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A NEW PROOF OF SAHLQVIST’'S THEOREM
ON MODAL DEFINABILITY AND COMPLETENESS

G. SAMBIN AND V. VACCARO

There are not many global results on modal logics. One of these is the following
theorem by Sahlqvist on completeness and correspondence for a wide class of modal
formulae (including many well known logics, e.g. D, T, B, S4, K4, S5,...) (see [S]).

SAHLQVIST’S THEOREM. Let A be any modal formula which is equivalent to a
conjunction of formulae of the form [(1™(A, — A,), wherem > 0, A, is positive and A,
is obtained from propositional variables and their negations applying A, v, <, and [
in such a way that no positive occurrence of a variable is in a subformula of the form
B, Vv B, or O By within the scope of some [. Then A corresponds effectively to a first
order formula, and L + A is canonical whenever L is a canonical logic.

A formula A satisfying the above conditions is henceforth called a Sahlquvist
formula. Unfortunately, till now, the only complete proof was the original proof of
Sahlqvist (a proof of the correspondence half has also been given by van Benthem
[vB]). It is so complicated and long that even in an advanced textbook of modal
logic [HC] it has not found a place. Here, by considering general frames as
topological spaces, an attitude which we developed in [TD], we give a proof of
Sahlqvist’s theorem simplified to such an extent that one can easily grasp the key
idea on which it is based and apply the resulting algorithm to specific modal
formulae in a straightforward manner, suitable even for implementation on a
personal computer. This key idea also improves on previous preliminary work in
the same direction (see [S1], [S2]).

§1. Preliminaries. Terminology and notation are essentially as in [TD] (see
especially §II.1). Here we recall that a general frame & is a triple (W, r, 7 ) in which W
is a nonempty set, r is a binary relation on W and J is a Boolean subalgebra of
P(W) closed under the operation r* defined by: for every C e 2(W), r*C =
{w e W:forevery v, wrvimpliesve C}. When I = 2(W), §is called a Kripke frame.
Given a general frame &, & will denote the underlying Kripke frame. Asin [TD], we
consider (W, ") as a topological space with 7 as a base for open (and hence also for
closed) subsets; thus we will freely use topological language in relation to general
frames whenever useful. For example, a relation r is called point-closed if rw'=
{ve W:wrv} is closed for every we W (and similarly, r is said to be closed if
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rD = (J{rw: w e D} is closed whenever D € W is closed). So descriptive frames
of [G] are just compact Hausdorff frames in which r is point-closed (see [TD,
pp. 278, 287]).

Given a valuation ¥ on {, i.e. a function from propositional variables to 7, and a
modal formula A(p,,..., p), V(A)is the subset of W obtained from V(p,),..., V(p)
by applying union v, intersection N, complementation —, and r* as interpretations
in & of v, A, and [, respectively. As a consequence, < is interpreted as —r* —,
which however has a direct mathematical meaning; in fact for every C € Z(W),
—r* — Cisequal tor~'C = {w € W: there exists v, wrv and v € C} where r~! is the
inverse of r (see [TD, IL.1]). Note that the operations r* and r~! are often also de-
noted by the letters  and m respectively.

We write A(C,,...,C,) as an abbreviation for V(A(p,,..., px)) where V(p;) = C;,
i < k, to stress the fact that we conceive the interpretation of a formula 4 in § as
an operation with arguments and values in . Thus, w € A(Cy, ..., C,) is true iff
(& V)= A[w], and hence (VC,,...,C,e T )we A(C,,...,C,)) is true iff &=
A[w]. The set-theoretic expression w € A(Cy,...,C,) is easily transformed into an
equivalent first-order formula with second order unary variables C,,...,C, and
just one free individual variable w. In fact, it is enough to replace w € r*4(Cy, ..., C;)
by the equivalent Yo(wrv — v € A(Cy,...,Cy)), wer 'A(C,,...,C,) by the equiva-
lent Jv{wrv A ve A(Cy,...,C)}, we(4y(Cy,...,C)N A5(Cy, ..., Cy)) by the equiv-
alent we A,(Cy,...,C) A we A,(Cy,...,C,) (and similarly for the other Boolean
connectives), and, finally, w € C; by C;(w). Apart from minor notational differences,
what we obtain is exactly the well-known standard translation ST(A4) of A4 into a
second order formula with the only free individual variable w (see [S], [VB]). We
see that, when & is a Kripke frame, § = A[w] iff &= (VS;...S,)ST(4)[w]. The
advantage of keeping the expression of the form w e A(C,,..., Cy), that is of keep-
ing the e relation “outside”, is that such notation allows us to operate not only with
classical tautologies, as on any second order formula, but in addition also with
mathematical abbreviations, like <, and equivalences such as (a) w e r*C'iff rw =
C,(b)C,cCand C,cCiff C,uC,cC, (c) ¥CeT)D, =C—-D,<C)iff
D,=(\{CeJ: D, = C},..., which highly simplify the task of manipulating
formulae, and, what is most peculiar here, with topological techniques.

