = t2, t1 ⊑ s1, or t1 ⊑ s2.

This definition, for instance, will tell us that a ⊑ [b ◦ a]. For
(2) says that a ⊑ [b ◦ a] iff a = [b ◦ a], or a ⊑ b , or a ⊑ a. The
first two are false: a clearly isn’t identical to [b ◦ a], and by (1),
a ⊑ b iff a = b, which is also false. However, also by (1), a ⊑ a iff
a = a, which is true.

It’s important to note that the success of this definition de-
pends on a fact that we haven’t proved yet: every nice term t is
either a letter by itself, or there are uniquely determined nice terms
s1 and s2 such that t = [s1 ◦ s2]. “Uniquely determined” here
means that if t = [s1 ◦ s2] it isn’t also = [r1 ◦ r2] with s1 ≠ r1 or
s2 ≠ r2. If this were the case, then clause (2) may come in conflict
with itself: reading t2 as [s1 ◦ s2] we might get t1 ⊑ t2, but if we
read t2 as [r1 ◦ r2] we might get not t1 ⊑ t2. Before we prove that
this can’t happen, let’s look at an example where it can happen.

Definition C.8. Define bracketless terms inductively by

1. Every letter is a bracketless term.

2. If s1 and s2 are bracketless terms, then s1◦s2 is a bracketless
term.

3. Nothing else is a bracketless term.

Bracketless terms are, e.g., a, b◦d, b◦a◦b. Now if we defined
“subterm” for bracketless terms the way we did above, the second
clause would read

If t2 = s1 ◦ s2, then t1 ⊑ t2 iff t1 = t2, t1 ⊑ s1, or t1 ⊑ s2.

APPENDIX C. INDUCTION 475

Now b ◦ a ◦ b is of the form s1 ◦ s2 with

s1 = b and s2 = a ◦ b.

It is also of the form r1 ◦ r2 with

r1 = b ◦ a and r2 = b.

Now is a ◦ b a subterm of b ◦ a ◦ b? The answer is yes if we go by
the first reading, and no if we go by the second.

The property that the way a nice term is built up from other
nice terms is unique is called unique readability. Since inductive
definitions of relations for such inductively defined objects are
important, we have to prove that it holds.

Proposition C.9. Suppose t is a nice term. Then either t is a letter
by itself, or there are uniquely determined nice terms s1, s2 such that t =
[s1 ◦ s2].

Proof. If t is a letter by itself, the condition is satisfied. So assume
t isn’t a letter by itself. We can tell from the inductive definition
that then t must be of the form [s1 ◦ s2] for some nice terms s1
and s2. It remains to show that these are uniquely determined,
i.e., if t = [r1 ◦ r2], then s1 = r1 and s2 = r2.

So suppose t = [s1 ◦ s2] and also t = [r1 ◦ r2] for nice terms s1,
s2, r1, r2. We have to show that s1 = r1 and s2 = r2. First, s1 and r1
must be identical, for otherwise one is a proper initial segment of
the other. But by Proposition C.6, that is impossible if s1 and r1
are both nice terms. But if s1 = r1, then clearly also s2 = r2. □

We can also define functions inductively: e.g., we can define
the function f that maps any nice term to the maximum depth
of nested [. . .] in it as follows:

Definition C.10. The depth of a nice term, f (t), is defined in-

APPENDIX C. INDUCTION 476

ductively as follows:

f (t) =
{︄
0 if t is a letter

max(f (s1), f (s2)) + 1 if t = [s1 ◦ s2].

For instance

f ([a ◦ b]) = max(f (a), f (b)) + 1 =

= max(0,0) + 1 = 1, and

f ([[a ◦ b] ◦ c]) = max(f ([a ◦ b]), f (c)) + 1 =

= max(1,0) + 1 = 2.

Here, of course, we assume that s1 an s2 are nice terms, and
make use of the fact that every nice term is either a letter or of
the form [s1 ◦ s2]. It is again important that it can be of this form
in only one way. To see why, consider again the bracketless terms
we defined earlier. The corresponding “definition” would be:

g (t) =
{︄
0 if t is a letter

max(g (s1), g (s2)) + 1 if t = s1 ◦ s2.

Now consider the bracketless term a ◦ b ◦ c ◦ d. It can be read in
more than one way, e.g., as s1 ◦ s2 with

s1 = a and s2 = b ◦ c ◦ d,

or as r1 ◦ r2 with

r1 = a ◦ b and r2 = c ◦ d.

Calculating g according to the first way of reading it would give

g (s1 ◦ s2) = max(g (a), g (b ◦ c ◦ d)) + 1 =

= max(0,2) + 1 = 3

while according to the other reading we get

g (r1 ◦ r2) = max(g (a ◦ b), g (c ◦ d)) + 1 =

APPENDIX C. INDUCTION 477

= max(1,1) + 1 = 2

But a function must always yield a unique value; so our “defini-
tion” of g doesn’t define a function at all.

Problems

Problem C.1. Define the set of supernice terms by

1. Any letter a, b, c, d is a supernice term.

2. If s is a supernice term, then so is [s].

3. If s1 and s2 are supernice terms, then so is [s1 ◦ s2].

4. Nothing else is a supernice term.

Show that the number of [in a supernice term t of length n is
≤ n/2 + 1.

Problem C.2. Prove by structural induction that no nice term
starts with].

Problem C.3. Give an inductive definition of the function l ,
where l (t) is the number of symbols in the nice term t .

Problem C.4. Prove by structural induction on nice terms t that
f (t) < l (t) (where l (t) is the number of symbols in t and f (t) is
the depth of t as defined in Definition C.10).

APPENDIX D

Biographies
D.1 Georg Cantor

Fig. D.1: Georg Cantor

An early biography of Georg
Cantor (gay-org kahn-tor)
claimed that he was born and
found on a ship that was sail-
ing for Saint Petersburg, Rus-
sia, and that his parents were
unknown. This, however, is
not true; although he was
born in Saint Petersburg in
1845.

Cantor received his doc-
torate in mathematics at the
University of Berlin in 1867.
He is known for his work in
set theory, and is credited
with founding set theory as a
distinctive research discipline.
He was the first to prove that
there are infinite sets of different sizes. His theories, and espe-
cially his theory of infinities, caused much debate among mathe-
maticians at the time, and his work was controversial.

Cantor’s religious beliefs and his mathematical work were in-

478

APPENDIX D. BIOGRAPHIES 479

extricably tied; he even claimed that the theory of transfinite num-
bers had been communicated to him directly by God. In later
life, Cantor suffered from mental illness. Beginning in 1894, and
more frequently towards his later years, Cantor was hospitalized.
The heavy criticism of his work, including a falling out with the
mathematician Leopold Kronecker, led to depression and a lack
of interest in mathematics. During depressive episodes, Cantor
would turn to philosophy and literature, and even published a
theory that Francis Bacon was the author of Shakespeare’s plays.

Cantor died on January 6, 1918, in a sanatorium in Halle.

Further Reading For full biographies of Cantor, see Dauben
(1990) and Grattan-Guinness (1971). Cantor’s radical views are
also described in the BBC Radio 4 program A Brief History of
Mathematics (du Sautoy, 2014). If you’d like to hear about Can-
tor’s theories in rap form, see Rose (2012).

D.2 Alonzo Church

Fig. D.2: Alonzo Church

Alonzo Church was born in
Washington, DC on June 14,
1903. In early childhood, an
air gun incident left Church
blind in one eye. He fin-
ished preparatory school in
Connecticut in 1920 and be-
gan his university education
at Princeton that same year.
He completed his doctoral
studies in 1927. After a cou-
ple years abroad, Church re-
turned to Princeton. Church
was known exceedingly polite
and careful. His blackboard
writing was immaculate, and he would preserve important pa-

APPENDIX D. BIOGRAPHIES 480

pers by carefully covering them in Duco cement (a clear glue).
Outside of his academic pursuits, he enjoyed reading science fic-
tion magazines and was not afraid to write to the editors if he
spotted any inaccuracies in the writing.

Church’s academic achievements were great. Together with
his students Stephen Kleene and Barkley Rosser, he developed
a theory of effective calculability, the lambda calculus, indepen-
dently of Alan Turing’s development of the Turing machine. The
two definitions of computability are equivalent, and give rise to
what is now known as the Church-Turing Thesis, that a function
of the natural numbers is effectively computable if and only if
it is computable via Turing machine (or lambda calculus). He
also proved what is now known as Church’s Theorem: The deci-
sion problem for the validity of first-order formulas is unsolvable.

Church continued his work into old age. In 1967 he left
Princeton for UCLA, where he was professor until his retirement
in 1990. Church passed away on August 1, 1995 at the age of 92.

