Euler.
fLeonhard Euler (1707-1783)

® Successor of Nicolaus Bernoulli
In St. Petersburg (1726-1727).

® Member of the newly founded
St. Petersburg Academy of
Sciences (1727).

® 1741-1766: Director of Mathe-
matics, later inofficial head of the
Berlin Academy.

Core Logic — 2005/06-1ab — p. 6/:



Euler diagrams.

- -

Lettres a une Princesse d’Allemagne (1768-72).

B
“No Ais B
0 “Some (but only some) A is
B.”

“Some (but only some) A is
not B.

“Every Ais B

(Diagrams with Existential import!)
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Gergonne (1).
fJoseph Diaz Gergonne (1771-1859).
# \ery active in the wars after the French revolution.
# Discoverer of the duality principle in geometry.

# Essais de dialectigue rationnelle (1816-1817):

AhB AxB AlB

DIORDEN

AcB AoB
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Gergonne (2).

OIORECDENG

AcB AoB

Any two non-empty extensions (“sets”) A and B are In

exactly one of Gergonne’s five relations:
h esthors de
X s’entre-croise avec
| estidentique a
C est contenue dans
0 contiens

.

Core Logic —2005/06-1ab — p. 9/:



Sy

Gergonne (3).

ogisms of the first figure: Aey B, Be; C : Aey (.

If AxB and BcC', then —AIC' and

.

h X I C 9
h =l,—9 h =l,—9 h
X || =l,—C X —Ih,—ll,—lO —[,—C
| h X | C 9
C h —, C C
o | —-l,—c | —-h,=l,-c |92 —=h 9
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De Morgan.
-

Augustus de Morgan (1806-1871).

® Professor of Mathematics at UCL (1828).

® Corresponded with Charles Babbage (1791-1871)
and William Rowan Hamilton (1805-1865).

® 1866. First president of the London Mathematical
Society.

® =43, 2% =1849. y = 45, y? = 2025.

OV v
O NV

De Morgan rules. -

VS

N
Vv )

/N

L

. -
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Boole (1).
-

George Boole (1815-1864).

® School teacher in Doncaster, Liverpool,
Waddington (1831-1849).

® Correspondence with de Morgan.
® Professor of Mathematics at Cork (1849).

#® Developed an algebra of logic based on the idea of
taking the extensions of predicates as objects of the
algebra.

# 1 is the “universe of discourse”, 0 is the empty
extension.

. -
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Boole (2).

“All B are A” b(1 —a) = 0.
“No Bisan A” ba = 0.
“Some Bis an A” ba # 0.

“Some Bisnotan A” b(1 —a) # 0.

Celarent.

#® We assume: ba =0 and ¢(1 —b) = 0.

# We have to show: ca = 0.

® ba = 0 implies that cba = c0 = 0.

® ca=ca—0=ca—cba=alc—bc)=a(c(l—-0))=ac0=0.
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Venn.
-

John Venn (1834-1923).

Lecturer in Moral Science at Cambridge (1862).
Area of interest: logic and probability theory.
Symbolic Logic (1881).

The Principles of Empirical Logic (1889).

L 2 I I N

Alumni Cantabrigienses.

Venn diagrams.

. -
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-

Example. B={0,1}. 0

.

oo 0 b

L I B B

Boolean Algebras (1).

A structure B =

(B,0,1,4+,-,—) Is a Boolean algebra if

Bisasetwith0,1 € B.

+ and - are binary operations on B satisfying the commutative and associative laws.

— IS a unary operation on B.

-+ distributes over - and vice versa: z + (y - z) = (x + y) - (x + z) and
- (y+z)=(z-y)+ (z-2).

xr-x =z + x = x (ldempotence), — — z = x.

—(z-y) = (—x) + (-y), —(z +y) = (=) - (—y) (de Morgan’s laws).
z-(—x)=0,z+(—x)=1l,z-1=z,24+0=2,2-0=0,z+ 1= 1.

—1=0,-0=1.

0 1 +10 1
0 0 010 1
110 1 11 1
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Boolean Algebras (2).
. -

.= {Platon, Aristotle, Speusippus, Themistokles}
Phil := {Platon, Aristotle, Speusippus}
Rhet := {Themistokles}
Acad := {Platon, Speusippus}

Peri := {Aristotle}

B := {2, X, Phil, Rhet, Acad, Peri, Rhet + Peri, Rhet + Acad}.

/ X \
Phil Rhet + Peri Rhet + Acad

Rhet Acad Peri

N

%]
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Boolean Algebras (3).
- o

If X Is a set, let (X ) be the power set of X, i.e., the set of
all subsets of X.

For A, B € p(X), we can define
®» A-B:=ANBAB,
®» A+B:=AUB,

® ()=,
® 1 =2X,
®» —A:=X\A

Then (p(X),0,1,+, -, —) Is a Boolean algebra, denoted by
Pow (X).

.

Core Logic — 2005/06-1ab — p. 18/:



Boolean Algebras (4).
-

Define the notion of isomorphism of Boolean algebras:
LetB=(B,0,1,+,-,—yand C = {(C, L, T,8,R®,6) be
Boolean algebras. A function f : B — C'Is a Boolean
Isomorphism If

#® fIs a bijection,
o forall z,y € B, we have f(z +y) = f(z) ® y)

fla-y)=flx)® f(y), f[(—z) =ef(z), f(0) =1

f1)="T.
Stone Representation Theorem. If B is a Boolean
algebra, then there is some set X such that B is isomorphic
to a subalgebra of Pow (X).

