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ABSTRACT. We contribute to the study of generalizations of the Perfect Set Property and the Baire Property
to subsets of spaces of higher cardinalities, like the power set (�) of a singular cardinal � of countable
cofinality or products

∏

i<! �i for a strictly increasing sequence ⟨�i | i < !⟩ of cardinals. We consider the
question under which large cardinal hypotheses classes of definable subsets of these spaces possess such
regularity properties, focusing on rank-into-rank axioms and classes of sets definable by Σ1-formulas with
parameters from various collections of sets. We prove that !-many measurable cardinals, while sufficient to
prove the perfect set property of all Σ1-definable sets with parameters in V� ∪{V�}, are not enough to prove it
if there is a cofinal sequence in � in the parameters. For this conclusion, the existence of an I2-embedding is
enough, but there are parameters in V�+1 for which I2 is still not enough. The situation is similar for the Baire
property: under I2 all sets that areΣ1-definable using elements of V� and a cofinal sequence as parameters have
the Baire property, but I2 is not enough for some parameter in V�+1. Finally, the existence of an I0-embedding
implies that all sets that are Σ1n-definable with parameters in V�+1 have the Baire property.

1. INTRODUCTION

Fundamental results of descriptive set theory show that simply definable sets of real numbers, e.g. Borel
sets, possess a rich and canonical structure theory and these structural results have various applications in
other areas of mathematics. Moreover, seminal results show that canonical extensions of the axioms of
ZFC allow us to extend these structural conclusions to much larger classes of definable sets of reals. Since
the developed theory is limited to the study of mathematical objects that can be encoded as definable sets
of real numbers, there has been a recent interest to develop a generalized descriptive set theory that allows
the study of definable objects of much higher cardinalities. While it is already known that several key
results of the classical theory cannot be directly generalized to all higher cardinalities (see, for example,
[LS15]), the research conducted so far in this area isolated several settings in which rich structure theories
for definable sets of higher cardinalities can be developed. The work presented in this paper contributes
to the study of one of these settings that originates in Hugh Woodin‘s work on large cardinal assumptions
close to the Kunen Inconsistency (see [Woo11]).

Remember that a non-trivial elementary embedding j ∶ L(V�+1)⟶ L(V�+1) for some ordinal � is an
I0-embedding if crit(j) < � holds. Kunen’s analysis of elementary embeddings in [Kun71] then directly
shows that � = supn<! �n holds for every I0-embedding j ∶ L(V�+1)⟶ L(V�+1)with critical sequence1
⟨�n | n < !⟩. Embeddings of this type produce a setting in which descriptive concepts can be developed
fruitfully. More specifically, several deep results show that the structural properties of the collection of
subsets of (�) contained in L(V�+1) strongly resembles the behavior of the collection of sets of reals
in L(ℝ) in the presence of the Axiom of Determinacy AD in L(ℝ). In the following, we will focus on
generalizations of the Perfect Set Property to definable subsets of higher power sets. Given a non-empty
set X and an infinite cardinal �, we equip the set �X of all functions from � to X with the topology
whose basic open sets consists of all functions that extend a given function s ∶ � ⟶ X with � < �. In
addition, we equip the set (�) of all subsets of an infinite cardinal � with the topology whose basic open
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1We say that a sequence ⟨�n | n < !⟩ of ordinals is the critical sequence of a non-trivial elementary embedding j ∶M ⟶ N

between transitive classes if �0 = crit(j) and j(�n) = �n+1 holds for all n < !.
1
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sets consist of all subsets of � whose intersection with a given ordinal � < � is equal to a fixed subset of
�. Finally, we say that a map � ∶ X ⟶ Y between topological spaces is a perfect embedding if it induces
a homeomorphism between X and the subspace ran(�) of Y .

It is easy to see that for every infinite cardinal �, there is a subset of (�) of cardinality greater than �
that does not contain the range of a perfect embedding of cof(�)� into (�).2 In contrast, classical results
show that if AD holds in L(ℝ), then every uncountable subset of (!) in L(ℝ) contains the range of a
perfect embedding of !! into (!). The work of Hugh Woodin, Xianghui Shi and Scott Cramer now
shows that I0-embeddings imply an analogous dichotomy at the supremum of the corresponding critical
sequence (see [Cra15, Section 5], [Shi15, Section 4] and [Woo11, Section 7]).

Theorem 1.1 ([Cra15]). If j ∶ L(V�+1) ⟶ L(V�+1) is an I0-embedding and X is a subset of (�) of
cardinality greater than � that is an element ofL(V�+1), then there is a perfect embedding � ∶ !�⟶ (�)
with ran(�) ⊆ X.

The work presented in this paper is motivated by the question whether the restriction of this implication
to smaller classes of definable sets can be derived from weaker large cardinal assumptions. It is motivated
by the results of Sandra Müller and the third author in [LM23] that analyze simply definable sets at limits
of measurable cardinals. In the following, we say a class C is definable by a formula '(v0,… , vn) and
parameters z0,… , zn−1 if C = {y | '(y, z0,… , zn−1)} holds. We now distinguish classes of definable
sets using the Levy hierarchy of formulas3 and the rank of parameters. The following result is the starting
point of our work:

Theorem 1.2 ([LM23]). If � is a limit of measurable cardinals and X is a subset of (�) of cardinality
greater than � that is definable by a Σ1-formula with parameters in V� ∪ {�}, then there is a perfect
embedding � ∶ cof(�)�⟶ (�) with ran(�) ⊆ X.

Given an infinite cardinal �, the Σ1-Reflection Principle shows that all Σ1-formulas with parameters
in H�+ are absolute between V and H�+ . Therefore, it follows that a subset of H�+ is definable by a
Σ1-formula with parameters in H�+ if and only if the given set is definable in this way in H�+ . This
shows that, if � is an infinite cardinal with H� = V�, then L(V�+1) contains all subsets of (�) that are
definable by a Σ1-formula with parameters inH�+ , becauseH�+ is contained in L(V�+1). In particular, it
follows that the conclusion of the implication stated in Theorem 1.1 directly implies the conclusion of the
implication stated in Theorem 1.2.

The theorems cited above directly raise the question if stronger perfect set theorems can be proven
for limits of countably many measurable cardinals. In particular, it is natural to ask if the implication of
Theorem 1.2 still holds true if we allow more elements of (�) in our Σ1-definitions. A natural candidate
for such an additional parameter in (�) ⧵ (V� ∪ {�}) is an !-sequence of measurable cardinals that is
cofinal in the given supremum �. Our first result, proven in Section 2, shows that we no longer get a
provable implication if we are allowed to use such a sequence as a parameter in our Σ1-definitions:

Theorem 1.3. If �⃗ is a strictly increasing sequence of measurable cardinals with limit �, then the following
statements hold in an inner modelM containing �⃗:
(i) The sequence �⃗ consists of measurable cardinals.
(ii) If �⃗ is a strictly increasing !-sequence of regular cardinals with limit �, then there is a subset of

(�) of cardinality greater than � that does not contain the range of a perfect embedding of !� into
(�) and is definable by a Σ1-formula with parameters in V� ∪ {�⃗}.

2First, observe that for every  < �, the set () is discrete in (�) and therefore it does not contain the range of a perfect
embedding of cof(�)� into (�). In particular, if 2<� > �, then there is a subset of (�) with the desired property. In the other case,
if 2<� = �, then the set of perfect embeddings of cof(�)� into (�) has cardinality 2� and we can build the desired subset through a
standard recursive construction.

3See [Kan03, p. 5].
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We now proceed by showing that a large cardinal axiom strictly weaker than the existence of an I0-
embedding implies the perfect set property discussed above. Remember that an elementary embedding
j ∶ V ⟶ M with critical sequence ⟨�n | n < !⟩ is an I2-embedding if V� ⊆ M , where � = supn<! �n.
The existence of such an embedding is equivalent to the existence of a non-trivial elementary embedding
i ∶ V� ⟶ V� with critical sequence ⟨�n | n < !⟩ such that � = supn<! �n and the canonical map

i+ ∶ V�+1 ⟶ V�+1; A⟼
⋃

{i(A ∩ V�n ) | n < !}

extending i to V�+1maps well-founded relations on V� to well-founded relations on V� (see [Kan03, Propo-
sition 24.2]). The results of [Lav97] show that, if i ∶ L(V�+1)⟶ L(V�+1) is an I0-embedding, then there
is an embedding j ∶ V� ⟶ V� for some � < � with the given property. Since � is a limit of in-
accessible cardinals in this setting, it follows that the existence of an I0-embedding has strictly higher
consistency strength than the existence of an I2-embedding. The next result, proven in Section 3, shows
that I2-embeddings imply the desired perfect set property:

Theorem 1.4. Let j ∶ V ⟶ M be an I2-embedding with critical sequence �⃗ = ⟨�n | n < !⟩ and set
� = supn<! �n. IfX is a subset of (�) of cardinality greater than � that is definable by a Σ1-formula with
parameters in V� ∪ {V�, �⃗}, then there is a perfect embedding � ∶ !�⟶ (�) with ran(�) ⊆ X.