Further Reading For a brief biography of Church, see En-
derton (2019). Church’s original writings on the lambda calcu-
lus and the Entscheidungsproblem (Church’s Thesis) are Church
(1936a,b). Aspray (1984) records an interview with Church about
the Princeton mathematics community in the 1930s. Church
wrote a series of book reviews of the Journal of Symbolic Logic from
1936 until 1979. They are all archived on John MacFarlane’s web-
site (MacFarlane, 2015).

D.3 Gerhard Gentzen

Gerhard Gentzen is known primarily as the creator of structural
proof theory, and specifically the creation of the natural deduc-
tion and sequent calculus derivation systems. He was born on
November 24, 1909 in Greifswald, Germany. Gerhard was home-
schooled for three years before attending preparatory school,
where he was behind most of his classmates in terms of educa-

APPENDIX D. BIOGRAPHIES 481

tion. Despite this, he was a brilliant student and showed a strong
aptitude for mathematics. His interests were varied, and he, for
instance, also write poems for his mother and plays for the school
theatre.

Fig. D.3: Gerhard Gentzen

Gentzen began his uni-
versity studies at the Univer-
sity of Greifswald, but moved
around to Göttingen, Munich,
and Berlin. He received his
doctorate in 1933 from the
University of Göttingen un-
der Hermann Weyl. (Paul
Bernays supervised most of
his work, but was dismissed
from the university by the
Nazis.) In 1934, Gentzen began work as an assistant to David
Hilbert. That same year he developed the sequent calculus and
natural deduction derivation systems, in his papers Untersuchun-
gen über das logische Schließen I–II [Investigations Into Logical De-
duction I–II]. He proved the consistency of the Peano axioms in
1936.

Gentzen’s relationship with the Nazis is complicated. At the
same time his mentor Bernays was forced to leave Germany,
Gentzen joined the university branch of the SA, the Nazi paramil-
itary organization. Like many Germans, he was a member of
the Nazi party. During the war, he served as a telecommunica-
tions officer for the air intelligence unit. However, in 1942 he was
released from duty due to a nervous breakdown. It is unclear
whether or not Gentzen’s loyalties lay with the Nazi party, or
whether he joined the party in order to ensure academic success.

In 1943, Gentzen was offered an academic position at the
Mathematical Institute of the German University of Prague,
which he accepted. However, in 1945 the citizens of Prague re-
volted against German occupation. Soviet forces arrived in the
city and arrested all the professors at the university. Because of
his membership in Nazi organizations, Gentzen was taken to a

APPENDIX D. BIOGRAPHIES 482

forced labour camp. He died of malnutrition while in his cell on
August 4, 1945 at the age of 35.

Further Reading For a full biography of Gentzen, see Menzler-
Trott (2007). An interesting read about mathematicians under
Nazi rule, which gives a brief note about Gentzen’s life, is given by
Segal (2014). Gentzen’s papers on logical deduction are available
in the original german (Gentzen, 1935a,b). English translations
of Gentzen’s papers have been collected in a single volume by
Szabo (1969), which also includes a biographical sketch.

D.4 Kurt Gödel

Fig. D.4: Kurt Gödel

Kurt Gödel (ger-dle) was
born on April 28, 1906
in Brünn in the Austro-
Hungarian empire (now Brno
in the Czech Republic). Due
to his inquisitive and bright
nature, young Kurtele was
often called “Der kleine Herr
Warum” (Little Mr. Why)
by his family. He excelled
in academics from primary
school onward, where he got
less than the highest grade
only in mathematics. Gödel
was often absent from school
due to poor health and was
exempt from physical educa-
tion. He was diagnosed with
rheumatic fever during his childhood. Throughout his life, he
believed this permanently affected his heart despite medical
assessment saying otherwise.

APPENDIX D. BIOGRAPHIES 483

Gödel began studying at the University of Vienna in 1924
and completed his doctoral studies in 1929. He first intended to
study physics, but his interests soon moved to mathematics and
especially logic, in part due to the influence of the philosopher
Rudolf Carnap. His dissertation, written under the supervision
of Hans Hahn, proved the completeness theorem of first-order
predicate logic with identity (Gödel, 1929). Only a year later, he
obtained his most famous results—the first and second incom-
pleteness theorems (published in Gödel 1931). During his time
in Vienna, Gödel was heavily involved with the Vienna Circle,
a group of scientifically-minded philosophers that included Car-
nap, whose work was especially influenced by Gödel’s results.

In 1938, Gödel married Adele Nimbursky. His parents were
not pleased: not only was she six years older than him and al-
ready divorced, but she worked as a dancer in a nightclub. Social
pressures did not affect Gödel, however, and they remained hap-
pily married until his death.

After Nazi Germany annexed Austria in 1938, Gödel and
Adele emigrated to the United States, where he took up a po-
sition at the Institute for Advanced Study in Princeton, New Jer-
sey. Despite his introversion and eccentric nature, Gödel’s time
at Princeton was collaborative and fruitful. He published essays
in set theory, philosophy and physics. Notably, he struck up a par-
ticularly strong friendship with his colleague at the IAS, Albert
Einstein.

In his later years, Gödel’s mental health deteriorated. His
wife’s hospitalization in 1977 meant she was no longer able to
cook his meals for him. Having suffered from mental health issues
throughout his life, he succumbed to paranoia. Deathly afraid of
being poisoned, Gödel refused to eat. He died of starvation on
January 14, 1978, in Princeton.

Further Reading For a complete biography of Gödel’s life is
available, see John Dawson (1997). For further biographical
pieces, as well as essays about Gödel’s contributions to logic and

APPENDIX D. BIOGRAPHIES 484

philosophy, see Wang (1990), Baaz et al. (2011), Takeuti et al.
(2003), and Sigmund et al. (2007).

Gödel’s PhD thesis is available in the original German (Gödel,
1929). The original text of the incompleteness theorems is
(Gödel, 1931). All of Gödel’s published and unpublished writ-
ings, as well as a selection of correspondence, are available in
English in his Collected Papers Feferman et al. (1986, 1990).

For a detailed treatment of Gödel’s incompleteness theorems,
see Smith (2013). For an informal, philosophical discussion
of Gödel’s theorems, see Mark Linsenmayer’s podcast (Linsen-
mayer, 2014).

D.5 Emmy Noether

Fig. D.5: Emmy Noether

Emmy Noether (ner-ter) was
born in Erlangen, Germany,
on March 23, 1882, to an
upper-middle class scholarly
family. Hailed as the “mother
of modern algebra,” Noether
made groundbreaking contri-
butions to both mathemat-
ics and physics, despite sig-
nificant barriers to women’s
education. In Germany at
the time, young girls were
meant to be educated in
arts and were not allowed
to attend college preparatory
schools. However, after au-
diting classes at the Universi-
ties of Göttingen and Erlan-
gen (where her father was professor of mathematics), Noether
was eventually able to enroll as a student at Erlangen in 1904,
when their policy was updated to allow female students. She re-

APPENDIX D. BIOGRAPHIES 485

ceived her doctorate in mathematics in 1907.
Despite her qualifications, Noether experienced much resis-

tance during her career. From 1908–1915, she taught at Erlangen
without pay. During this time, she caught the attention of David
Hilbert, one of the world’s foremost mathematicians of the time,
who invited her to Göttingen. However, women were prohibited
from obtaining professorships, and she was only able to lecture
under Hilbert’s name, again without pay. During this time she
proved what is now known as Noether’s theorem, which is still
used in theoretical physics today. Noether was finally granted
the right to teach in 1919. Hilbert’s response to continued resis-
tance of his university colleagues reportedly was: “Gentlemen,
the faculty senate is not a bathhouse.”

In the later 1920s, she concentrated on work in abstract alge-
bra, and her contributions revolutionized the field. In her proofs
she often made use of the so-called ascending chain condition,
which states that there is no infinite strictly increasing chain of
certain sets. For instance, certain algebraic structures now known
as Noetherian rings have the property that there are no infinite
sequences of ideals I1 ⊊ I2 ⊊ The condition can be general-
ized to any partial order (in algebra, it concerns the special case
of ideals ordered by the subset relation), and we can also con-
sider the dual descending chain condition, where every strictly
decreasing sequence in a partial order eventually ends. If a par-
tial order satisfies the descending chain condition, it is possible
to use induction along this order in a similar way in which we
can use induction along the < order on N. Such orders are called
well-founded or Noetherian, and the corresponding proof principle
Noetherian induction.