Let us see such an approach on an easy example. Let A(p) = Op — p; then A(C)
will be r*C — C (which is an abbreviation for —r*C u C), hence w e A(C) iff we
r*C-weCiff rw = C—-weC.So, for any general frame &, = Cp — p[w] iff
(VCe T )rw = C—>weC)iff, by (c) above, we [{C e T:rw = C}. In §2 we will
conclude this example by introducing topological considerations.

We now review the standard definitions used in discussions of modal definability
and completeness. A modal formula A(p,, ..., pg) locally corresponds to a first order
formula ¢(x), with x as the only free variable, if for any Kripke frame & and any w
e W, §E A[w] iff = ¢[w]; also A corresponds to a first order sentence ¢ if for
any Kripke frame &, § = A4 iff = ¢. Obviously, the former notion implies the
latter (see [vB, 3.10]). A modal formula A is (locally) persistent if for any descrip-
tive frame & (and any point w e W), = A implies F'= A4 (F = A[w] implies
&= A[w]); we say that a logic L (here identified with the set of its theses) is persis-
tent when every formula in L is persistent. Now, recall that for every ordinal « the
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universal general frame §;(«) is a descriptive frame for L (see [TD, 1.3, IIL.2] and
[G, §13], where however &, («) is called a canonical frame). A logic L is canonical
if for every ordinal «, the Kripke frame §; (), usually called the canonical frame
associated to L, is a frame in which L is valid. Then any persistent logic L is clearly
canonical (see [vB, 6.10 and 6.11] or [TD, II1.4.10], where also the converse is
proved). Of course, any canonical logic is complete with respect to Kripke frames.

We finally recall some standard syntactic definitions. A modal formula A4 is
positive (negative) if it is obtained from (negations of) propositional variables, T
(verum), L (falsum), by applying only A, v, & and OJ. A is monotone in the variable pi
if C; < D;implies A(...,C;,...) < A(...,D,,...). Positive and negative occurrences of a
variable p; are defined inductively as usual by: (i) p; is a positive occurrence in p;, (i) a
positive (negative) occurrence of p; in 4 is positive (negative)in A v B, A A B, O A,
J4, and B — A, and negative (positive) in 14 and A —» B. The dual 4 of A is
obtained from A4 by interchanging T with L, v with A, [J with <. We collect some
facts about the above definitions in the following lemma, which is easily proved by
induction.

LeMMA 1.1. Let A(py,...,p.) be any modal formula written without —. Then:

(i) A4 is equivalent to a positive (negative) formula if and only if all the variables
occur only positively (negatively) in A.

(i) T A(py,. .., p) is equivalent to A(Mpy,...,71p;).

(iii) A is equivalent to a formula in which each occurrence of 7, if any, is only in
front of variables.

(iv) If p; occurs only positively in A, then A is monotone in p;.

§2. A topological proof of Sahlqvist’s theorem. We first take up again the formula
Op — p to illustrate on an example the key topological idea of the proof. Observe
that (){C € 7 : rw < C} is by definition simply the closure 7w of rw in 7 So assume
& to be a descriptive frame; then r is point closed, i.e. r'w = rw for every w € W, and
hence § = Op — p[w] iff w e rw, that is = Rxx[w]. Since the same argument
continues to hold also when & is a Kripke frame (because rw is then trivially closed),
Op — plocally corresponds to reflexivity (and this is indeed the fastest proof of this
fact that we know of). But the proper use of the above argument on descriptive
frames is to obtain persistence (and hence completeness) quite easily: for any
descriptive frame §, from &= Op — p[w] we reach &~ Rxx[w], and then go
back to §*= Op — p[w] by correspondence. We believe that a reader who tries
the same method on, for example, p—» Clp, Op—»O?p, pA Op A O?%p A -+ A
O"p — O"*!p, will appreciate its convenience over previous more lengthy proofs.