The proof of this theorem will show that its conclusion holds for subsets of(�) that are definable from
a significantly larger set of parameters in V�+1 (see Theorem 3.1 below). However, in Section 2, we will
observe that an assumption strictly stronger than the existence of an I2-embedding is necessary to obtain
this perfect set property for all subsets of (�) that are definable by Σ1-formulas with parameters in (�):

Theorem 1.5. If j ∶ V ⟶ M is an I2-embedding with critical sequence �⃗ = ⟨�n | n < !⟩ and � =
supn<! �n, then the following statements hold in an inner model:
(i) There is an I2-embedding whose critical sequence has supremum �.
(ii) There is a subset z of � and a subset X of (�) of cardinality greater than � such that X does not

contain the range of a perfect embedding of !� into (�) and the setX is definable by a Σ1-formula
with parameter z.

The five results discussed above suggest the intriguing possibility of studying large cardinal assump-
tions canonically inducing singular cardinals � of countable cofinality through the provable regularity
properties of simply definable subsets of (�). More specifically, they suggest that for each large cardinal
axiom of this form, wewant to uniformly assign as large subsets P� of V�+1 as possible to each singular car-
dinal �, in a way that ensures that ZFC proves that whenever � is a singular cardinal of countable cofinality
induced by a cardinal of the given type, then all subsets of (�) that are definable by Σ1-formulas using
parameters from P� either have cardinality at most � or contain the range of a perfect embedding of !�
into (�). Note that, since this approach is based on provable implications and not consistency strength,
it is less affected by the current technical limitations of inner model theory and therefore provides a new
angle to study strong large cardinal axioms.

In addition to Σ1-definable subsets of power sets, we will also study spaces and complexity classes
that more closely resemble the objects studied in classical descriptive set theory. More specifically, for a
given strictly increasing sequence �⃗ = ⟨�n | n < !⟩ of infinite cardinals with supremum �, we will study
subsets of the closed subspace C(�⃗) of !� consisting of all functions in the set

∏

n<! �n, i.e., all functions
x ∶ !⟶ � satisfying x(n) < �n for all n < !. Note that the map

��⃗ ∶ C(�⃗)⟶ (�); x⟼ {≺�n, x(n)≻ | n < !}

yields a homeomorphism between C(�⃗) and a closed subset of (�).4 Moreover, since the map ��⃗ is
definable by a Δ0-formula with parameter �⃗, Theorem 1.4 immediately implies a perfect set theorem for

4Here, we let ≺⋅, ⋅≻ ∶ Ord × Ord⟶ Ord denote the Gödel pairing function.
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subsets of C(�⃗) definable by Σ1-formulas with parameters in the set V� ∪ {�⃗}. Finally, the sets produced
in the proofs of Theorems 1.3 and 1.5 will actually be subsets of ran(��⃗) and therefore yield analogous
negative results for Σ1-definable subsets of C(�⃗) (see Theorems 2.3 and 2.4 below).

The theorems above extends beyond (�) and C(�⃗): In [DMR] a whole classes of spaces is introduced:
the �-Polish spaces, i.e., spaces that are completely metrizable and with weight �, and it is easy to prove
analogous results for them. For example, �2, with the bounded topology, is homeomorphic to (�),
and therefore Theorems 1.2, 1.3, 1.4 and 1.5 hold in there. The space !�, with the product topology, is
homeomorphic to a closed subset of (�) via the map x ↦ ≺n, x(n)≻, and it contains C(�⃗) as a closed
set, therefore Theorems 1.3, 1.4 and 1.5 hold in there. If (X, d) is any �-Polish space, then there is a Σ1(d)
continuous bijection between a closed set F ⊆ �! and X ([DMR]). By pulling back with the bijection,
we can therefore prove Theorems 1.2, 1.3, 1.4 and 1.5 also in there. Finally, if d is more complicated, the
negative results of Theorems 1.3 and 1.5 hold anyway, but respectively with a witness inΣ1(V�∪{V�, �⃗, d})
and in Σ1(z, d).

In another direction, we will not only study subsets of (�), !� or C(�⃗) that are definable in V by
formulas of a given complexity, but also sets that are definable over V� by higher-order formulas in the
classes Σmn and Πmn (see, for example, [Jec03, p. 295]) using certain parameters contained in V�+1. The
following results (whose proof is a routine adaptation of the proof of [Jec03, Lemma 25.25] to higher
cardinals of countable cofinality) connects this form of definability to Σ1-definitions:

Proposition 1.6. For every Σ1-formula '(v0,… , vk−1) in the language of set theory, there exists a Σ12-
formula  (w0,… , wk−1) in the language of set theory with free second-order parameters w0,… , wk−1
such that ZFC proves that

'(A0,… , Ak−1) ⟺ ⟨V�,∈⟩ ⊧  (A0,… , Ak−1)
holds for every singular cardinal � of countable cofinality withH� = V� and all A0,… , Ak−1 ∈ V�+1.

We will later show (see Corollary 3.3) that, in certain contexts, it is also possible to translate Σ12-
formulas into Σ1-formulas. Moreover, note that, in [DMR], Luca Motto Ros and the first author prove
that, analogous to the classical setting, for every singular strong limit cardinal � of countable cofinality,
every �11-subset of

!� (i.e., every subset of !� that is definable over V� by a Σ11-formula with parameters in
V�+1) of cardinality greater than � contains the range of a perfect embedding of !� into itself. In addition,
still completely analogous to the classical setting, they show that, if V = L holds and � is a singular
cardinal of countable cofinality, then there is a subset of !� of cardinality �+ that is definable over V� by
a Π11-formula without parameters.

In addition, we later will consider an analog of the Baire Property to �, that we call ⃗ -Baire property
(see Definition 4.3 below). In analogy with Theorem 1.4, the existence of an I2-embedding with supre-
mum of the critical sequence � implies that every subset of C(�⃗) that is definable by a Σ1-formula with
parameters in V� ∪ {V�, �⃗} has the ⃗ -Baire property (see Theorem 4.12 below). Moreover, in analogy
with Theorem 1.1, the existence of an I0-embedding with supremum of the critical sequence � implies
that every subset of C(�⃗) in L1(V�+1) has the ⃗ -Baire property (see Theorem 4.14 below). Finally, as
a negative result, we show that, in the inner model constructed in the proof of Theorem 1.5, there exists
an I2-embedding with supremum of the critical sequence � and a subset of C(�⃗) without the ⃗ -Baire
property that is definable by a Σ1-formula with parameters in V�+1 (see Theorem 4.10 below).

2. NEGATIVE RESULTS

In this section, we will prove the restricting results stated in the introduction (Theorems 1.3 and 1.5).
Theorem 1.3 motivates the formulation of the main result of this paper (Theorem 1.4) by showing that
its conclusion cannot be derived from the weaker large cardinal assumptions used in Theorem 1.2. On
the other hand, Theorem 1.5 shows that the statement of Theorem 1.4 cannot be strengthened to affect all
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sets that are Σ1-definable from arbitrary subsets of the given singular cardinal. In the following, we use
arguments based on ideas and notions that were already used in [LM23, Section 4].

Definition 2.1. Let �⃗ = ⟨�n | n < !⟩ be a strictly increasing sequence of cardinals with supremum � and
let a⃗ = ⟨a� | � < �⟩ be a sequence of elements of V�.
(i) Given x ⊆ �, we define ⊲x to be the unique binary relation on � with the property that

� ⊲x � ⟺ ≺�, �≻ ∈ x
holds for all �, � < �.