Noether was Jewish, and when the Nazis came to power in
1933, she was dismissed from her position. Luckily, Noether was
able to emigrate to the United States for a temporary position at
Bryn Mawr, Pennsylvania. During her time there she also lectured
at Princeton, although she found the university to be unwelcom-
ing to women (Dick, 1981, 81). In 1935, Noether underwent an
operation to remove a uterine tumour. She died from an infection

APPENDIX D. BIOGRAPHIES 486

as a result of the surgery, and was buried at Bryn Mawr.

Further Reading For a biography of Noether, see Dick (1981).
The Perimeter Institute for Theoretical Physics has their lectures
on Noether’s life and influence available online (Institute, 2015).
If you’re tired of reading, Stuff You Missed in History Class has a
podcast on Noether’s life and influence (Frey and Wilson, 2015).
The collected works of Noether are available in the original Ger-
man (Jacobson, 1983).

D.6 Rózsa Péter

Fig. D.6: Rózsa Péter

Rózsa Péter was born Rósza
Politzer, in Budapest, Hun-
gary, on February 17, 1905.
She is best known for her
work on recursive functions,
which was essential for the
creation of the field of recur-
sion theory.

Péter was raised dur-
ing harsh political times—
WWI raged when she was
a teenager—but was able
to attend the affluent Maria
Terezia Girls’ School in Bu-
dapest, from where she grad-
uated in 1922. She then stud-
ied at Pázmány Péter University (later renamed Loránd Eötvös
University) in Budapest. She began studying chemistry at the
insistence of her father, but later switched to mathematics, and
graduated in 1927. Although she had the credentials to teach
high school mathematics, the economic situation at the time was
dire as the Great Depression affected the world economy. During
this time, Péter took odd jobs as a tutor and private teacher of

APPENDIX D. BIOGRAPHIES 487

mathematics. She eventually returned to university to take up
graduate studies in mathematics. She had originally planned
to work in number theory, but after finding out that her results
had already been proven, she almost gave up on mathematics
altogether. She was encouraged to work on Gödel’s incomplete-
ness theorems, and unknowingly proved several of his results in
different ways. This restored her confidence, and Péter went on
to write her first papers on recursion theory, inspired by David
Hilbert’s foundational program. She received her PhD in 1935,
and in 1937 she became an editor for the Journal of Symbolic Logic.

Péter’s early papers are widely credited as founding contribu-
tions to the field of recursive function theory. In Péter (1935a),
she investigated the relationship between different kinds of re-
cursion. In Péter (1935b), she showed that a certain recursively
defined function is not primitive recursive. This simplified an ear-
lier result due to Wilhelm Ackermann. Péter’s simplified function
is what’s now often called the Ackermann function—and some-
times, more properly, the Ackermann–Péter function. She wrote
the first book on recursive function theory (Péter, 1951).

Despite the importance and influence of her work, Péter did
not obtain a full-time teaching position until 1945. During the
Nazi occupation of Hungary during World War II, Péter was not
allowed to teach due to anti-Semitic laws. In 1944 the government
created a Jewish ghetto in Budapest; the ghetto was cut off from
the rest of the city and attended by armed guards. Péter was
forced to live in the ghetto until 1945 when it was liberated. She
then went on to teach at the Budapest Teachers Training College,
and from 1955 onward at Eötvös Loránd University. She was the
first female Hungarian mathematician to become an Academic
Doctor of Mathematics, and the first woman to be elected to the
Hungarian Academy of Sciences.

Péter was known as a passionate teacher of mathematics, who
preferred to explore the nature and beauty of mathematical prob-
lems with her students rather than to merely lecture. As a result,
she was affectionately called “Aunt Rosa” by her students. Péter
died in 1977 at the age of 71.

APPENDIX D. BIOGRAPHIES 488

Further Reading For more biographical reading, see
(O’Connor and Robertson, 2014) and (Andrásfai, 1986).
Tamassy (1994) conducted a brief interview with Péter. For
a fun read about mathematics, see Péter’s book Playing With
Infinity (Péter, 2010).

D.7 Julia Robinson

Fig. D.7: Julia Robinson

Julia Bowman Robinson was
an American mathematician.
She is known mainly for
her work on decision prob-
lems, and most famously for
her contributions to the solu-
tion of Hilbert’s tenth prob-
lem. Robinson was born in
St. Louis, Missouri, on De-
cember 8, 1919. Robinson re-
calls being intrigued by num-
bers already as a child (Reid,
1986, 4). At age nine she con-
tracted scarlet fever and suf-
fered from several recurrent
bouts of rheumatic fever. This
forced her to spend much of
her time in bed, putting her behind in her education. Although
she was able to catch up with the help of private tutors, the phys-
ical effects of her illness had a lasting impact on her life.

Despite her childhood struggles, Robinson graduated high
school with several awards in mathematics and the sciences. She
started her university career at San Diego State College, and
transferred to the University of California, Berkeley, as a senior.
There she was influenced by the mathematician Raphael Robin-
son. They became good friends, and married in 1941. As a
spouse of a faculty member, Robinson was barred from teaching

APPENDIX D. BIOGRAPHIES 489

in the mathematics department at Berkeley. Although she contin-
ued to audit mathematics classes, she hoped to leave university
and start a family. Not long after her wedding, however, Robin-
son contracted pneumonia. She was told that there was substan-
tial scar tissue build up on her heart due to the rheumatic fever
she suffered as a child. Due to the severity of the scar tissue, the
doctor predicted that she would not live past forty and she was
advised not to have children (Reid, 1986, 13).

Robinson was depressed for a long time, but eventually de-
cided to continue studying mathematics. She returned to Berke-
ley and completed her PhD in 1948 under the supervision of Al-
fred Tarski. The first-order theory of the real numbers had been
shown to be decidable by Tarski, and from Gödel’s work it fol-
lowed that the first-order theory of the natural numbers is un-
decidable. It was a major open problem whether the first-order
theory of the rationals is decidable or not. In her thesis (1949),
Robinson proved that it was not.

Interested in decision problems, Robinson next attempted to
find a solution to Hilbert’s tenth problem. This problem was one
of a famous list of 23 mathematical problems posed by David
Hilbert in 1900. The tenth problem asks whether there is an
algorithm that will answer, in a finite amount of time, whether
or not a polynomial equation with integer coefficients, such as
3x2 − 2y + 3 = 0, has a solution in the integers. Such questions
are known as Diophantine problems. After some initial successes,
Robinson joined forces with Martin Davis and Hilary Putnam,
who were also working on the problem. They succeeded in show-
ing that exponential Diophantine problems (where the unknowns
may also appear as exponents) are undecidable, and showed that
a certain conjecture (later called “J.R.”) implies that Hilbert’s
tenth problem is undecidable (Davis et al., 1961). Robinson
continued to work on the problem throughout the 1960s. In
1970, the young Russian mathematician Yuri Matijasevich finally
proved the J.R. hypothesis. The combined result is now called
the Matijasevich–Robinson–Davis–Putnam theorem, or MRDP
theorem for short. Matijasevich and Robinson became friends

APPENDIX D. BIOGRAPHIES 490

and collaborated on several papers. In a letter to Matijasevich,
Robinson once wrote that “actually I am very pleased that work-
ing together (thousands of miles apart) we are obviously making
more progress than either one of us could alone” (Matijasevich,
1992, 45).

Robinson was the first female president of the American
Mathematical Society, and the first woman to be elected to the
National Academy of Science. She died on July 30, 1985 at the
age of 65 after being diagnosed with leukemia.

Further Reading Robinson’s mathematical papers are avail-
able in her Collected Works (Robinson, 1996), which also in-
cludes a reprint of her National Academy of Sciences biographi-
cal memoir (Feferman, 1994). Robinson’s older sister Constance
Reid published an “Autobiography of Julia,” based on interviews
(Reid, 1986), as well as a full memoir (Reid, 1996). A short
documentary about Robinson and Hilbert’s tenth problem was
directed by George Csicsery (Csicsery, 2016). For a brief mem-
oir about Yuri Matijasevich’s collaborations with Robinson, and
her influence on his work, see (Matijasevich, 1992).

D.8 Bertrand Russell

Bertrand Russell is hailed as one of the founders of modern ana-
lytic philosophy. Born May 18, 1872, Russell was not only known
for his work in philosophy and logic, but wrote many popular
books in various subject areas. He was also an ardent political
activist throughout his life.

Russell was born in Trellech, Monmouthshire, Wales. His
parents were members of the British nobility. They were free-
thinkers, and even made friends with the radicals in Boston at the
time. Unfortunately, Russell’s parents died when he was young,
and Russell was sent to live with his grandparents. There, he was
given a religious upbringing (something his parents had wanted
to avoid at all costs). His grandmother was very strict in all

APPENDIX D. BIOGRAPHIES 491

matters of morality. During adolescence he was mostly home-
schooled by private tutors.