.
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Circuits.
f # -+ corresponds to having two switches in parallel: if

either (or both) of the switches are ON, then the current
can flow.

#® - corresponds to having two switches in series: if either
(or both) of the switches are OFF, then the current is
blocked.
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M athematics and real content.
N o

athematics getting more abstract...

Imaginary numbers.
Nicolo Tartaglia Girolamo Cardano
(1499-1557) (1501-1576)

o "
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M athematics and real content.

o .

athematics getting more abstract...

Imaginary numbers.
Nicolo Tartaglia Girolamo Cardano
(1499-1557) (1501-1576)

Carl Friedrich Gauss (1777-1855)

ldeal elements in number theory.
Richard Dedekind (1831-1916)

A

.
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TheDedlic problem (1).

- -
gifl

If a cube has height, width and depth 1, then its volume is

Ix1x1=1%=1.
If a cube has height, width and depth 2, then its volume is

2x2x2=2 =38,
In order to have volume 2, the height, width and depth of

the cube must be /2:
V2 X V2 x V2= (Vv2)=2.

.
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TheDelic problem (2).
- o

Question. Given a compass and a ruler that has only
Integer values on it, can you give a geometric construction

of v/2?
Example. If z Is a number that is constructible with ruler
and compass, then /z is constructible.

Proof.
If = is the sum of two squares (i.e., z = n? + m?), then this is easy by Pythagoras. In
general:

P
)
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TheDelic problem (3).
- o

t Is easy to see what a positive solution to the Delic
problem would be. But a negative solution would require

reasoning about all possible geometric constructions.
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Geometries (1).

We call a structure (P, L, I) a plane geometry Iif
I C P x Lis arelation.

We call the elements of P “points”, the elements of L
“lines” and we read pI¢ as “p lies on 7”.

If ¢/ and ¢* are lines, we say that 7 and /* are parallel if
there is no point p such that pI¢ and pI/*.

Example. If P = R?, then we call ¢ C P aline if
t={{z,y); y=a-x+b}

for some a,b € R. Let £ be the set of lines. We write pI¢
ifped. Then (P, L, I) Is a plane geometry.
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Geometries (2).

#® (Al) For every p # q € P there Is exactly one ¢ € L such
that pI¢ and q¢I¥.

® (A2) Forevery ( # (* € L, either ¢ and ¢* are parallel, or
there Is exactly one p € P such that p// and pl/¢*.

#® (N) For every p € Pthereis an ¢ € L such that p doesn’t
lie on ¢ and for every ¢ € L there is an p € P such that p
doesn’t lie on /.

® (P2) Forevery ( +# (* € L, there Is exactly one p € P
such that pI¢ and pl¢*.

A plane geometry that satisfies (Al), (A2) and (N) is called
a plane. A plane geometry that satisfies (Al), (P2) and (N)
IS called a projective plane.

.
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Geometries (3).
-

® (A1) For every p # g € P there is exactly one ¢ € L such that pI¢ and qI¥¢.
® (A2) Forevery ¢ # ¢* € L, either £ and ¢* are parallel, or there is exactly one p € P
such that pI¢ and pI¢*.

® (N) For every p € P thereis an ¢ € L such that p doesn’t lie on ¢ and for every ¢ € L
there is an p € P such that p doesn'’t lie on /.

Let P := (R% L, <c). Then P is a plane.

N (WE) (“the weak Euclidean postulate”) FOr every ¢ L and every
p € P such that p doesn’tlie on 7, thereisan ¢* ¢ L
such that p//* and ¢ and ¢* are parallel.

N (SE) (“the strong Euclidean postulate”) FOr every ¢ L and every
p € P such that p doesn’t lie on /, there Is exactly one
¢* € L such that pI/* and ¢ and ¢* are parallel.

LP IS a strongly Euclidean plane.
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Geometries (4).
f -
Question. Do (Al), (A2), (N), and (WE) imply (SE)?

It is easy to see what a positive solution would be, but a
negative solution would require reasoning over all possible
proofs.

Semantic version of the question. Is every weakly
Euclidean plane strongly Euclidean?
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Syntactic ver sus semantic.

- -

Does ® imply ¢»?  Does every ®-structure satisfy ?
Positive Give a proof Check all structures
3 \4
Negative Check all proofs Give a counterexample
\4 =

. -
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Euclid’s Fifth Postulate.

“the scandal of elementary geometry” (D’Alembert 1767)
“In the theory of parallels we are even now not further than Euclid. This is a shameful part of
mathematics...” (Gauss 1817)

Johann Carl Friedrich Gauss  Nikolai Ivanovich Lobachevsky Janos Bolyai

(1777-1855) (1792-1856) (1802-1860)

1829

. -
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A non-Euclidean geometry.

-

Take the usual geometry P = (R?, £, €) on the Euclidean
plane.

Consider U := {x € R?; ||z|| < 1}. We define the restriction
of LCtoUby LY ={/nU;¢e L)

U= (U, LY, &).

Theorem. U is a weakly Euclidean plane which is not
strongly Euclidean.
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