(ii) We define � to be the set of all x ∈ (�) with the property that ⊲x is a well-ordering of �.
(iii) We letWO(�⃗, a⃗) denote the set of all b ∈ !� with the property that there exists x ∈� such that

x ∩ �n = ab(n) holds for all n < !.
(iv) Given an element b of WO(�⃗, a⃗), we let ‖b‖a⃗ denote the order-type of the resulting well-order

⟨�,⊲⋃

{ab(n) | n<!}⟩.

The following Boundedness Lemma now follows from the theory developed in [LM23, Section 4] that
generalizes classical arguments from descriptive set theory to singular strong limit cardinals of countable
cofinality:

Lemma 2.2 ([LM23, Lemma 4.5]). Let �⃗ = ⟨�n | n < !⟩ be a strictly increasing sequence of inaccessible
cardinals with supremum � and let a⃗ = ⟨a� | � < �⟩ be an enumeration of H�. If f ∶ !� ⟶ !� is a
continuous function with ran(f ) ⊆ WO(�⃗, a⃗), then there exists an ordinal  < �+ with ‖f (c)‖a⃗ <  for
all c ∈ !�.

We start by limiting the provable structural consequences of I2-embeddings by proving the following
strengthening of Theorem 1.5 that shows that the statement of Theorem 1.4 cannot be strengthened to show
that the existence of an I2-embedding at a cardinal � implies that every subset of(�) that is definable by a
Σ1-formula with parameters in V�+1 either has cardinality � or contains the range of a perfect embedding:

Theorem 2.3. If j ∶ V ⟶ M is an I2-embedding with critical sequence �⃗ = ⟨�n | n < !⟩ and � =
supn<! �n, then the following statements hold in an inner model:
(i) There is an I2-embedding whose critical sequence has supremum �.
(ii) There is a subset z of � and a subset X of C(�⃗) of cardinality greater than � such that X does not

contain the range of a perfect embedding of !� into C(�⃗) and the setX is definable by a Σ1-formula
with parameter z.

Proof. Since � is a limit of inaccessible cardinals, we can find a subset y of � with the property that
V� ∪ {�⃗, j ↾ V�} ⊆ L[y]. Since this setup ensures that

(j ↾ V�)
L[y]
+ = (j ↾ V�)+ ↾ V L[y]

�+1 ,

we know that (j ↾ V�)
L[y]
+ maps well-founded relations on V� in L[y] to well-founded relations on V� in

L[y] and it follows that j ↾ V� witnesses that, in L[y], there is an I2-embedding whose critical sequence
has supremum �.

Now, work in L[y]. First, observe that the set� consists of all subsets x of � with the property that
there exists an ordinal  and an order isomorphism between ⟨�,⊲x⟩ and ⟨, <⟩. In addition, the set�
also consists of all subsets x of � such that ⟨�,⊲x⟩ is a linear ordering with the property that no injective
sequence ⟨�n | n < !⟩ is decreasing with respect to ⊲x. This shows that � is Δ1-definable5 from the
parameter �. Pick an enumeration a⃗ = ⟨a� | � < �⟩ of V� with V�n = {a� | � < �n} for all n < !. Then

5Given a natural number n > 0, a class C is Δn-definable from a parameter p if the classes C and V ⧵ C are both definable by
Σn-formulas with parameter p.
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there exists an unbounded subset z of � with the property that the sets {a⃗}, {y} and {�⃗} are all definable
by Σ1-formulas with parameter z. Note that this implies that these sets are actually Δ1-definable from
the parameter z. Note that an element b of !� is not contained in WO(�⃗, a⃗) if and only if either there are
m < n < ! with ab(n) ∩ �m ≠ ab(m) or there exists x ∈ (�) ⧵ � with x ∩ �n = ab(n) holds for all
n < !. Together with our earlier observations, this shows that the set WO(�⃗, a⃗) is Δ1-definable from the
parameter z. Given � ≤  < �+, we now let b denote the<L[y]-least element ofWO(�⃗, a⃗)with ‖b‖a⃗ = 
and b (n) < �n+1 for all n < !. Note that our setup ensures that such a set exists for all � ≤  < �+.
Moreover, since the basic structure theory ofL[y] ensures that the class of proper initial segments of<L[y]
is definable by a Σ1-formula with parameter z, the fact that WO(�⃗, a⃗) is Δ1-definable from the parameter
z yields a Σ1-formula '(v0, v1, v2) with the property that '(, b, z) holds if and only if  is an ordinal in
the interval [�, �+) and b = b . Let X denote the set of all b ∈ !� with the property that b(0) = 0 and
there exists � ≤  < �+ with b(n + 1) = b (n) for all n < !. We then know that X is a subset of C(�⃗) of
cardinality greater than � that is definable by a Σ1-formula with parameter z.

Assume, towards a contradiction, that there is a perfect embedding � ∶ !� ⟶ C(�⃗) with ran(�) ⊆ X.
Set Y = {b | � ≤  < �+} and let � ∶ X ⟶ Y denote the unique map with � (b)(n) = b(n + 1) for all
b ∈ X and n < !. Then � is a homeomorphism of the subspace X of C(�⃗) and the subspace Y of C(�⃗).
In particular, it follows that �◦� is a perfect embedding of !� into C(�⃗) with ran(�◦�) ⊆ Y ⊆ WO(�⃗, a⃗). In
this situation, Lemma 2.2 yields c, d ∈ !� with c ≠ d and ‖(�◦�)(c)‖a⃗ = ‖(�◦�)(d)‖a⃗. By the definition
of Y , this is a contradiction. �

Note that, in order to construct an inner model N with V� ⊆ N and the property that (ii) of the above
theorem holds, it suffices to assume that � is the supremum of !-many inaccessible cardinals in order to
carry out the construction made in the proof of the theorem.

In the remainder of this section, we further develop the arguments used in the above proof to obtain
the following strengthening of Theorem 1.3:

Theorem 2.4. If �⃗ = ⟨�n | n < !⟩ is a strictly increasing sequence of measurable cardinals with limit �,
then the following statements hold in an inner modelM containing �⃗:
(i) The sequence �⃗ consists of measurable cardinals.
(ii) If �⃗ is a strictly increasing !-sequence of cardinals of uncountable cofinality with limit �, then for

some x ∈ Hℵ1 , there is a subset of C(�⃗) of cardinality greater than � that does not contain the range
of a perfect embedding of !� into C(�⃗) and is definable by a Σ1-formula with parameters �⃗ and x.

Proof. Pick a sequence ⟨Un | n < !⟩ with the property that Un is a normal ultrafilter on �n for all n < !
and define

 = {⟨n, A⟩ | n < !, A ∈ Un}.
Then �⃗ ∈ L[ ] and for every n < !, the cardinal �n is measurable in L[ ].

Now, work in L[ ] and fix a strictly increasing sequence �⃗ = ⟨�n | n < !⟩ of cardinals of uncountable
cofinality with limit �. Using standard arguments about iterated measurable ultrapowers (see [Kan03,
Lemma 19.5] and [Ste16, Section 3]), we can find

∙ a transitive classM ,
∙ an elementary embedding j ∶ V ⟶M with j(�) = �,
∙ a function x ∶ !⟶ !, and
∙ a sequence ⟨Cn | n < !⟩

such that the following statements hold for all n < !:
(i) j(�n) = �x(n).
(ii) �x(n+1) > |H�+x(n)

|.
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(iii) Cn is a closed unbounded subset of �x(n).
(iv) j(Un) = {A ∈M ∩ (�x(n)) | ∃� < �x(n) Cn ⧵ � ⊆ A}.

Now, set  = j( ) and define  to be the class of all pairs ⟨N, F⃗ ⟩ with the property that N is a
transitive set of cardinality �, F⃗ = ⟨Fn | n < !⟩ is a sequence of length ! and there exists a sequence
⟨Dn | n < !⟩ such that the following statements hold:

(a) Dn is a closed unbounded subset of �x(n) for all n < !.
(b) If n < !, then Fn is an element ofN , �x(n) is a regular cardinal inN and Fn is a normal ultrafilter

on �x(n) inN .
(c) If n < !, then Fn = {A ∈ N ∩ (�x(n)) | ∃� < �x(n) Dn ⧵ � ⊆ A}.
(d) If  = {⟨n, A⟩ | n < !, A ∈ Fn}, then  ∈ N andN = LN∩Ord[ ].