Fig. D.8: Bertrand Russell

Russell’s influence in an-
alytic philosophy, and espe-
cially logic, is tremendous.
He studied mathematics and
philosophy at Trinity College,
Cambridge, where he was in-
fluenced by the mathemati-
cian and philosopher Alfred
North Whitehead. In 1910,
Russell and Whitehead pub-
lished the first volume of Prin-
cipia Mathematica, where they
championed the view that
mathematics is reducible to
logic. He went on to publish
hundreds of books, essays and
political pamphlets. In 1950,
he won the Nobel Prize for literature.

Russell’s was deeply entrenched in politics and social ac-
tivism. During World War I he was arrested and sent to prison for
six months due to pacifist activities and protest. While in prison,
he was able to write and read, and claims to have found the ex-
perience “quite agreeable.” He remained a pacifist throughout
his life, and was again incarcerated for attending a nuclear dis-
armament rally in 1961. He also survived a plane crash in 1948,
where the only survivors were those sitting in the smoking sec-
tion. As such, Russell claimed that he owed his life to smoking.
Russell was married four times, but had a reputation for carrying
on extra-marital affairs. He died on February 2, 1970 at the age
of 97 in Penrhyndeudraeth, Wales.

Further Reading Russell wrote an autobiography in three
parts, spanning his life from 1872–1967 (Russell, 1967, 1968,

APPENDIX D. BIOGRAPHIES 492

1969). The Bertrand Russell Research Centre at McMaster Uni-
versity is home of the Bertrand Russell archives. See their website
at Duncan (2015), for information on the volumes of his collected
works (including searchable indexes), and archival projects. Rus-
sell’s paper On Denoting (Russell, 1905) is a classic of 20th century
analytic philosophy.

The Stanford Encyclopedia of Philosophy entry on Russell
(Irvine, 2015) has sound clips of Russell speaking on Desire and
Political theory. Many video interviews with Russell are available
online. To see him talk about smoking and being involved in a
plane crash, e.g., see Russell (n.d.). Some of Russell’s works,
including his Introduction to Mathematical Philosophy are available
as free audiobooks on LibriVox (n.d.).

D.9 Alfred Tarski

Fig. D.9: Alfred Tarski

Alfred Tarski was born on
January 14, 1901 in War-
saw, Poland (then part of the
Russian Empire). Described
as “Napoleonic,” Tarski was
boisterous, talkative, and in-
tense. His energy was often
reflected in his lectures—he
once set fire to a wastebasket
while disposing of a cigarette
during a lecture, and was for-
bidden from lecturing in that
building again.

Tarski had a thirst for
knowledge from a young age.
Although later in life he would
tell students that he studied
logic because it was the only class in which he got a B, his high
school records show that he got A’s across the board—even in

APPENDIX D. BIOGRAPHIES 493

logic. He studied at the University of Warsaw from 1918 to 1924.
Tarski first intended to study biology, but became interested in
mathematics, philosophy, and logic, as the university was the
center of the Warsaw School of Logic and Philosophy. Tarski
earned his doctorate in 1924 under the supervision of Stanisław
Leśniewski.

Before emigrating to the United States in 1939, Tarski com-
pleted some of his most important work while working as a sec-
ondary school teacher in Warsaw. His work on logical conse-
quence and logical truth were written during this time. In 1939,
Tarski was visiting the United States for a lecture tour. During
his visit, Germany invaded Poland, and because of his Jewish her-
itage, Tarski could not return. His wife and children remained in
Poland until the end of the war, but were then able to emigrate to
the United States as well. Tarski taught at Harvard, the College
of the City of New York, and the Institute for Advanced Study
at Princeton, and finally the University of California, Berkeley.
There he founded the multidisciplinary program in Logic and
the Methodology of Science. Tarski died on October 26, 1983 at
the age of 82.

Further Reading For more on Tarski’s life, see the biogra-
phy Alfred Tarski: Life and Logic (Feferman and Feferman, 2004).
Tarski’s seminal works on logical consequence and truth are avail-
able in English in (Corcoran, 1983). All of Tarski’s original works
have been collected into a four volume series, (Tarski, 1981).

D.10 Alan Turing

Alan Turing was born in Maida Vale, London, on June 23, 1912.
He is considered the father of theoretical computer science. Tur-
ing’s interest in the physical sciences and mathematics started at
a young age. However, as a boy his interests were not represented
well in his schools, where emphasis was placed on literature and

APPENDIX D. BIOGRAPHIES 494

classics. Consequently, he did poorly in school and was repri-
manded by many of his teachers.

Fig. D.10: Alan Turing

Turing attended King’s
College, Cambridge as an un-
dergraduate, where he stud-
ied mathematics. In 1936 Tur-
ing developed (what is now
called) the Turing machine as
an attempt to precisely define
the notion of a computable
function and to prove the un-
decidability of the decision
problem. He was beaten to
the result by Alonzo Church,
who proved the result via his
own lambda calculus. Tur-
ing’s paper was still published
with reference to Church’s re-
sult. Church invited Turing to Princeton, where he spent 1936–
1938, and obtained a doctorate under Church.

Despite his interest in logic, Turing’s earlier interests in phys-
ical sciences remained prevalent. His practical skills were put to
work during his service with the British cryptanalytic department
at Bletchley Park during World War II. Turing was a central figure
in cracking the cypher used by German Naval communications—
the Enigma code. Turing’s expertise in statistics and cryptogra-
phy, together with the introduction of electronic machinery, gave
the team the ability to crack the code by creating a de-crypting
machine called a “bombe.” His ideas also helped in the creation
of the world’s first programmable electronic computer, the Colos-
sus, also used at Bletchley park to break the German Lorenz
cypher.

Turing was gay. Nevertheless, in 1942 he proposed to Joan
Clarke, one of his teammates at Bletchley Park, but later broke off
the engagement and confessed to her that he was homosexual. He
had several lovers throughout his lifetime, although homosexual

APPENDIX D. BIOGRAPHIES 495

acts were then criminal offences in the UK. In 1952, Turing’s
house was burgled by a friend of his lover at the time, and when
filing a police report, Turing admitted to having a homosexual
relationship, under the impression that the government was on
their way to legalizing homosexual acts. This was not true, and
he was charged with gross indecency. Instead of going to prison,
Turing opted for a hormone treatment that reduced libido. Turing
was found dead on June 8, 1954, of a cyanide overdose—most
likely suicide. He was given a royal pardon by Queen Elizabeth II
in 2013.

Further Reading For a comprehensive biography of Alan Tur-
ing, see Hodges (2014). Turing’s life and work inspired a play,
Breaking the Code, which was produced in 1996 for TV starring
Derek Jacobi as Turing. The Imitation Game, an Academy Award
nominated film starring Bendict Cumberbatch and Kiera Knight-
ley, is also loosely based on Alan Turing’s life and time at Bletch-
ley Park (Tyldum, 2014).

Radiolab (2012) has several podcasts on Turing’s life and
work. BBC Horizon’s documentary The Strange Life and Death
of Dr. Turing is available to watch online (Sykes, 1992). (Theelen,
2012) is a short video of a working LEGO Turing Machine—
made to honour Turing’s centenary in 2012.

Turing’s original paper on Turing machines and the decision
problem is Turing (1937).

D.11 Ernst Zermelo

Ernst Zermelo was born on July 27, 1871 in Berlin, Germany.
He had five sisters, though his family suffered from poor health
and only three survived to adulthood. His parents also passed
away when he was young, leaving him and his siblings orphans
when he was seventeen. Zermelo had a deep interest in the arts,
and especially in poetry. He was known for being sharp, witty,
and critical. His most celebrated mathematical achievements in-

APPENDIX D. BIOGRAPHIES 496

clude the introduction of the axiom of choice (in 1904), and his
axiomatization of set theory (in 1908).

Fig. D.11: Ernst Zermelo

Zermelo’s interests at uni-
versity were varied. He took
courses in physics, mathemat-
ics, and philosophy. Un-
der the supervision of Her-
mann Schwarz, Zermelo com-
pleted his dissertation Investi-
gations in the Calculus of Vari-
ations in 1894 at the Univer-
sity of Berlin. In 1897, he
decided to pursue more stud-
ies at the University of Götti-
gen, where he was heavily in-
fluenced by the foundational
work of David Hilbert. In
1899 he became eligible for
professorship, but did not get
one until eleven years later—possibly due to his strange de-
meanour and “nervous haste.”

