Euler.

fLeonhard Euler (1707-1783)

® Member of the newly founded
St. Petersburg Academy of
Sciences (1727).

® 1741-1766: Director of Mathe-
matics, later inofficial head of the
Berlin Academy.

. |
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Euler diagrams.

o, N

ettres a une Princesse d’Allemagne (1768-72).

B
‘No Ais B
0 “Some (but only some) A is
B’

“Some (but only some) A is
not B

(Diagrams with Existential import!)
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Gergonne (1).
-

Joseph Diaz Gergonne (1771-1859).
# \ery active in the wars after the French revolution.
# Discoverer of the duality principle in geometry.

® Essais de dialectique rationnelle (1816-1817):
AhB AxB AlB

OIORCDENG

AcB AosB

. |
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Gergonne (2).

e e . N
olo

AcB AoB

Any two non-empty extensions (“sets”) A and B are in
exactly one of Gergonne’s five relations:

h esthors de

X S’entre-croise avec
| estidentique a

c estcontenue dans
o contiens

. |
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fS

Gergonne (3).

yllogisms of the first figure: Aey B, B e C': Aey (.

If AxB and BcC, then —AIC and

.

h X I C 0
h —=|,—90 h —=|,—0 h
X || —=l,—c X | =h,=l,—=2 | —=l,—c
I h X I C 0
C h =, C C
9| —=l,-c | =h,-l,—c |9 —=h 0

|
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De Morgan.

fAugustus de Morgan (1806-1871).

® Professor of Mathematics at UCL (1828).

® Corresponded with Charles Babbage (1791-1871)
and William Rowan Hamilton (1805-1865).

® 1866. First president of the London Mathematical
Society.

® =43, 22 =1849. y = 45, y? = 2025.

-V -V
lOIANESL)

De Morgan rules. -

VR

O A V)
AVAY

VR

L

. |
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Boole (1).

fGeorge Boole (1815-1864).

® School teacher in Doncaster, Liverpool,
Waddington (1831-1849).

® Correspondence with de Morgan.
® Professor of Mathematics at Cork (1849).

#® Developed an algebra of logic based on the idea of
taking the extensions of predicates as objects of the
algebra.

# 1 is the “universe of discourse”, 0 is the empty
extension.

. |
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Boole (2).
| -

‘No Bisan A’ ba = 0.
“Some Bis an A” ba # 0.
“All B are A” b(1 —a)=0.

“Some Bisnotan A" b(1 —a) # 0.

Celarent.

® We assume: ba = 0 and ¢(1 — b) = 0.

# |We have to show: ca = 0.

® ba = 0 implies that cba = c0 = 0.

® ca=ca—0=ca—cba=alc—bc)=a(c(l—>b))=acO=0.

. |
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Venn.

fJohn Venn (1834-1923).

Venn diagrams.

o000 b

Lecturer in Moral Science at Cambridge (1862).

Area of interest: logic and probability theory.
Symbolic Logic (1881).
The Principles of Empirical Logic (1889).

Alumni Cantabrigienses.

|
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|7A

Example. B ={0,1}. 0

.

e o0 b

oo 0 b0

Boolean Algebras (1).

Bisasetwith0,1 € B.

structure B = (B,0,1,+,-,—) is a Boolean algebra if

-

+ and - are binary operations on B satisfying the commutative and associative laws.

— is a unary operation on B.

+ distributes over - and vice versa: x + (y - z)

z-(y+z2)=(r-y)+(z-2).

x-x =x+ x = z (idempotence), — — x = x.
—(z-y) = () + (—y), —(z +y) = (—=) - (—y) (de Morgan’s laws).
z-(—z)=0,z+(—x)=1lL,z- 1=z, 24+0=z,2-0=0,z+1 = 1.

—1=0,-0=1.

_I_

(zr+vy)-(x+2)and

1

o OO

—_ O | =

0

— O O

—_— |

|
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Boolean Algebras (2).
-

fX := {Platon, Aristotle, Speusippus, Themistokles}

Phil := {Platon, Aristotle, Speusippus}
Rhet := {Themistokles}

Acad := {Platon, Speusippus}
Peri := {Aristotle}

B := {2, X, Phil, Rhet, Acad, Peri, Rhet + Peri, Rhet + Acad}.