It is easy to see that the class  is definable by a Σ1-formula with parameters �⃗ and x. Moreover,
our assumptions ensure that for every x ∈ M ∩ (�), there exists  < �+ with x ∈ L [] and
⟨L [], ⟨j(Un) | n < !⟩⟩ ∈ .

Claim. If ⟨N, ⟨Fn | n < !⟩⟩ ∈  and  = {⟨n, A⟩ | n < !, A ∈ Fn}, then we have  ∩ N =  ∩
LN∩Ord[] andN = LN∩Ord[].

Proof of the Claim. Let ⟨Dn | n < !⟩ be a sequence that witnesses that ⟨N, ⟨Fn | n < !⟩⟩ is contained in
 . Set  = N ∩ Ord. By induction, we now show that

 ∩ L�[ ] =  ∩ L�[]
holds for all � ≤  . Hence, assume that � ≤  with  ∩ L�[ ] =  ∩ L�[] for all � < �. Then
L�[ ] = L�[]. Pick n < ! and A ∈ Fn with ⟨n, A⟩ ∈ L�[ ]. Then there exists � < �x(n) with
Dn ⧵ � ⊆ A. Since Cn ∩Dn is unbounded in �x(n), we know that A ∩ Cn is unbounded in �x(n) and hence
there is no � < �x(n) with the property that Cn ⧵ � ⊆ �x(n) ⧵ A. In this situation, the fact that j(Un) is an
ultrafilter on �x(n) in L[] implies that A ∈ j(Un) and hence ⟨n, A⟩ ∈ j( ) ∩ L�[] =  ∩ L�[]. The
dual argument then shows that we also have  ∩ L�[] ⊆  ∩ L�[ ]. This completes the induction and
we know that  ∩N =  ∩ L []. This allows us to conclude that

N = L [ ] = L [ ∩N] = L [ ∩ L []] = L [],
completing the proof of the claim. �

Now, note that (ii) above ensures that there is a sequence ⟨a� | � < �⟩ inM with the property that
M ∩ (�x(n)) = {a� | � < �x(n+1)} (1)

holds for all n < !. Define a⃗ to be the <L[]-least sequence inM with this property.

Claim. The set {a⃗} is definable by a Σ1-formula with parameters �⃗ and x.

Proof of the Claim. First, note that our previous claim implies that, if ⟨N, ⟨Fn | n < !⟩⟩ is an element
of  with � ∈ N , then N = LN∩Ord[] and N contains all bounded subsets of � in M . It follows
that a⃗ is the unique sequence of length � with the property that there exists ⟨N, ⟨Fn | n < !⟩⟩ in  and
 = {⟨n, A⟩ | n < !,A ∈ Fn} such that a⃗ is the <L[ ]-least element of N with (1) for all n < !. This
characterization directly yields the desired Σ1-definition. �

Next, notice that, if y is an element ofM� , thenM contains an order-isomorphism between ⟨�,⊲y⟩
and ⟨, <⟩ for some ordinal  ∈ [�, �+) and this isomorphism witnesses that x is an element of � in
V . This shows that M� ⊆ �, WO(�⃗, a⃗)M ⊆ WO(�⃗, a⃗) and ‖b‖a⃗ = ‖b‖M

a⃗
for all b ∈ WO(�⃗, a⃗)M .

Moreover, using (1) and the fact that �+ = (�+)M , we can pick a sequence ⟨b | � ≤  < �+⟩ with the
property that for all  < �+, the set b is the <L[]-least element of WO(�⃗, a⃗)M with the property that
‖b‖a⃗ =  and b (x(n)) < �x(n+1) for all n < !. The following statement now follows from a combination
of the above claims:
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Claim. The set B = {b | � ≤  < �+} is definable by a Σ1-formula with parameters �⃗ and x. �

Given � ≤  < �+, we let c denote the unique element of !� such that the following statements hold
for all n < !:

∙ If n is of the form x(m + 1) for some m < !, then c (n) = b (x(m)).
∙ If n ≠ x(m + 1) for all m < !, then c (n) = 0.

We then know that c ∈ C(�⃗) for all � ≤  < �+.

Claim. The setC = {c | � ≤  < �+} has cardinality �+ and is definable by aΣ1-formulawith parameters
�⃗ and x. �

Let � ∶ B ⟶ C denote the unique function with � (b ) = c for all � ≤  < �+.

Claim. The map � is a homeomorphism of the subspace B of C(�⃗) and the subspace C of C(�⃗). �

Now, assume, towards a contradiction, that there is a perfect embedding � ∶ !� ⟶ C(�⃗) with the
property that ran(�) ⊆ C . Then �−1◦� is a perfect embedding of !� into C(�⃗) and

ran(�−1◦�) ⊆ B ⊆ WO(�⃗, a⃗)M ⊆ WO(�⃗, a⃗).

An application of Lemma 2.2 now yields c, d ∈ !� with c ≠ d and

‖(�−1◦�)(c)‖a⃗ = ‖(�−1◦�)(d)‖a⃗,

contradicting the definition of B. �

3. Σ1-DEFINABILITY AT I2-CARDINALS

Let j ∶ V ⟶M be an I2-embedding with critical sequence �⃗ = ⟨�n | n < !⟩ and set � = supn<! �n.
Classical results (see [Mar80]) then show that j is !-iterable, i.e., there exists a commuting system

⟨⟨M j
� | � ≤ !⟩, ⟨j ∶M j

� ⟶M j
� | � ≤ � ≤ !⟩⟩

of inner models and elementary embeddings such that the following statements hold:
(i) M j

0 = V and j0,1 = j.
(ii) If n < !, then jn+1,n+2 =

⋃

{jn,n+1(jn,n+1 ↾ V�) | � ∈ Ord}.
(iii) ⟨M j

!, ⟨jn,! | n < !⟩⟩ is a direct limit of

⟨⟨M j
n | n < !⟩, ⟨jm,n ∶M

j
m ⟶M j

n | m ≤ n < !⟩⟩.

Given m ≤ n < !, we then have V� ⊆ M j
! ⊆ M j

n ⊆ M j
m, crit(jn,n+1) = �n = jm,n(�m), jm,n(�) = �

and jn,!(�n) = �. Moreover, it is easy to see that j0,!(�+) = �+ holds and therefore (2�)M
j
! < �+. Note

that the Mathias criterion shows that the sequence �⃗ is Prikry-generic over M j
! and, by the theory of

Prikry-type forcings, this implies that (2�)M
j
![�⃗] < �+.

The following theorem is the main result of this section. We will later show that it is a direct strength-
ening of Theorem 1.4.

Theorem 3.1. Let j ∶ V ⟶ M be an I2-embedding with critical sequence �⃗ = ⟨�n | n < !⟩ and let
N be an inner model of ZFC with M j

! ∪ {�⃗} ⊆ N . Set � = supn<! �n. If X is a subset of C(�⃗) with
|X| > (2�)N that is definable over V� by a Σ12-formula with parameters in V N

�+1, then there is a perfect
embedding � ∶ !�⟶ C(�⃗) with ran(�) ⊆ X.
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The proof of the above theorem closely follows the proof of Solovay’s classical result showing that
every �12-set of reals has the perfect set property if !1 is inaccessible to the reals (see [Kan03, Theorem
14.10]). The key ingredient that makes this adaptation possible is an absoluteness theorem proven by Laver
in [Lav97]. We start this argument by obtaining tree representations for the sets in the given definability
class.

Given non-empty sets a0,… , ak, a subset T of <!a0 ×…× <!ak is a (descriptive) tree if the following
statements hold for all elements ⟨t0,… , tk⟩ of T :

∙ dom(t0) = … = dom(tk).
∙ If l ∈ dom(tk), then ⟨t0 ↾ l,… , tk ↾ l⟩ ∈ T .

In addition, if T ⊆ <!a0 ×… × <!ak is a tree, then we let [T ] denote the set of all tuples ⟨x0,… , xk⟩ in
!a0 × … × !ak with the property that ⟨x0 ↾ l,… , xk ↾ l⟩ ∈ T holds for all l < !. Finally, for every
tree T ⊆ <!a0 ×… × <!ak+1, we define

p[T ] = {⟨x0,… , xk⟩ ∈ !a0 ×… × !ak | ∃xk+1 ∈ !ak+1 ⟨x0,… , xk+1⟩ ∈ [T ]}.