Zermelo finally received a paid professorship at the Univer-
sity of Zurich in 1910, but was forced to retire in 1916 due to
tuberculosis. After his recovery, he was given an honourary pro-
fessorship at the University of Freiburg in 1921. During this time
he worked on foundational mathematics. He became irritated
with the works of Thoralf Skolem and Kurt Gödel, and publicly
criticized their approaches in his papers. He was dismissed from
his position at Freiburg in 1935, due to his unpopularity and his
opposition to Hitler’s rise to power in Germany.

The later years of Zermelo’s life were marked by isolation. Af-
ter his dismissal in 1935, he abandoned mathematics. He moved
to the country where he lived modestly. He married in 1944, and
became completely dependent on his wife as he was going blind.
Zermelo lost his sight completely by 1951. He passed away in
Günterstal, Germany, on May 21, 1953.

APPENDIX D. BIOGRAPHIES 497

Further Reading For a full biography of Zermelo, see Ebbing-
haus (2015). Zermelo’s seminal 1904 and 1908 papers are avail-
able to read in the original German (Zermelo, 1904, 1908). Zer-
melo’s collected works, including his writing on physics, are avail-
able in English translation in (Ebbinghaus et al., 2010; Ebbing-
haus and Kanamori, 2013).

Photo Credits
Georg Cantor, p. 478: Portrait of Georg Cantor by Otto Zeth
courtesy of the Universitätsarchiv, Martin-Luther Universität
Halle–Wittenberg. UAHW Rep. 40-VI, Nr. 3 Bild 102.

Alonzo Church, p. 479: Portrait of Alonzo Church, un-
dated, photographer unknown. Alonzo Church Papers; 1924–
1995, (C0948) Box 60, Folder 3. Manuscripts Division, Depart-
ment of Rare Books and Special Collections, Princeton Univer-
sity Library. C⃝ Princeton University. The Open Logic Project
has obtained permission to use this image for inclusion in non-
commercial OLP-derived materials. Permission from Princeton
University is required for any other use.

Gerhard Gentzen, p. 481: Portrait of Gerhard Gentzen play-
ing ping-pong courtesy of Ekhart Mentzler-Trott.

Kurt Gödel, p. 482: Portrait of Kurt Gödel, ca. 1925, photog-
rapher unknown. From the Shelby White and Leon Levy Archives
Center, Institute for Advanced Study, Princeton, NJ, USA, on de-
posit at Princeton University Library, Manuscript Division, De-
partment of Rare Books and Special Collections, Kurt Gödel Pa-
pers, (C0282), Box 14b, #110000. The Open Logic Project has
obtained permission from the Institute’s Archives Center to use
this image for inclusion in non-commercial OLP-derived materi-
als. Permission from the Archives Center is required for any other
use.

Emmy Noether, p. 484: Portrait of Emmy Noether, ca. 1922,
courtesy of the Abteilung für Handschriften und Seltene Drucke,

498

http://www.archiv.uni-halle.de/
http://www.archiv.uni-halle.de/
http://rbsc.princeton.edu/divisions/manuscripts-division
http://rbsc.princeton.edu/divisions/manuscripts-division
http://rbsc.princeton.edu/divisions/manuscripts-division
https://library.ias.edu/archives
https://library.ias.edu/archives
http://rbsc.princeton.edu/divisions/manuscripts-division
http://rbsc.princeton.edu/divisions/manuscripts-division
http://www.sub.uni-goettingen.de/en/contact/departments-a-z/departmental-and-unit-details/abteilunggruppe/handschriften-und-seltene-drucke/
http://www.sub.uni-goettingen.de/en/contact/departments-a-z/departmental-and-unit-details/abteilunggruppe/handschriften-und-seltene-drucke/
http://www.sub.uni-goettingen.de/en/contact/departments-a-z/departmental-and-unit-details/abteilunggruppe/handschriften-und-seltene-drucke/
http://www.sub.uni-goettingen.de/en/contact/departments-a-z/departmental-and-unit-details/abteilunggruppe/handschriften-und-seltene-drucke/

PHOTO CREDITS 499

Niedersächsische Staats- und Universitätsbibliothek Göttingen,
Cod. Ms. D. Hilbert 754, Bl. 14 Nr. 73. Restored from an original
scan by Joel Fuller.

Rózsa Péter, p. 486: Portrait of Rózsa Péter, undated, photog-
rapher unknown. Courtesy of Béla Andrásfai.

Julia Robinson, p. 488: Portrait of Julia Robinson, unknown
photographer, courtesy of Neil D. Reid. The Open Logic Project
has obtained permission to use this image for inclusion in non-
commercial OLP-derived materials. Permission is required for
any other use.

Bertrand Russell, p. 491: Portrait of Bertrand Russell,
ca. 1907, courtesy of the William Ready Division of Archives and
Research Collections, McMaster University Library. Bertrand
Russell Archives, Box 2, f. 4.

Alfred Tarski, p. 492: Passport photo of Alfred Tarski, 1939.
Cropped and restored from a scan of Tarski’s passport by Joel
Fuller. Original courtesy of Bancroft Library, University of Cal-
ifornia, Berkeley. Alfred Tarski Papers, Banc MSS 84/49. The
Open Logic Project has obtained permission to use this image
for inclusion in non-commercial OLP-derived materials. Permis-
sion from Bancroft Library is required for any other use.

Alan Turing, p. 494: Portrait of Alan Mathison Turing by
Elliott & Fry, 29 March 1951, NPG x82217, C⃝ National Portrait
Gallery, London. Used under a Creative Commons BY-NC-ND
3.0 license.

Ernst Zermelo, p. 496: Portrait of Ernst Zermelo, ca. 1922,
courtesy of the Abteilung für Handschriften und Seltene Drucke,
Niedersächsische Staats- und Universitätsbibliothek Göttingen,
Cod. Ms. D. Hilbert 754, Bl. 6 Nr. 25.

http://www.sub.uni-goettingen.de/en/contact/departments-a-z/departmental-and-unit-details/abteilunggruppe/handschriften-und-seltene-drucke/
http://www.sub.uni-goettingen.de/en/contact/departments-a-z/departmental-and-unit-details/abteilunggruppe/handschriften-und-seltene-drucke/
http://www.sub.uni-goettingen.de/en/contact/departments-a-z/departmental-and-unit-details/abteilunggruppe/handschriften-und-seltene-drucke/
http://www.sub.uni-goettingen.de/en/contact/departments-a-z/departmental-and-unit-details/abteilunggruppe/handschriften-und-seltene-drucke/
http://www.mcmaster.ca/russdocs/russell.htm
http://www.mcmaster.ca/russdocs/russell.htm
http://www.lib.berkeley.edu/libraries/bancroft-library
http://www.lib.berkeley.edu/libraries/bancroft-library
http://www.npg.org.uk/collections/search/portrait/mw63680/Alan-Mathison-Turing?
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.sub.uni-goettingen.de/en/contact/departments-a-z/departmental-and-unit-details/abteilunggruppe/handschriften-und-seltene-drucke/
http://www.sub.uni-goettingen.de/en/contact/departments-a-z/departmental-and-unit-details/abteilunggruppe/handschriften-und-seltene-drucke/

Bibliography
Andrásfai, Béla. 1986. Rózsa (Rosa) Péter. Periodica Polytechnica

Electrical Engineering 30(2-3): 139–145. URL http://www.pp.
bme.hu/ee/article/view/4651.

Aspray, William. 1984. The Princeton mathematics community
in the 1930s: Alonzo Church. URL http://www.princeton.
edu/mudd/finding_aids/mathoral/pmc05.htm. Interview.

Baaz, Matthias, Christos H. Papadimitriou, Hilary W. Putnam,
Dana S. Scott, and Charles L. Harper Jr. 2011. Kurt Gödel and
the Foundations of Mathematics: Horizons of Truth. Cambridge:
Cambridge University Press.

Boolos, George. 1993. The Logic of Provability. Cambridge: Cam-
bridge University Press.

Cantor, Georg. 1892. Über eine elementare Frage der Man-
nigfaltigkeitslehre. Jahresbericht der deutschen Mathematiker-
Vereinigung 1: 75–8.

Cheng, Eugenia. 2004. How to write proofs: A quick quide. URL
http://http://eugeniacheng.com/wp-content/uploads/
2017/02/cheng-proofguide.pdf.

Church, Alonzo. 1936a. A note on the Entscheidungsproblem.
Journal of Symbolic Logic 1: 40–41.