Now, our purpose is to show that the class of Sahlqvist formulae can be seen just
as the biggest class to which the same tricks, with some combinatorial com-
plications, can be applied. Note that in the above example the solution was reached
when we found a single subset rw, for which w € rw is first order expressible, and
which, keeping logical equivalence, can be substituted for the second order variable
C and its quantification. The role played by rw in the above example is taken in the
general case by the expressions of the form r™w; U - U r™w,, h >0, m, > 0,
which we here call r-expressions (note that, by convention, r°w = {w} and r™*!w
= r(r™w)). When a general frame & and w, w,,...,w, € Ware fixed, any r-expression
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D will be identified with the subset of W it defines; it is clear, however, that w € D
is equivalently expressed by a first order formula, which does not depend on &
(for example, w € {w, } is equivalent to w = w; and w e r™w, U r"w, is equivalent to

vy I W10y A oo A Dy W) v TV 0, (Warty A A Uy TW);

note that when h = 0, D is the empty set and hence w € D is equivalent to w # w).
Combining this with the remarks of §1, we obtain as an immediate consequence
that:

LEMMA 2.1. Let A(py,...,p:) be any modal formula. Then, for every r-expression
Dy,...,Dy,we A(D,,...,Dy)is equivalent to a first order formula which has w among
its free variables.

Note that a much wider class of expressions would satisfy Lemma 2.1 (for
example, we could include r~!, n, —); the reason for restricting the definition as
we did above is that when § is a descriptive frame (or a Kripke frame), every
r-expression is a closed subset of W, since r is closed (see [TD, I1.2.12]).

Now, the r-expressions are strictly related to the following formulae:

DEFINITION 2.2. A modal formula A is strongly positive if it is obtained from
formulae of the form [1"p (m > 0) by applying only A.

STRONGLY POSITIVE LEMMA. Let A(p,,...,py) be a strongly positive formula and &
any general frame. Then for everyw € W there exist r-expressions D, ..., D, such that
forevery C,,...,C,eT,

WEA(CI,...,Ck) lff DIECI/\"‘/\Dkng.

Proor. Consider any conjunct of the form [1"p; then w € (#*)™C is equivalent to
w e (r™)*C, by I1.2.1 of [TD], and hence, by definition, also to r"w < C. Now, by
using the mathematical equivalence (b) of §1, we can reduce to one the number of
occurrences of each C; after an inclusion symbol.

It is now an easy exercise (which we leave to the reader, but it is not used below)
to prove that the wide class of modal formulae of the form A; — A4,, with 4;,i < 2,
strongly positive, can be dealt with by the trick of the example. This class im-
mediately grows after the intersection lemma below. To prove it, we need a result
first stated in [E]:

ESAKIA’S LEMMA. Let § be any descriptive frame. Then for each downward
directed family € = {C};c; of nonempty closed subsets of W, r }((ic;C) =

ier? G
ﬂPROOF. Since ! is monotone, r ([ )ic; C;) S ()ies? 'C;. In order to prove
the converse, let we ();c;#7'C;. Then wer™'C; for every i€ I, that is, rw n C;
# (& for every i € I. Then {rw} U ¥ has the finite intersection property, and so, by
compactness, rw N ([ )ic; C;) # &, from which w e r ([, C)).

By Esakia’s lemma and the definition of closure, r~! is closed on any descriptive
frame &. Since r* distributes over intersections on any frame (see [TD, I1.1.8 and
I1.1.10]), r* is also closed. So for any positive formula 4 and any descriptive frame
&, A(D;,...,D;) is a closed subset of W whenever D,,...,D, = W are closed (note
that here we consider A(—,..., —)just as a set theoretical operation, independently
of interpretations).
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INTERSECTION LEMMA. Let § be a Kripke or a descriptive frame and let A be a
positive formula. Then, for each D = W,

A(..,D,..)={A(..,C,..): DS Ce T}

where D = (\{C e T :D < C}istheclosureof DinJ and the other parameters range
over closed subsets of W.

PROOF. When § is a Kripke frame the claim is trivial since A is monotone and
D =D.

When & is a descriptive frame, the proof is by induction on the complexity of A.

The case A = p is exactly the definition of closure.