As outlined in [Lav97, Section 1], for singular strong limit cardinals � and 0 < k < !, there is a di-
rect correspondence between subsets of V k

�+1 that are �
1
1-definable over V� and sets of the form p[T ] for

trees T ⊆ (<!V�)k+1. Several key arguments in this section rely on the absoluteness properties of this
correspondence that can be isolated from the arguments in [Lav97, Section 1]:

Lemma 3.2. For every Σ11-formula '(w0,… , wk+2) in the language of set theory with free second-order
variables w0,… , wk+2, there is a first-order formula  (v0,… , vk+1) in the language of set theory ex-
panded by two unary relation symbols with free variables v0,… , vk+1 such that ZFC proves that for every
strictly increasing sequence �⃗ = ⟨�n | n < !⟩ of strong limit cardinals with supremum � and everyB ⊆ V�,
the set

T',B,�⃗ = {⟨t0,… , tk+1⟩ ∈ (<!V�)k+2 | ⟨V�,∈, B, �⃗⟩ ⊧  (t0,… , tk+1)} (2)
is a tree and the following statements hold:
(i) T',B,�⃗ ∩ (

nV�)k+2 ∈ V� for all n < !.
(ii) If ⟨x0,… , xk⟩ ∈ p[T',B,�⃗], i ≤ k and m < n < !, then xi(m) = xi(n) ∩ V�m .
(iii) The following statements are equivalent for all A0,… , Ak ⊆ V�:

(a) ⟨V�,∈⟩ ⊧ '(A0,… , Ak, B, �⃗).
(b) There is ⟨x0,… , xk⟩ ∈ p[T',B,�⃗] with xi(n) = Ai ∩ V�n for all i ≤ k and n < !. �

The above lemma provides a setting in which a converse of Proposition 1.6 holds:

Corollary 3.3. For every Σ12-formula  (w0,… , wk−1) in the language of set theory with free second-
order parameters w0,… , wk−1, there exists a Σ1-formula '(v0,… , vk) in the language of set theory such
that ZFC proves that

'(A0,… , Ak−1, V�, �⃗) ⟺ ⟨V�,∈⟩ ⊧  (A0,… , Ak−1)

holds for every strictly increasing sequence �⃗ = ⟨�n | n < !⟩ of strong limit cardinals with supremum �
and all A0,… , Ak−1 ∈ V�+1. �

Following [Lav97, Section 1], we now generalize the concept of Shoenfield trees (i.e., tree repre-
sentations for �12-sets of real numbers) to higher cardinals of countable cofinality. Given a tree T ⊆
<!a0 ×… × <!ak, i < k and ⟨s0,… , si⟩ ∈ <!a0 ×… × <!ai with dom(s0) = … = dom(si), we define
T ⟨s0,…,si⟩ to be the set of all tuples ⟨ti+1,… , tk⟩ in <!ai+1 ×… × <!ak with the property that

dom(ti+1) = … = dom(tk) ≤ dom(s0)

and
⟨s0 ↾ dom(tk),… , si ↾ dom(tk), ti+1,… , tk⟩ ∈ T .
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Note that
T ⟨s0↾l,…,si↾l⟩ = T ⟨s0,…,si⟩ ∩ (≤lai+1 ×… × ≤lak)

holds for all l ∈ dom(s0). In addition, for every ordinal �, we let RT ,�(s0,… , si) denote the set of
functions

r ∶ T ⟨s0,…,si⟩ ⟶ �

satisfying
r(⟨ti+1,… , tk⟩) < r(⟨ti+1 ↾ l,… , tk ↾ l⟩)

for all ⟨ti+1,… , tk⟩ ∈ T ⟨s0,…,si⟩ and l < dom(tk). It is then easy to see that r ↾ T ⟨s0↾l,…,si↾l⟩ is an
element of RT ,�(s0 ↾ l,… , si ↾ l) for all r ∈ RT ,�(s0,… , si) and l < dom(s0).

Now, let � be an infinite ordinal, let T ⊆ (<!V�)k+3 be a tree and let � > � be an ordinal. We then
define ST ,� to be the subset of (<!V�+!)k+2 consisting of all tuples ⟨s0,… , sk, t⟩ such that the following
statements hold:

∙ s0,… , sk ∈ <!V�.
∙ dom(s0) = … = dom(sk) = dom(t).
∙ There exists sk+1 ∈ dom(s0)V� and r ∈ RT ,�(s0,… , sk+1) such that

t(l) = ⟨sk+1 ↾ (l + 1), r ↾ T ⟨s0↾(l+1),…,sk+1↾(l+1)
⟩ (3)

holds for all l ∈ dom(t).
It is then easy to check that ST ,� is a tree. The following lemma from [Lav97, Section 1] shows how these
constructions yield tree representations of �12-subsets of V�+1:

Lemma 3.4. Let '(w0,… , wk+3) be a Σ11-formula in the language of set theory with free second-order
variables w0,… , wk+3. Then the following statements are equivalent for every strictly increasing se-
quence of inaccessible cardinals �⃗ = ⟨�n | n < !⟩ with supremum �, every limit ordinal � ≥ �+ and all
A0,… , Ak, B ⊆ V�:

(i) ⟨V�,∈⟩ ⊧ ∃C ¬'(A0,… , Ak, B, C, �⃗).
(ii) There is ⟨x0,… , xk⟩ ∈ p[ST',B,�⃗,�] with xi(n) = Ai ∩ V�n for all i ≤ k and n < !. �

Still following Laver’s arguments, we now show that the structural properties of higher Shoenfield trees
can be fruitfully combined with the combinatorics of I2-embeddings. The proof of the next lemma is a
reformulation of the proof of [Lav97, Theorem 1.4].

Lemma 3.5. Let '(w0,… , wk+3) be a Σ11-formula in the language of set theory with free second-order
variablesw0,… , wk+3, let j ∶ V ⟶M be an I2-embedding with critical sequence �⃗ = ⟨�n | n < !⟩ and
let N be an inner model of ZFC withM j

! ∪ {�⃗} ⊆ N . Set � = supn<! �n and � = (�+)V . Fix B ∈ V N
�+1

and define T = T V
',B,�⃗

. Then the following statements hold:

(i) T = TN
',B,�⃗

and SNT ,� ⊆ S
V
T ,� .

(ii) There is an inclusion-preserving embedding Λ ∶ SVT ,� ⟶ SNT ,� with the property that for all
⟨s0,… , sk, t⟩ ∈ SVT ,� , there exists u with

Λ(⟨s0,… , sk, t⟩) = ⟨s0,… , sk, u⟩.

(iii) p[SVT ,�]
V = p[SNT ,�]

V .
(iv) p[SVT ,�]

V ∩N = p[SNT ,�]
N .
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Proof. (i) Since V�∪{B, �⃗} ⊆ N , the fact that (2) holds in both V andN directly implies that T = TN
',B,�⃗

.
In addition, if s0,… , sk+1 ∈ <!V� with dom(s0) = … = dom(sk+1), then

RT ,�(s0,… , sk+1)N ⊆ RT ,�(s0,… , sk+1)V .

In particular, we know that SNT ,� ⊆ S
V
T ,� .