500

http://www.pp.bme.hu/ee/article/view/4651
http://www.pp.bme.hu/ee/article/view/4651
http://www.princeton.edu/mudd/finding_aids/mathoral/pmc05.htm
http://www.princeton.edu/mudd/finding_aids/mathoral/pmc05.htm
http://http://eugeniacheng.com/wp-content/uploads/2017/02/cheng-proofguide.pdf
http://http://eugeniacheng.com/wp-content/uploads/2017/02/cheng-proofguide.pdf

BIBLIOGRAPHY 501

Church, Alonzo. 1936b. An unsolvable problem of elementary
number theory. American Journal of Mathematics 58: 345–363.

Corcoran, John. 1983. Logic, Semantics, Metamathematics. Indi-
anapolis: Hackett, 2nd ed.

Csicsery, George. 2016. Zala films: Julia Robinson and Hilbert’s
tenth problem. URL http://www.zalafilms.com/films/
juliarobinson.html.

Dauben, Joseph. 1990. Georg Cantor: His Mathematics and Philoso-
phy of the Infinite. Princeton: Princeton University Press.

Davis, Martin, Hilary Putnam, and Julia Robinson. 1961. The
decision problem for exponential Diophantine equations. An-
nals of Mathematics 74(3): 425–436. URL http://www.jstor.
org/stable/1970289.

Dick, Auguste. 1981. Emmy Noether 1882–1935. Boston:
Birkhäuser.

du Sautoy, Marcus. 2014. A brief history of mathematics:
Georg Cantor. URL http://www.bbc.co.uk/programmes/
b00ss1j0. Audio Recording.

Duncan, Arlene. 2015. The Bertrand Russell Research Centre.
URL http://russell.mcmaster.ca/.

Ebbinghaus, Heinz-Dieter. 2015. Ernst Zermelo: An Approach to his
Life and Work. Berlin: Springer-Verlag.

Ebbinghaus, Heinz-Dieter, Craig G. Fraser, and Akihiro
Kanamori. 2010. Ernst Zermelo. Collected Works, vol. 1. Berlin:
Springer-Verlag.

Ebbinghaus, Heinz-Dieter and Akihiro Kanamori. 2013. Ernst
Zermelo: Collected Works, vol. 2. Berlin: Springer-Verlag.

http://www.zalafilms.com/films/juliarobinson.html
http://www.zalafilms.com/films/juliarobinson.html
http://www.jstor.org/stable/1970289
http://www.jstor.org/stable/1970289
http://www.bbc.co.uk/programmes/b00ss1j0
http://www.bbc.co.uk/programmes/b00ss1j0
http://russell.mcmaster.ca/

BIBLIOGRAPHY 502

Enderton, Herbert B. 2019. Alonzo Church: Life and Work. In
The Collected Works of Alonzo Church, eds. Tyler Burge and Her-
bert B. Enderton. Cambridge, MA: MIT Press.

Feferman, Anita and Solomon Feferman. 2004. Alfred Tarski: Life
and Logic. Cambridge: Cambridge University Press.

Feferman, Solomon. 1994. Julia Bowman Robinson 1919–1985.
Biographical Memoirs of the National Academy of Sciences 63:
1–28. URL http://www.nasonline.org/publications/
biographical-memoirs/memoir-pdfs/robinson-julia.
pdf.

Feferman, Solomon, John W. Dawson Jr., Stephen C. Kleene, Gre-
gory H. Moore, Robert M. Solovay, and Jean van Heijenoort.
1986. Kurt Gödel: Collected Works. Vol. 1: Publications 1929–1936.
Oxford: Oxford University Press.

Feferman, Solomon, John W. Dawson Jr., Stephen C. Kleene, Gre-
gory H. Moore, Robert M. Solovay, and Jean van Heijenoort.
1990. Kurt Gödel: Collected Works. Vol. 2: Publications 1938–1974.
Oxford: Oxford University Press.

Frege, Gottlob. 1884. Die Grundlagen der Arithmetik: Eine logisch
mathematische Untersuchung über den Begriff der Zahl. Breslau:
Wilhelm Koebner. Translation in Frege (1953).

Frege, Gottlob. 1953. Foundations of Arithmetic, ed. J. L. Austin.
Oxford: Basil Blackwell & Mott, 2nd ed.

Frey, Holly and Tracy V. Wilson. 2015. Stuff you missed
in history class: Emmy Noether, mathematics trail-
blazer. URL https://www.iheart.com/podcast/
stuff-you-missed-in-history-cl-21124503/episode/
emmy-noether-mathematics-trailblazer-30207491/.
Podcast audio.

http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/robinson-julia.pdf
http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/robinson-julia.pdf
http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/robinson-julia.pdf
https://www.iheart.com/podcast/stuff-you-missed-in-history-cl-21124503/episode/emmy-noether-mathematics-trailblazer-30207491/
https://www.iheart.com/podcast/stuff-you-missed-in-history-cl-21124503/episode/emmy-noether-mathematics-trailblazer-30207491/
https://www.iheart.com/podcast/stuff-you-missed-in-history-cl-21124503/episode/emmy-noether-mathematics-trailblazer-30207491/

BIBLIOGRAPHY 503

Gentzen, Gerhard. 1935a. Untersuchungen über das logische
Schließen I. Mathematische Zeitschrift 39: 176–210. English
translation in Szabo (1969), pp. 68–131.

Gentzen, Gerhard. 1935b. Untersuchungen über das logische
Schließen II. Mathematische Zeitschrift 39: 176–210, 405–431.
English translation in Szabo (1969), pp. 68–131.

Gödel, Kurt. 1929. Über die Vollständigkeit des Logikkalküls
[On the completeness of the calculus of logic]. Dissertation,
Universität Wien. Reprinted and translated in Feferman et al.
(1986), pp. 60–101.

Gödel, Kurt. 1931. über formal unentscheidbare Sätze der Prin-
cipia Mathematica und verwandter Systeme I [On formally unde-
cidable propositions of Principia Mathematica and related sys-
tems I]. Monatshefte für Mathematik und Physik 38: 173–198.
Reprinted and translated in Feferman et al. (1986), pp. 144–
195.

Gödel, Kurt. 1995. Some basic theorems on the foundations of
mathematics and their implications. In Kurt Gödel: Collected
Works, eds. Solomon Feferman et al., vol. 3, 304–323. New York
and Oxford: Oxford University Press.

Grattan-Guinness, Ivor. 1971. Towards a biography of Georg
Cantor. Annals of Science 27(4): 345–391.

Hammack, Richard. 2013. Book of Proof. Richmond, VA: Vir-
ginia Commonwealth University. URL http://www.people.
vcu.edu/~rhammack/BookOfProof/BookOfProof.pdf.

Hodges, Andrew. 2014. Alan Turing: The Enigma. London: Vin-
tage.

Hutchings, Michael. 2003. Introduction to mathematical ar-
guments. URL https://math.berkeley.edu/~hutching/
teach/proofs.pdf.

http://www.people.vcu.edu/~rhammack/BookOfProof/BookOfProof.pdf
http://www.people.vcu.edu/~rhammack/BookOfProof/BookOfProof.pdf
https://math.berkeley.edu/~hutching/teach/proofs.pdf
https://math.berkeley.edu/~hutching/teach/proofs.pdf

BIBLIOGRAPHY 504

Institute, Perimeter. 2015. Emmy Noether: Her life, work,
and influence. URL https://www.youtube.com/watch?v=
tNNyAyMRsgE. Video Lecture.

Irvine, Andrew David. 2015. Sound clips of Bertrand Rus-
sell speaking. URL http://plato.stanford.edu/entries/
russell/russell-soundclips.html.

Jacobson, Nathan. 1983. Emmy Noether: Gesammelte
Abhandlungen—Collected Papers. Berlin: Springer-Verlag.

John Dawson, Jr. 1997. Logical Dilemmas: The Life and Work of
Kurt Gödel. Boca Raton: CRC Press.

LibriVox. n.d. Bertrand Russell. URL https://librivox.
org/author/1508?primary_key=1508&search_category=
author&search_page=1&search_form=get_results. Collec-
tion of public domain audiobooks.

Linsenmayer, Mark. 2014. The partially examined life: Gödel
on math. URL http://www.partiallyexaminedlife.com/
2014/06/16/ep95-godel/. Podcast audio.

MacFarlane, John. 2015. Alonzo Church’s JSL reviews. URL
http://johnmacfarlane.net/church.html.

Magnus, P. D., Tim Button, J. Robert Loftis, Aaron Thomas-
Bolduc, Robert Trueman, and Richard Zach. 2021. Forall x:
Calgary. An Introduction to Formal Logic. Calgary: Open Logic
Project, f21 ed. URL https://forallx.openlogicproject.
org/.

Matijasevich, Yuri. 1992. My collaboration with Julia Robinson.
The Mathematical Intelligencer 14(4): 38–45.