Let A = 4, v A,. To prove the inclusion

N{(A, v 4)...,C,..): DS Ce T} = (4, v A,)...,D,...),

letwé¢ A,(...,D,...) U A,(...,D,...); then there exist C’, C" € 7 with D < C’ and
D < C” such that w¢ A(...,C’,...) and w¢ A,(...,C",...). Now, since A4, and
A, are positive formulae, by Lemma 1.1l.iv, w¢ A,(...,C’' n C",...) and w¢
Ay(...,C"' n C",..)), from which

wé ({4, v 4,)....C,..): D= CeT}.
Thus we have proved
{4, v A,)....C,..: D= Ce T} (4, v 4,)...,D,...).

The other inclusion follows from routine set-theoretical facts. When A =
A; N A,, the proof is quite similar.

The case A = [1A4, follows immediately since, as recalled above, r* distributes
over intersections.

Let A = OA,. Since A, is positive, by Lemma 1.1.iv and the remarks following
Esakia’s lemma, ¥ = {A(...,C,...): D < Ce J } is a downward directed family of
closed subsets. The claim now follows from the inductive hypothesis by Esakia’s
lemma.

As a generalization of (c) of §1, we see that when A, is positive,

weV{Ay(...C,..:DSCeT} iff (VCeT)D<SCowedy..,C,..)),

which explains the crucial role of the intersection lemma: the elimination of a
quantified second order variable C in favour of a single subset. So, if we consider
A =(A; - A,))(py,...,px) With A, strongly positive and A, positive, we see that

(VCI-~-CkEf)(WEAl(Cl,...,Ck)ﬁWEAZ(CI,...,Ck))
iff
(VC1~'-CkE.7—)(D1 g Cl VANREIVAN Dkg Ck*WGAz(Cl,...,Ck))

(by the strongly positive lemma) iff

(VCI'”Ck—l Ef)( /\ DiSCiﬁ(VCkEf)(DkECkﬁWGAz(Cl,...,Ck))>

i<k—1
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iff
(VCl b 'Ck—l € f)( /\ Di g Ci —>WE AZ(CI""’Ck—l>Dk)>>

i<k—1
by the above-mentioned generalization of (c), the intersection lemma and the fact
that D, is closed. Repeating this k — 1 times, we obtain:
LeEMMA 2.3. Let & be a Kripke or a descriptive frame and

A= (4, - A)(P1,---5Px)

where A, is strongly positive and A, is positive. Then,
(VC,---CGeT)we A(Cy,...,C)) iff we Ay(Dy,.... D)

where D;, i < k, are suitable r-expressions, effectively obtainable from A.

The further step is to find antecedents which, in a sense, can be decomposed in
such a way that we can apply the intersection lemma in a similar way. This is
achieved in Lemma 2.5 below.

DEFINITION 2.4. A modal formula A4 is an untied formula if it is obtained from
strongly positive formulae and negative ones by applying only A and O.

LeMMA 2.5. Let A(py,...,p,) be any untied formula. Then we A(Cy,...,C,) is
equivalent to

i<k ji<m

avl---ﬂvn<l// A /\D,g Ci A /\ qu]Vj(Cl""’Ck)>

where the v;,i < n, are distinct variables different from w,  is a conjunction of atomic
formulae of the formu;ru; and all the u’s are among v, ..., v, and w, the D, i < k, are
suitable r-expressions, and the N, j < m, are negative formulae and all indices may be
zero.

ProOF. The proof is by induction on the complexity of A.Itis trivial in the case in
which A is strongly positive or negative. In the other cases, the claim follows by
changing names to variables if necessary, by using the equivalence (b) and by
shifting quantifiers.

MAIN LEMMA. Let A = O0™(A; — A,)(py,- .-, D), Where Ay is an untied formula,
A, is positive and m > 0. Then A is locally persistent and locally corresponds to a first
order formula ¢(x) effectively obtainable from A.