(ii) The proof of [Lav97, Theorem 1.4] shows that for every d ∈ V� and every function f ∶ d ⟶

Ord, the function j0,!◦f ∶ d ⟶ Ord is an element of M j
!. In particular, if s0,… , sk+1 ∈ <!V�

with dom(s0) = … = dom(sk+1) and r ∈ RT ,�(s0,… , sk+1)V , then the fact that j0,!(�) = � implies
that j0,!◦r ∈ RT ,�(s0,… , sk+1)N . This inclusion allows us to define Λ ∶ SVT ,� ⟶ SNT ,� to be the
unique function with the property that for all ⟨s0,… , sk, t⟩ ∈ SVT ,� and all sk+1 ∈ dom(s0)V� and r ∈
RT ,�(s0,… , sk+1) such that (3) holds for all l ∈ dom(t), we have Λ(⟨s0,… , sk, t⟩) = ⟨s0,… , sk, u⟩,
where

u(l) = ⟨sk+1 ↾ (l + 1), (j0,!◦r) ↾ T ⟨s0↾(l+1),…,sk+1↾(l+1)
⟩

for all l ∈ dom(u). This definition directly ensures that Λ is an inclusion-preserving embedding.
(iii) Since SNT ,� ⊆ S

V
T ,� , we know that p[SNT ,�]

V ⊆ p[SVT ,�]
V . Pick a tuple ⟨x0,… , xk, y⟩ in [SVT ,�]

V and
let z be the unique element of !V�+! with

Λ(⟨x0 ↾ n,… , xk ↾ n, y ↾ n⟩) = ⟨x0 ↾ n,… , xk ↾ n, z ↾ n⟩ (4)

for all n < !. We then know that ⟨x0,… , xk, z⟩ is an element of [SNT ,�]
V . This shows that we also have

p[SVT ,�]
V ⊆ p[SNT ,�]

V .
(iv) First, the fact that SNT ,� ⊆ SVT ,� directly implies that p[SNT ,�]

N ⊆ p[SVT ,�]
V ∩ N . Now, fix

⟨x0,… , xk⟩ ∈ p[SVT ,�]
V ∩ N and pick y ∈ V with ⟨x0,… , xk, y⟩ ∈ [SVT ,�]

V . Let z denote the unique
element of <!V�+! such that (4) holds for all n < !. This shows that ⟨x0,… , xk, z⟩ ∈ [SNT ,�]

V . Since the
tuple ⟨x0,… , xk⟩ is an element ofN , we know that

U = {t ∈ <!V�+! | ⟨x0 ↾ dom(t),… , xk ↾ dom(t), t⟩ ∈ SNT ,�}

is a tree of height ! in N and z ∈ [U ]V . In this situation, the fact that the ill-foundedness of U is
absolute between N and V yields an element z′ of [U ]N . We then have ⟨x0,… , xk, z′⟩ ∈ [SNT ,�]

N and
⟨x0,… , xk⟩ ∈ p[SNT ,�]

N . �

Corollary 3.6 ([Lav97, Theorem 1.4]). Let'(w0,… , wn−1) be a Σ12-formula in the language of set theory
with free second-order variablesw0,… , wn−1. If j ∶ V ⟶M is an I2-embedding with critical sequence
�⃗ = ⟨�n | n < !⟩ andN is an inner model of ZFC withM j

! ∪ {�⃗} ⊆ N , then the statement

⟨V�,∈⟩ ⊧ '(A0,… , An−1)

is absolute between V andN for all A0,… , An−1 ∈ V N
�+1, where � = supn<! �n. �

In order to connect the above concepts with the existence of perfect subsets, we now adapt a classical
result of Mansfield (see [Kan03, Theorem 14.7]) to our setting:

Lemma 3.7. Let �⃗ = ⟨�n | n < !⟩ be a strictly increasing sequence of infinite cardinals with limit � and
let T ⊆ <!a× <!b be a tree with the property that p[T ] does not contain the range of a perfect embedding
of !� into !a. IfN is an inner model of ZFC with V� ∪ {T , �⃗} ⊆ N , then p[T ]V ⊆ N .

Proof. Given a tree S ⊆ <!a × <!b, we define S′ to be the set of all ⟨t, u⟩ ∈ S with the property that for
all n < !, there exists dom(t) < l < ! such that the set

{v ∈ la | ∃w ∈ lb [t ⊆ v ∧ u ⊆ w ∧ ⟨v,w⟩ ∈ S]}
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has cardinality at least �n. Then it is easy to see that for every such tree S, the set S′ is again a tree with
S′ ⊆ S and, if S is an element of N , then S′ is also contained N . Now, let ⟨T� | � ∈ Ord⟩ denote the
unique sequence of trees with T0 = T , T�+1 = T ′� for all � ∈ Ord and T� =

⋂

�<� T� for all � ∈ Lim.
Then it is easy to see that T� ∈ N holds for all � ∈ Ord. Moreover, there exists �∗ ∈ Ord with T�∗ = T�
for all �∗ ≤ � ∈ Ord. Set T∗ = T�∗ .

Claim. T∗ = ∅.

Proof of the Claim. Assume, towards a contradiction, that T∗ ≠ ∅. Let S�⃗ denote the subtree of <!�
consisting of all s ∈ <!� with s(l) < �l for all l ∈ dom(s). We inductively construct a system
⟨⟨su, tu⟩ ∈ T∗ | u ∈ S�⃗⟩ such that the following statements hold for all u, v ∈ S�⃗:

∙ If u ⊊ v, then su ⊊ sv and tu ⊊ tv.
∙ If � < � < �dom(u), then dom(su⌢⟨�⟩) = dom(su⌢⟨�⟩) and su⌢⟨�⟩ ≠ su⌢⟨�⟩.

First, define s∅ = t∅ = ∅. Now, assume that u ∈ S�⃗ and ⟨su, tu⟩ ∈ T∗ is already constructed. Since
⟨su, tu⟩ ∈ T ′∗ = T∗, we can find dom(su) < l < ! and a sequence ⟨⟨s� , t�⟩ ∈ T∗ | � < �dom(u)⟩ with the
property that for all � < � < �dom(u), we have dom(s�) = dom(s�) = l and s� ≠ s�. Given � < �dom(u),
we then define su⌢⟨�⟩ = s� and tu⌢⟨�⟩ = t� . It then directly follows that the constructed sets satisfy all
required properties. This completes the inductive construction of our system. If we now define

� ∶ C(�⃗)⟶ !a; x⟼
⋃

{sx↾l | l < !},

then our setup ensures that � is a perfect embedding. Moreover, we have

⟨�(x),
⋃

{tx↾i | i < !}⟩ ∈ [T ]

for all x ∈ C(�⃗) and this shows that ran(�) is a subset of p[T ]. Since there exists a perfect embedding of
!� into C(�⃗), this yields a contradiction to our assumptions on T . �

Now, fix ⟨x, y⟩ ∈ [T ]. Then there is an � < �∗ with ⟨x, y⟩ ∈ [T�] ⧵ [T�+1] and we can find k < !
with the property that ⟨x ↾ k, y ↾ k⟩ ∉ T�+1 = T ′� . Hence, there is n < ! with the property that for all
k < l < !, the set

El = {s ∈ la | ∃t ∈ lb [x ↾ k ⊆ s ∧ y ↾ k ⊆ t ∧ ⟨s, t⟩ ∈ T�]}
has cardinality less than �n. Note that x ↾ l ∈ El holds for all k < l < !. Moreover, since N
contains the sequence ⟨El | k < l < !⟩ and each El has cardinality less than �n in N , we can find a
sequence ⟨�l ∶ �n ⟶ El | k < l < !⟩ of surjections that is an element of N . If we pick z ∈ !�n with
�l(z(l)) = x ↾ l for all k < l < !, then the fact that V� ⊆ N ensures that z is an element of N and
hence we can conclude that x is also contained in the inner modelN . �

We are now ready to prove the main result of this section:

Proof of Theorem 3.1. Let j ∶ V ⟶M be an I2-embedding with critical sequence �⃗ = ⟨�n | n < !⟩ and
letN be an inner model of ZFCwithM j

!∪{�⃗} ⊆ N . Set � = supn<! �n. Fix a Σ11-formula '(w0,… , w3)
with second-order variables w0,… , w3 and B ∈ V N

�+1 such that the set

X = {A ∈ V�+1 | ⟨V�,∈⟩ ⊧ ∃C ¬'(A,B, C, �⃗)}

is a subset of C(�⃗) of cardinality greater than (2�)N . Set T = T V
',B,�⃗

, � = (�+)V , S1 = SVT ,� and

S0 = SNT ,� ⊆ S1. An application of Lemma 3.5.(iii) then shows that p[S0]V = p[S1]V . In particular,
since Lemma 3.4 ensures that every element of X is of the form

⋃

{y(n) | n < !} for some y ∈ p[S1]V ,
we know that p[S0]V has cardinality greater than (2�)N in V andwe can conclude that p[S0]V ⊈ N . In this
situation, an application of Lemma 3.7 shows that, in V , there exists a perfect embedding � ∶ !�⟶ !V�
satisfying ran(�) ⊆ p[S0] = p[S1].
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Now, work in V and define Y to be the set of all y ∈ !V� with the property that y(m) = y(n) ∩ V�m
holds for all m ≤ n < ! and