Menzler-Trott, Eckart. 2007. Logic’s Lost Genius: The Life of Gerhard
Gentzen. Providence: American Mathematical Society.

https://www.youtube.com/watch?v=tNNyAyMRsgE
https://www.youtube.com/watch?v=tNNyAyMRsgE
http://plato.stanford.edu/entries/russell/russell-soundclips.html
http://plato.stanford.edu/entries/russell/russell-soundclips.html
https://librivox.org/author/1508?primary_key=1508&search_category=author&search_page=1&search_form=get_results
https://librivox.org/author/1508?primary_key=1508&search_category=author&search_page=1&search_form=get_results
https://librivox.org/author/1508?primary_key=1508&search_category=author&search_page=1&search_form=get_results
http://www.partiallyexaminedlife.com/2014/06/16/ep95-godel/
http://www.partiallyexaminedlife.com/2014/06/16/ep95-godel/
http://johnmacfarlane.net/church.html
https://forallx.openlogicproject.org/
https://forallx.openlogicproject.org/

BIBLIOGRAPHY 505

O’Connor, John J. and Edmund F. Robertson. 2014. Rózsa Péter.
URL http://www-groups.dcs.st-and.ac.uk/~history/
Biographies/Peter.html.

Péter, Rózsa. 1935a. Über den Zusammenhang der verschiede-
nen Begriffe der rekursiven Funktion. Mathematische Annalen
110: 612–632.

Péter, Rózsa. 1935b. Konstruktion nichtrekursiver Funktionen.
Mathematische Annalen 111: 42–60.

Péter, Rózsa. 1951. Rekursive Funktionen. Budapest: Akademiai
Kiado. English translation in (Péter, 1967).

Péter, Rózsa. 1967. Recursive Functions. New York: Academic
Press.

Péter, Rózsa. 2010. Playing with Infinity. New York: Dover. URL
https://books.google.ca/books?id=6V3wNs4uv_4C&lpg=
PP1&ots=BkQZaHcR99&lr&pg=PP1#v=onepage&q&f=false.

Potter, Michael. 2004. Set Theory and its Philosophy. Oxford: Ox-
ford University Press.

Radiolab. 2012. The Turing problem. URL http://www.
radiolab.org/story/193037-turing-problem/. Podcast
audio.

Reid, Constance. 1986. The autobiography of Julia Robinson.
The College Mathematics Journal 17: 3–21.

Reid, Constance. 1996. Julia: A Life in Mathemat-
ics. Cambridge: Cambridge University Press. URL
https://books.google.ca/books?id=lRtSzQyHf9UC&
lpg=PP1&pg=PP1#v=onepage&q&f=false.

Robinson, Julia. 1949. Definability and decision problems in
arithmetic. Journal of Symbolic Logic 14(2): 98–114. URL
http://www.jstor.org/stable/2266510.

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Peter.html
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Peter.html
https://books.google.ca/books?id=6V3wNs4uv_4C&lpg=PP1&ots=BkQZaHcR99&lr&pg=PP1#v=onepage&q&f=false
https://books.google.ca/books?id=6V3wNs4uv_4C&lpg=PP1&ots=BkQZaHcR99&lr&pg=PP1#v=onepage&q&f=false
http://www.radiolab.org/story/193037-turing-problem/
http://www.radiolab.org/story/193037-turing-problem/
https://books.google.ca/books?id=lRtSzQyHf9UC&lpg=PP1&pg=PP1#v=onepage&q&f=false
https://books.google.ca/books?id=lRtSzQyHf9UC&lpg=PP1&pg=PP1#v=onepage&q&f=false
http://www.jstor.org/stable/2266510

BIBLIOGRAPHY 506

Robinson, Julia. 1996. The Collected Works of Julia Robinson. Prov-
idence: American Mathematical Society.

Rose, Daniel. 2012. A song about Georg Cantor. URL https://
www.youtube.com/watch?v=QUP5Z4Fb5k4. Audio Recording.

Russell, Bertrand. 1905. On denoting. Mind 14: 479–493.

Russell, Bertrand. 1967. The Autobiography of Bertrand Russell,
vol. 1. London: Allen and Unwin.

Russell, Bertrand. 1968. The Autobiography of Bertrand Russell,
vol. 2. London: Allen and Unwin.

Russell, Bertrand. 1969. The Autobiography of Bertrand Russell,
vol. 3. London: Allen and Unwin.

Russell, Bertrand. n.d. Bertrand Russell on smoking. URL
https://www.youtube.com/watch?v=80oLTiVW_lc. Video
Interview.

Sandstrum, Ted. 2019. Mathematical Reasoning: Writing and Proof.
Allendale, MI: Grand Valley State University. URL https:
//scholarworks.gvsu.edu/books/7/.

Segal, Sanford L. 2014. Mathematicians under the Nazis. Princeton:
Princeton University Press.

Sigmund, Karl, John Dawson, Kurt Mühlberger, Hans Magnus
Enzensberger, and Juliette Kennedy. 2007. Kurt Gödel: Das
Album–The Album. The Mathematical Intelligencer 29(3): 73–
76.

Smith, Peter. 2013. An Introduction to Gödel’s Theorems. Cambridge:
Cambridge University Press.

Solow, Daniel. 2013. How to Read and Do Proofs. Hoboken, NJ:
Wiley.

https://www.youtube.com/watch?v=QUP5Z4Fb5k4
https://www.youtube.com/watch?v=QUP5Z4Fb5k4
https://www.youtube.com/watch?v=80oLTiVW_lc
https://scholarworks.gvsu.edu/books/7/
https://scholarworks.gvsu.edu/books/7/

BIBLIOGRAPHY 507

Steinhart, Eric. 2018. More Precisely: The Math You Need to Do
Philosophy. Peterborough, ON: Broadview, 2nd ed.

Sykes, Christopher. 1992. BBC Horizon: The strange life and
death of Dr. Turing. URL https://www.youtube.com/watch?
v=gyusnGbBSHE.

Szabo, Manfred E. 1969. The Collected Papers of Gerhard Gentzen.
Amsterdam: North-Holland.

Takeuti, Gaisi, Nicholas Passell, and Mariko Yasugi. 2003. Mem-
oirs of a Proof Theorist: Gödel and Other Logicians. Singapore:
World Scientific.

Tamassy, Istvan. 1994. Interview with Róza Péter. Modern Logic
4(3): 277–280.

Tarski, Alfred. 1969. Truth and proof. Scientific American 220(6):
63–77. URL https://www.jstor.org/stable/24926385.

Tarski, Alfred. 1981. The Collected Works of Alfred Tarski, vol. I–IV.
Basel: Birkhäuser.

Theelen, Andre. 2012. Lego turing machine. URL https://www.
youtube.com/watch?v=FTSAiF9AHN4.

Turing, Alan M. 1937. On computable numbers, with an applica-
tion to the “Entscheidungsproblem”. Proceedings of the London
Mathematical Society, 2nd Series 42: 230–265.

Tyldum, Morten. 2014. The imitation game. Motion picture.

Velleman, Daniel J. 2019. How to Prove It: A Structured Approach.
Cambridge: Cambridge University Press, 3rd ed.

Wang, Hao. 1990. Reflections on Kurt Gödel. Cambridge: MIT
Press.

Zermelo, Ernst. 1904. Beweis, daß jede Menge wohlgeordnet
werden kann. Mathematische Annalen 59: 514–516. English
translation in (Ebbinghaus et al., 2010, pp. 115–119).

https://www.youtube.com/watch?v=gyusnGbBSHE
https://www.youtube.com/watch?v=gyusnGbBSHE
https://www.jstor.org/stable/24926385
https://www.youtube.com/watch?v=FTSAiF9AHN4
https://www.youtube.com/watch?v=FTSAiF9AHN4

BIBLIOGRAPHY 508

Zermelo, Ernst. 1908. Untersuchungen über die Grundlagen der
Mengenlehre I. Mathematische Annalen 65(2): 261–281. English
translation in (Ebbinghaus et al., 2010, pp. 189-229).

About the Open
Logic Project
The Open Logic Text is an open-source, collaborative textbook of
formal meta-logic and formal methods, starting at an intermedi-
ate level (i.e., after an introductory formal logic course). Though
aimed at a non-mathematical audience (in particular, students of
philosophy and computer science), it is rigorous.

Coverage of some topics currently included may not yet be
complete, and many sections still require substantial revision.
We plan to expand the text to cover more topics in the future.
We also plan to add features to the text, such as a glossary, a
list of further reading, historical notes, pictures, better explana-
tions, sections explaining the relevance of results to philosophy,
computer science, and mathematics, and more problems and ex-
amples. If you find an error, or have a suggestion, please let the
project team know.