PROOF. Let w be any point of a descriptive frame §. Then

0] (VCy---Cee T)we Om(A; » A,)(Cy,...,CY))

iff

2 (VCy+--C e T)(Yo)(wr™ - ve (4, > A)(Cy,...,C))
iff, by Lemma 2.5,

(3) (VC,---Cye .7)(Vv)<wr'”v - ((Eivl --3v,)

(l// ANADECA N u,-e]\lj(Cl,...,Ck)>—>veAZ(CI,...,Ck)>>.

i<k
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Then, by a shift of quantifiers and classical logic, (3) can be rewritten as
@) (vCy---C e T)Vv)(VYvy---V,)

<:// —»((/\ D, C; n )\ uje Nj(Cl,...,Ck)> —vE AZ(CI,...,Ck)>>
i<k j<m

where y' = wr™v A ¢. By Lemma 1.Lii, 7/(/\ ;< u; € Ni(Cy,...,C)) is equivalent

to \/j<mlj € N1 Cy,...,mC,) and Ni(py,...,1p,) is positive. So putting P =

N:(3py,.- ;%) Pusy = A5(py, ..., p) and u,, | = v, (4) is equivalent to

©) (Yo)(Vo, -+ Vv,.)(l//' - ((VC1 - Ged)

</\ Di = C,‘ hnd \/ uj € P}(Cl"“’ck)>>>‘
i<k j<m

By k applications of the intersection lemma, since D;, i < k, is a closed subset of W, it
follows that

6) (Yov)(Vo, ---Vv,,)(l// - \/ u € P,-(Dl,...,Dk)>.
j<m

Since D, ..., D, are r-expressions, P(Dy,...,D,), j < m + 1,is first order expressible
by Lemma 2.1; so now it is only a matter of transcribing the first order formula ¢(x)
which makes (6) equivalent to §‘F ¢[w]. Note that every step of the above
argument goes through also when & is a Kripke frame; we thus have proved that 4
locally corresponds to ¢(x). But now, starting from F= A[w] when § is a
descriptive frame, we arrive at = ¢[w] as above, and we go back to F¢= A[w]
by local correspondence: the result is local persistence.

In order to prove Sahlqvist’s theorem, we now only need a last syntactical lemma
that is easily provable by induction.

LEMMA 2.6. Let A(py,...,p:) be any modal formula written without —. Then A is
equivalent to a disjunction of untied formulae iff, after rewriting A as in Lemma 1.1.iii,
no positive occurrence of p;in A, i < k, is in a subformula of the form B, v B, or OB,
within the scope of some (.

PrOOF OF SAHLQVIST’S THEOREM. By Lemma 2.6 above, any A, satisfying the
assumptions is equivalent to a disjunction B; Vv --- v B,, where each B; is untied.
Hence, [1™(A4; — A,) is equivalent to (J"(B; = 4,) A --- A (O™(B, = 4,). By the
main lemma, each conjunct [1"(B; — 4,) is persistent and corresponds to a first
order formula; then also [1™(4; — A,) and A4 have such properties, since they are
obviously preserved by conjunction and equivalence. Finally, as we recalled in §1,
L + A is canonical whenever L is a canonical logic and 4 is persistent.

REFERENCES

[vB] J. F. A. K. vAN BENTHEM, Modal logic and classical logic, Bibliopolis, Naples, 1985.

[E] L. Esakia, Topological Kripke models, Soviet Mathematics Doklady, vol. 15 (1974), pp. 147-151.

[G] R.1. GOLDBLATT, Metamathematics of modal logic, Reports on Mathematical Logic, vol. 6 (1976),
pp. 41-77, and vol. 7 (1977), pp. 21-52.



MODAL DEFINABILITY AND COMPLETENESS 999

[HC] G. E. HuGHEs and M. J. CRESSWELL, A companion to modal logic, Methuen, London, 1984.

[S] H. SaHLQVIST, Completeness and correspondence in the first and second order semantics for modal
logic, Proceedings of the third Scandinavian logic symposium (S. Kanger, editor), North-Holland,
Amsterdam, 1975, pp. 110-143.

[S1] G. Sambin, 4 simpler proof of Sahlquvist’s theorem on completeness of modal logics, Polish
Academy of Sciences, Institute of Philosophy and Sociology, Bulletin of the Section of Logic, vol.9 (1980),
pp. 50-56.

[S2] , Topology and categorical duality in the study of semantics for modal logics, Report No.
104, Fachbereich Mathematik, Freie Universitit Berlin, Berlin, 1979.

[TD] G. SAMBIN and V. Vaccaro, Topology and duality in modal logic, Annals of Pure and Applied
Logic, vol. 37 (1988), pp. 249-296.

DIPARTIMENTO DI MATEMATICA PURA ED APPLICATA
UNIVERSITA DEGLI STUDI DI PADOVA
35131 PADOVA, ITALY

DIPARTIMENTO DI MATEMATICA E APPLICAZIONI
UNIVERSITA DEGLI STUDI DI NAPOLI
80134 NAPOLI, ITALY