⋃

{y(n) | n < !} is an element of C(�⃗). Then Y is a closed subset of !V� and
p[S0] ⊆ Y . Moreover, the map

� ∶ Y ⟶ C(�⃗); y⟼
⋃

{y(n) | n < !}

is a homeomorphism of the subspace Y of !V! and the space C(�⃗)with �[p[S0]] = X. In particular, there
is a perfect embedding of !� into C(�⃗) whose range is contained in X. �

Proof of Theorem 1.4. Let j ∶ V ⟶ M be an I2-embedding with critical sequence �⃗ = ⟨�n | n < !⟩
and set � = supn<! �n. Let X be a subset of (�) of cardinality greater than � that is definable by a Σ1-
formula with parameters in V� ∪ {V�, �⃗}. InM

j
![�⃗], there is an injective enumeration e⃗ = ⟨d� | � < �⟩ of

V� with the property that V�n = {d� | � < �n} holds for all n < !. Define Y to be the set of all y ∈ C(�⃗)
with the property that y(0) = 0 and there exists A ∈ X with dy(n+1) = A ∩ V�n for all n < !. Then
Y is a subset of C(�⃗) of cardinality greater than � that is definable by a Σ1-formula with parameters in
M j

![�⃗] ∩ V�+1. Since (2�)M
j
![�⃗] < �+, we can now combine Theorem 3.1 with Proposition 1.6 to find a

perfect embedding of !� into C(�⃗) whose range is contained in Y . Using the fact that the subspace X of
(�) is homeomorphic to the subspace Y of C(�⃗), we can now conclude that there is a perfect embedding
of !� into (�) whose range is contained in X. �

4. THE ⃗ -BAIRE PROPERTY

In [DMRS], a new type of regularity property for higher function spaces is introduced: the �-Baire
property. We can formalize this regularity property in a natural way as the �-generalization of the classical
Baire category notions:

Definition 4.1 ([DMRS]). Let X be a topological space and let A be a subset of X.
(i) The set A is �-meager in X if it is a �-union of nowhere dense sets.
(ii) The set A is �-comeager in X if it is the complement of a �-meager set, i.e., if it contains the

intersection of �-many open dense subsets of X.
(iii) The space X is a �-Baire space if every non-empty open subset of X is not �-meager.
(iv) The set A has the �-Baire property in X if there exists an open set U in X such that the symmetric

difference AΔU is �-meager.

Note that a space X is a �-Baire space if and only if the intersection of �-many open dense sets is
dense. The definition of the ⃗ -Baire property is more complex, as a direct generalization is unfruitful6. It
is strictly correlated to diagonal Prikry forcing (see, for example, [Git10, Section 1.3]). In the following,
fix a strictly increasing sequence �⃗ = ⟨�n | n < !⟩ of measurable cardinals with limit � and a sequence
⃗ = ⟨Un | n < !⟩ with the property that Un is a normal ultrafilter on �n for all n < !.

Definition 4.2. The diagonal Prikry forcing with ⃗ is the partial order ℙ⃗ defined by the following
clauses:
(i) Conditions in ℙ⃗ are sequences p = ⟨pn | n < !⟩ with the property that there exists n < ! such

that pi < �i for all i < n and pi ∈ Ui for all n ≤ i < !. In this case, we set sp = ⟨p0,… , pn−1⟩,
lh(p) = lh(sp), and Api = pi for all n ≤ i < !. The sequence sp is also called the stem of p.

(ii) Given conditions p and q in ℙ⃗ , we have p ≤ℙ⃗
q if and only if the following statements hold:

∙ lh(p) ≥ lh(q).
∙ sp is an end-extension of sq .

6In [DMRS], it is proven that the space C(�⃗) is the !1-union of nowhere dense sets
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∙ If lh(q) ≤ i < lh(p), then sp(i) ∈ Aqi .
∙ If lh(p) ≤ i < !, then Api ⊆ A

q
i .

Moreover, we say that p ≤∗ℙ⃗
q if p ≤ℙ⃗

q and lh(p) = lh(q).

The intuition behind the definitions below is the following: it is easy to see that the product topology
on the classical Baire space is isomorphic to the topology of the maximal filters on Cohen forcing. Thus,
we are going to define a topology on C(�⃗) that is isomorphic to the topology of the maximal filters on the
diagonal Prikry forcing. Note that we can define this only if � is limit of measurable cardinals, therefore
this will be the only setting for which to consider our new regularity property.

Definition 4.3. (i) Given a condition p in ℙ⃗ , we define

Np = {x ∈ C(�⃗) | ∀i < ! [i < lh(p)→ x(i) = sp(i) ∧ i ≥ lh(p)→ x(i) ∈ Apj ]}.

(ii) The Ellentuck-Prikry ⃗ -topology on C(�⃗) (briefly, ⃗ -EP topology) is the topology whose basic
open sets are of the formNp for some condition p in ℙ⃗ .

(iii) A subset A of C(�⃗) has the ⃗ -Baire property if it has the �-Baire property in the ⃗ -EP topology.

The results of [DMRS] now show that the constructed topological spaces possess properties that gen-
eralize key properties of the classical Baire space to �:

Proposition 4.4 (�-Baire Category, [DMRS]). The space C(�⃗) endowed with the ⃗ -EP topology is a
�-Baire space. Moreover, every subset of C(�⃗) that is �-comeager in the ⃗ -EP topology contains a basic
open set of this topology.

To motivate the main results of this section, we first show that the above property is non-trivial:

Theorem 4.5. There exists a subset of C(�⃗) without the ⃗ -Baire property.

The fact that the ⃗ -EP topology is build using 2�-many basic open subsets stops the proof of the
above result from being a routine diagonalization argument. Instead, we have to use strong combinatorial
properties of ℙ⃗ to reduce the class of relevant open subsets:

Lemma 4.6 (Strong Prikry condition). If D is a dense open subset of ℙ⃗ and p is a condition in ℙ⃗ ,
then there exists a condition q ≤∗ℙ⃗

p and n < ! such that r ∈ D holds for every condition r ≤ℙ⃗
q with

lh(r) ≥ n. �

Corollary 4.7. If O is an open subset of ℙ⃗ and p is a condition in ℙ⃗ , then there exists a condition
p̄ ≤∗ℙ⃗

p such that if there exists a condition q ≤ℙ⃗
p̄ with q ∈ O, then r ∈ O holds for every r ≤ℙ⃗

p̄
with lh(r) ≥ lh(q). �

Given a set P of conditions in ℙ⃗ , we let

UP =
⋃

{Np | p ∈ P } ⊆ C(�⃗)

denote the corresponding open set in the ⃗ -EP topology.

Proposition 4.8. A set P of condition in ℙ⃗ is predense in the partial order ℙ⃗ if and only if UP is dense
in the ⃗ -EP topology.

Proof. First, assume that P is predense in ℙ⃗ and fix a condition p in ℙ⃗ . Then there exists a condition
q in P and a condition r in ℙ⃗ with r ≤ℙ⃗

p, q. We now know that ∅ ≠ Nr ⊆ Np ∩Nq ⊆ Np ∩ UP .

Now, assume that UP is dense in the ⃗ -EP topology and fix a condition p in ℙ⃗ . SinceNp ∩UP ≠ ∅,
we can find a condition q in P and an element x of C(�⃗) with x ∈ Np ∩Nq . Then there exists a condition
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r in ℙ⃗ with ri = x(i) for all i < max(lh(p), lh(q)) and Ari = Api ∩ A
q
i for all max(lh(p), lh(q)) ≤ i < !.

We then know that r ≤ℙ⃗
p, q holds. These computations show that P is predense in ℙ⃗ . �

Lemma 4.9. If U is an open set in the ⃗ -EP topology, then there exists a set P of at most �-many
conditions in ℙ⃗ such that UP ⊆ U and U ⧵ UP is nowhere dense in the ⃗ -EP topology.

Proof. Define O to be the set of all conditions p in ℙ⃗ with the property thatNp ⊆ U . Then O is an open
subset of ℙ⃗ . In addition, define S to be the set of all conditions p in ℙ⃗ such that pi = �i holds for all
lh(p) ≤ i < !. In this situation, Corollary 4.7 shows that for every p ∈ P , we can then find a condition
p̄ ≤∗ℙ⃗

p with the property that if there is a condition q ≤ℙ⃗
p̄ with q ∈ O, then r ∈ O holds for every

r ≤ℙ⃗
p̄ with lh(r) ≥ lh(q). Define

P = {p̄ | p ∈ S, ∃q [q ≤ℙ⃗
p̄ ∧ q ∈ O]}.