The project operates in the spirit of open source. Not only
is the text freely available, we provide the LaTeX source un-
der the Creative Commons Attribution license, which gives any-
one the right to download, use, modify, re-arrange, convert, and
re-distribute our work, as long as they give appropriate credit.
Please see the Open Logic Project website at openlogicproject.org
for additional information.

509

https://github.com/OpenLogicProject/OpenLogic/wiki/Contributing
https://github.com/OpenLogicProject/OpenLogic/wiki/Contributing
http://openlogicproject.org/

	Table of Contents
	About this Book
	I Sets, Relations, Functions
	1 Sets
	1.1 Extensionality
	1.2 Subsets and Power Sets
	1.3 Some Important Sets
	1.4 Unions and Intersections
	1.5 Pairs, Tuples, Cartesian Products
	1.6 Russell's Paradox
	Summary
	Problems

	2 Relations
	2.1 Relations as Sets
	2.2 Special Properties of Relations
	2.3 Equivalence Relations
	2.4 Orders
	2.5 Graphs
	2.6 Operations on Relations
	Summary
	Problems

	3 Functions
	3.1 Basics
	3.2 Kinds of Functions
	3.3 Functions as Relations
	3.4 Inverses of Functions
	3.5 Composition of Functions
	3.6 Partial Functions
	Summary
	Problems

	4 The Size of Sets
	4.1 Introduction
	4.2 Enumerations and Countable Sets
	4.3 Cantor's Zig-Zag Method
	4.4 Pairing Functions and Codes
	4.5 An Alternative Pairing Function
	4.6 Uncountable Sets
	4.7 Reduction
	4.8 Equinumerosity
	4.9 Sets of Different Sizes, and Cantor's Theorem
	4.10 The Notion of Size, and Schröder-Bernstein
	Summary
	Problems

	II First-order Logic
	5 Introduction to First-Order Logic
	5.1 First-Order Logic
	5.2 Syntax
	5.3 Formulas
	5.4 Satisfaction
	5.5 Sentences
	5.6 Semantic Notions
	5.7 Substitution
	5.8 Models and Theories
	5.9 Soundness and Completeness

	6 Syntax of First-Order Logic
	6.1 Introduction
	6.2 First-Order Languages
	6.3 Terms and Formulas
	6.4 Unique Readability
	6.5 Main operator of a Formula
	6.6 Subformulas
	6.7 Free Variables and Sentences
	6.8 Substitution
	Summary
	Problems

	7 Semantics of First-Order Logic
	7.1 Introduction
	7.2 Structures for First-order Languages
	7.3 Covered Structures for First-order Languages
	7.4 Satisfaction of a Formula in a Structure
	7.5 Variable Assignments
	7.6 Extensionality
	7.7 Semantic Notions
	Summary
	Problems

	8 Theories and Their Models
	8.1 Introduction
	8.2 Expressing Properties of Structures
	8.3 Examples of First-Order Theories
	8.4 Expressing Relations in a Structure
	8.5 The Theory of Sets
	8.6 Expressing the Size of Structures
	Summary
	Problems

	9 Derivation Systems
	9.1 Introduction
	9.2 The Sequent Calculus
	9.3 Natural Deduction
	9.4 Tableaux
	9.5 Axiomatic Derivations

	10 The Sequent Calculus
	10.1 Rules and Derivations
	10.2 Propositional Rules
	10.3 Quantifier Rules
	10.4 Structural Rules
	10.5 Derivations
	10.6 Examples of Derivations
	10.7 Derivations with Quantifiers
	10.8 Proof-Theoretic Notions
	10.9 Derivability and Consistency
	10.10 Derivability and the Propositional Connectives
	10.11 Derivability and the Quantifiers
	10.12 Soundness
	10.13 Derivations with Identity predicate
	10.14 Soundness with Identity predicate
	Summary
	Problems

	11 Natural Deduction
	11.1 Rules and Derivations
	11.2 Propositional Rules
	11.3 Quantifier Rules
	11.4 Derivations
	11.5 Examples of Derivations
	11.6 Derivations with Quantifiers
	11.7 Proof-Theoretic Notions
	11.8 Derivability and Consistency
	11.9 Derivability and the Propositional Connectives
	11.10 Derivability and the Quantifiers
	11.11 Soundness
	11.12 Derivations with Identity predicate
	11.13 Soundness with Identity predicate
	Summary
	Problems

	12 The Completeness Theorem
	12.1 Introduction
	12.2 Outline of the Proof
	12.3 Complete Consistent Sets of Sentences
	12.4 Henkin Expansion
	12.5 Lindenbaum's Lemma
	12.6 Construction of a Model
	12.7 Identity
	12.8 The Completeness Theorem
	12.9 The Compactness Theorem
	12.10 A Direct Proof of the Compactness Theorem
	12.11 The Löwenheim-Skolem Theorem
	Summary
	Problems

	13 Beyond First-order Logic
	13.1 Overview
	13.2 Many-Sorted Logic
	13.3 Second-Order logic
	13.4 Higher-Order logic
	13.5 Intuitionistic Logic
	13.6 Modal Logics
	13.7 Other Logics

	III Incompleteness
	14 Introduction to Incompleteness
	14.1 Historical Background
	14.2 Definitions
	14.3 Overview of Incompleteness Results
	14.4 Undecidability and Incompleteness
	Summary
	Problems

	15 Recursive Functions
	15.1 Introduction
	15.2 Primitive Recursion
	15.3 Composition
	15.4 Primitive Recursion Functions
	15.5 Primitive Recursion Notations
	15.6 Primitive Recursive Functions are Computable
	15.7 Examples of Primitive Recursive Functions
	15.8 Primitive Recursive Relations
	15.9 Bounded Minimization
	15.10 Primes
	15.11 Sequences
	15.12 Trees
	15.13 Other Recursions
	15.14 Non-Primitive Recursive Functions
	15.15 Partial Recursive Functions
	15.16 The Normal Form Theorem
	15.17 The Halting Problem
	15.18 General Recursive Functions
	Summary
	Problems

	16 Arithmetization of Syntax
	16.1 Introduction
	16.2 Coding Symbols
	16.3 Coding Terms
	16.4 Coding Formulas
	16.5 Substitution
	16.6 Derivations in LK
	16.7 Derivations in Natural Deduction
	Summary
	Problems

	17 Representability in Q
	17.1 Introduction
	17.2 Functions Representable in Q are Computable
	17.3 The Beta Function Lemma
	17.4 Simulating Primitive Recursion
	17.5 Basic Functions are Representable in Q
	17.6 Composition is Representable in Q
	17.7 Regular Minimization is Representable in Q
	17.8 Computable Functions are Representable in Q
	17.9 Representing Relations
	17.10 Undecidability
	Summary
	Problems

	18 Incompleteness and Provability
	18.1 Introduction
	18.2 The Fixed-Point Lemma
	18.3 The First Incompleteness Theorem
	18.4 Rosser's Theorem
	18.5 Comparison with Gödel's Original Paper
	18.6 The Derivability Conditions for PA
	18.7 The Second Incompleteness Theorem
	18.8 Löb's Theorem
	18.9 The Undefinability of Truth
	18.10 Tarski's Theorem and Löb's Theorem
	Summary
	Problems

	19 Models of Arithmetic
	19.1 Introduction
	19.2 Reducts and Expansions
	19.3 Isomorphic Structures
	19.4 The Theory of a Structure
	19.5 Standard Models of Arithmetic
	19.6 Non-Standard Models
	19.7 Models of Q
	19.8 Models of PA
	19.9 Computable Models of Arithmetic
	Summary
	Problems

	A Derivations in Arithmetic Theories
	B Proofs
	B.1 Introduction
	B.2 Starting a Proof
	B.3 Using Definitions
	B.4 Inference Patterns
	B.5 An Example
	B.6 Another Example
	B.7 Proof by Contradiction
	B.8 Reading Proofs
	B.9 I Can't Do It!
	B.10 Other Resources
	Problems

	C Induction
	C.1 Introduction
	C.2 Induction on N
	C.3 Strong Induction
	C.4 Inductive Definitions
	C.5 Structural Induction
	C.6 Relations and Functions
	Problems

	D Biographies
	D.1 Georg Cantor
	D.2 Alonzo Church
	D.3 Gerhard Gentzen
	D.4 Kurt Gödel
	D.5 Emmy Noether
	D.6 Rózsa Péter
	D.7 Julia Robinson
	D.8 Bertrand Russell
	D.9 Alfred Tarski
	D.10 Alan Turing
	D.11 Ernst Zermelo

	Photo Credits
	Bibliography
	About the Open Logic Project