/ X \
Phil Rhet + Peri Rhet + Acad
Rhet Acad Peri

%)

- e N
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Boolean Algebras (3).
-

fIf X is a set, let p(X) be the power set of X, i.e., the set of
all subsets of X.
For A, B € p(X), we can define

® A -B:=ANBKB,
® A+B.=AUB,

® 0:=09,
® 1 .=2JX,
» —A:=X\A

Then (p(X),0,1,+, -, —) Is a Boolean algebra, denoted by
Pow (X).

. |
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Boolean Algebras (4).
fD

LetB=(B,0,1,+,-,—)and C=(C, 1, T,®,®,0) be
Boolean algebras. A function f : B — C'is a Boolean
iIsomorphism if

#® fis a bijection,

# forall z,y € B, we have f(zx+vy) = f(z) ® y)

fl-y) = fz)® fy), f(=2) = f()f()=
F(1)=T.

Stone Representation Theorem. If B is a Boolean

efine the notion of isomorphism of Boolean algebras:

-

algebra, then there is some set X such that B is isomorphic

to a subalgebra of Pow(X).

.

|
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Circuits.

- N

#® -+ corresponds to having two switches in parallel: if
either (or both) of the switches are ON, then the current
can flow.

# - corresponds to having two switches in series: if either
(or both) of the switches are OFF, then the current is
blocked.

. |
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Mathematics and real content.

o

athematics getting more abstract...

-

Imaginary numbers.
Nicolo Tartaglia Girolamo Cardano
(1499-1557) (1501-1576)

Carl Friedrich Gauss (1777-1855)

Ideal elements in number theory.
Richard Dedekind (1831-1916)

e

. |
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The Delic problem (1).
B - -

1 |

If a cube has height, width and depth 1, then its volume is

Ix1x1=1°=1.
If a cube has height, width and depth 2, then its volume is

2x2x2=2=28.
In order to have volume 2, the height, width and depth of

the cube must be /2:
V2 X V2 x V2= (V2) =2

. |
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The Delic problem (2).
B -

Question. Given a compass and a ruler that has only
iInteger values on it, can you give a geometric construction

of /27

Example. If z is a number that is constructible with ruler
and compass, then /z is constructible.

Proof.
If z is the sum of two squares (i.e., x = n? + m?), then this is easy by Pythagoras. In

general:
ﬁ\
X 1

. |
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The Delic problem (3).
-

fIt IS easy to see what a positive solution to the Delic
problem would be. But a negative solution would require
reasoning about all possible geometric constructions.

. |
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Geometries (1).

-

We call a structure (P, L, I) a plane geometry if
I C P x L is a relation.

We call the elements of P “points”, the elements of L
‘lines” and we read pI¢ as “p lies on /",

If ¢ and ¢* are lines, we say that 7 and ¢* are parallel if
there is no point p such that p/¢ and pI/*.

Example. If P = R?, then we call ¢ C P a line if

t={(z,y); y=a-x+b}

for some a,b € R. Let £ be the set of lines. We write pI/
if pe (. Then (P, L, I) is a plane geometry.

|
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Geometries (2).

- N

#® (A1) Forevery p # g € P there is exactly one ¢ € L such
that p/¢ and ¢I¢.

® (A2) Forevery ¢+ ¢* € L, either ¢ and ¢* are parallel, or
there is exactly one p € P such that p/¢ and pl¢*.

#® (N) For every p € P thereis an ¢ € L such that p doesn't
lie on ¢ and for every ¢/ € L there is an p € P such that p
doesn't lie on /.

® (P2) Forevery ¢+ ¢* € L, there is exactly one p € P
such that p// and pl¢*.

A plane geometry that satisfies (A1), (A2) and (N) is called
a plane. A plane geometry that satisfies (A1), (P2) and (N)
Is called a projective plane.

. |
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Geometries (3).

- N

® (A1) Forevery p # q € P there is exactly one ¢ € L such that pI¢ and qI.
9

(A2) For every ¢ # ¢* € L, either £ and £* are parallel, or there is exactly one p € P
such that pI¢ and pl¢*.

® (N)Forevery p € P thereis an ¢ € L such that p doesn’t lie on ¢ and for every ¢ € L
there is an p € P such that p doesn't lie on Z.

Let P := (R% £, <). Then P is a plane.

® (WE) (‘the weak Euclidean postulate’) FOr every ¢ € L and every
p € P such that p doesn’t lie on /, there is an /* ¢ L
such that p//* and ¢ and ¢* are parallel.

X (SE) (“the strong Euclidean postulate”) For every ¢ ¢ L and every
p € P such that p doesn’t lie on /, there is exactly one
¢* € L such that p/¢* and ¢ and ¢* are parallel.

LP Is a strongly Euclidean plane. J

Core Logic —2007/08-1ab — p. 22/35



Geometries (4).

- N

Question. Do (A1), (A2), (N), and (WE) imply (SE)?

It is easy to see what a positive solution would be, but a
negative solution would require reasoning over all possible
proofs.

Semantic version of the question. |s every weakly
Euclidean plane strongly Euclidean?

. |
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Syntactic versus semantic.

- N

Does ® imply ¢y? Does every o-structure satisfy ?
Positive Give a proof Check all structures
3 \4
Negative Check all proofs Give a counterexample
\4 =

. |
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o o000 0000 b

Euclid’s Fifth Postulate (1).
-

Ptolemy (c.85-c.165)

Proclus (411-485)

Omar Khayyam (1048-1131)

Nasir ad-Din at-Tusi (1201-1274)

Girard Desargues (1591-1661)

Blaise Pascal (1623-1662)

Gerolamo Saccheri (1667-1733): Hypothesis of the acute angle
Heinrich Lambert (1728-1777)

John Playfair (1748-1819)

Adrien-Marie Legendre (1752-1833): (SE) is equivalent to “the sum of angles of a
triangle is equal to 180°".

|
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Euclid’s Fifth Postulate (2).

“the scandal of elementary geometry” (D’Alembert 1767)
“In the theory of parallels we are even now not further than Euclid. This is a shameful part of
mathematics...” (Gauss 1817)

Johann Carl Friedrich Gauss  Nikolai Ivanovich Lobachevsky Janos Bolyai

(1777-1855) (1792-1856) (1802-1860)
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A non-Euclidean geometry.

Take the usual geometry P = (R?, £, ) on the Euclidean
plane.

Consider U := {z € R?; ||z|| < 1}. We define the restriction
of Lto U by £Y := {ZHU, (e L}
U := (U, LY e).

Theorem. U is a weakly Euclidean plane which is not
strongly Euclidean.

. |
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Cantor (1).

Georg Cantor

(1845-1918)

studied in Zirich, Berlin, Géttingen
Professor in Halle

# Work in analysis leads to the notion of cardinality
(1874): most real numbers are transcendental.

#® Correspondence with Dedekind (1831-1916): bijection
between the line and the plane.

#® Perfect sets and iterations of operations lead to a notion
of ordinal number (1880). J
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fGeorg Cantor (1845-1918)

>

o

Cantor (2).
-

1877. Leopold Kronecker (1823-1891) tried to prevent
publication of Cantor’s work.

Cantor is supported by Dedekind and Felix Klein.
1884 Cantor suffers from a severe depression.

1888-1891: Cantor is the leading force in the foundation
of the Deutsche Mathematiker-Vereinigung.

Development of the foundations of set theory:
1895-1899.

|
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The natural numbers

The even numbers

9

°

Cardinality (1).

o 1 2 3 4_5 6 7 8 -

(l; \2\4\\8

There is a 1-1 correspondence (bijection) between N
and the even numbers.

There is a bijection between N x N and N.

There is a bijection between Q and N.

There is no bijection between the set of infinite 0-1
sequences and N.

There is no bijection between R and N.

|
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Cardinality (2).
-

fTheorem (Cantor). There is no bijection between the set of
infinite 0-1 sequences and N.

Theorem (Cantor). There is a bijection between the real
line and the real plane.

Proof. Let’s just do it for the set of infinite 0-1 sequences and the set of pairs of infinite 0-1
sequences:
If 2 is an infinite 0-1 sequence, then let

zo(n) := z(2n), and

z1(n) :=z(2n 4+ 1).

Let F'(x) := (x0,x1). F is a bijection. g.e.d.

Cantor to Dedekind (1877): “Ich sehe es, aber ich glaube

Les nicht!” J
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