The fact that the set S has cardinality � then ensures that P consists of at most �-many conditions in ℙ⃗ .

Claim. UP ⊆ U .

Proof of the Claim. Pick p ∈ S with the property that there is q ≤ℙ⃗
p̄ with q ∈ O and fix x ∈ Np̄. Then

there exists a condition r ≤ℙ⃗
p̄ with ri = x(i) for all i < lh(q) and ri = Ap̄i for all lh(r) ≤ i < !. Since

lh(q) = lh(r), we then know that r ∈ O and x ∈ Nr ⊆ U . �

Claim. If p ∈ S with q ∉ O for all q ≤ℙ⃗
p̄, thenNp̄ ∩ U = ∅.

Proof of the Claim. Assume, towards a contradiction, that there is an x ∈ Np̄ ∩ U . Pick a condition q in
ℙ⃗ with x ∈ Nq ⊆ U . Then there exists a condition r in ℙ⃗ with ri = x(i) for all i < max(lh(p̄), lh(q))
and ri = A

p̄
i ∩A

q
i for allmax(lh(p̄), lh(q)) ≤ i < !. We then know that r ≤ℙ⃗

p̄, q and x ∈ Nr ⊆ Nq ⊆ U .
But this implies that r is an element of O below p̄, a contradiction. �

Define u to be the unique condition in ℙ⃗ with lh(u) = 0 and

Aui =
⋂

{Ap̄i | p ∈ S, lh(p) ≤ i}

for all i < !. In addition, set

N = {x ∈ C(�⃗) | ∀j < ! ∃j ≤ i < ! x(i) ∉ Aui }.

Claim. The setN is nowhere dense in the ⃗ -EP topology.

Proof of the Claim. Assume, towards a contradiction, thatN is dense inNp for some condition p in ℙ⃗ .
Let q ≤∗ℙ⃗

p be the unique condition with Aqi = A
p
i ∩A

u
i for all lh(p) ≤ i < !. Then there is x ∈ N ∩Nq

and we can find lh(q) ≤ i < ! with x(i) ∉ Aui . But, this implies that x(i) ∉ Aqi , a contradiction. �

Claim. U ⧵ UP ⊆ N .

Proof of the Claim. Pick x ∈ U ⧵UP and fix j < !. Let p denote the unique element ofS with sp = x ↾ j.
Then x ∉ Np̄, because otherwise we would have x ∈ Np̄ ∩U ≠ ∅ and our second claim would imply that
Np̄ ⊆ UP . Since p̄ ≤∗ℙ⃗

p, we can now find j ≤ i < ! with x(i) ∉ Ap̄i . Our definitions then ensure that

Aui ⊆ A
p̄
i and we can conclude that x(i) ∉ A

u
i . These computations show that x is an element ofN . �

This last claim completes the proof of the lemma. �
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Proof of Theorem 4.5. Define to be the collection of all subsets ofC(�⃗) of the formUP for some set P of
at most �-many conditions inℙ⃗ . Then the set has cardinality at most 2� and we can fix an enumeration
⟨⟨U ,M⟩ |  < 2�⟩ of all pairs ⟨U,M⟩ such thatU ∈  and there exists a sequence ⟨O� | � < �⟩ of dense
elements of  withM =

⋃

�<�(C(�⃗) ⧵ O�). We inductively define increasing sequences ⟨A |  < 2�⟩
and ⟨B |  < 2�⟩ of subsets of C(�) with A ∩ B = ∅ and |A ∪ B | ≤ || for all  < 2�. Fix  < 2�
and assume that we already defined A� and B� for all � <  . Set A =

⋃

�< A� and B =
⋃

�< B� . Then
A∩B = ∅ and both sets have cardinality less than 2�. First, assume thatU is empty. Since Proposition 4.4
ensures that C(�⃗)⧵M has cardinality 2�, we can find x ∈ C(�⃗)⧵ (B∪M ). We then defineA = A∪{x}
andB = B. Next, assume thatU is non-empty. Then Proposition 4.4 shows thatU ⧵M has cardinality
2� and we can find x ∈ U ⧵ (A ∪M ). We now define A = A and B = B ∪ {x}. This completes our
construction.

Define A =
⋃

<2� A and B =
⋃

<2� B . Then A∩B = ∅. Assume, towards a contradiction, that the
setA has the ⃗ -Baire property. Pick an open subsetU in the ⃗ -EP topology such thatAΔU is �-meager
in this topology. Then Lemma 4.9 shows that there exists W ∈  with W ⊆ U and U ⧵W nowhere
dense. It follows that AΔW is also �-meager. Another application of Lemma 4.9 then yields a sequence
⟨O� | � < �⟩ of dense elements of  with AΔW ⊆

⋃

�<�(C(�⃗) ⧵ O�). In this situation, there exists a
 < 2� with U = W andM =

⋃

�<�(C(�⃗) ⧵ O�). Then U ≠ ∅, because otherwise our construction
would ensure that there is x ∈ A⧵W with x ∉M . But this means that there is x ∈ B∩U with x ∉M
and therefore x ∈ A ∩ B, a contradiction. �

We now proceed by showing that, in the model constructed in the proof of Theorem 2.3, the above
constructions can also be used to find a simply definable set without the ⃗ -Baire property:

Theorem 4.10. If j ∶ V ⟶ M is an I2-embedding whose critical sequence has supremum �, then the
following statements hold in an inner model:
(i) There is an I2-embedding whose critical sequence has supremum �.
(ii) If �⃗ = ⟨�n | n < !⟩ is a strictly increasing sequence of measurable cardinal with limit � and ⃗ =

⟨Un | n < !⟩ is a sequence with the property that Un is a normal ultrafilter on �n for all n < !, then
there is a subset z of � and a subset X of C(�⃗) such that X does not have the ⃗ -Baire property and
the set X is definable by a Σ1-formula with parameter z.

Proof. As in the proof of Theorem 2.3, pick a subset y of � with V� ∪ {j ↾ V�} ⊆ L[y] and work in
L[y]. Then there is an I2-embedding whose critical sequence has supremum �. Fix a strictly increasing
sequence �⃗ = ⟨�n | n < !⟩ of measurable cardinals with limit � and a sequence ⃗ = ⟨Un | n < !⟩ with
the property thatUn is a normal ultrafilter on �n for all n < !. We can now find an unbounded subset z of �
with the property that the {⃗ } is definable by a Σ1-formula with parameter z and there is a well-ordering
⊲ of H�+ of order-type �+ with the property that the set of all proper initial segments of ⊲ is definable
by a Σ1-formula with parameter z. It then directly follows that the set {⃗ }, the set of all conditions in
ℙ⃗ , the ordering of ℙ⃗ , the compatibility relation of ℙ⃗ and the incompatibility relation of ℙ⃗ are all
Δ1-definable from the parameter z.

Now, define  to be the set of all pairs ⟨P , Q⃗⟩ with the property that P is a set of at most �-many
conditions in ℙ⃗ and Q⃗ = ⟨Q� | � < �⟩ is a sequence with the property that each Q� is a set of at most
�-many conditions in ℙ⃗ . It is then easy to see that is a subset ofH�+ of cardinality �+ that is definable
by a Σ1-formula with parameter z. Let ⟨⟨P , ⟨Q


� | � < �⟩⟩ |  < �+⟩ denote the enumeration of induced

by ⊲. We then again know that this sequence is definable by a Σ1-formula with parameter z. Arguing as in
the proof of Theorem 4.5, we can now use Proposition 4.8 to show that for every  < �+ with the property
thatQ� is predense in ℙ⃗ for all � < �, the set

⋂

�<� UQ� has cardinality �
+. Moreover, we know that for
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every  < �+ with the property that P ≠ ∅ andQ

� is predense inℙ⃗ for all � < �, the setUP ∩

⋂

�<� UQ�
has cardinality �+. This shows that there is a unique sequence ⟨d |  < �+⟩ with the property that for all
 < �+, the set d is the ⊲-least element ofH�+ such that one of the following statements hold:

∙ The set d is of the form ⟨0, p⟩, where p is a condition in ℙ⃗ with the property that there exists
an � < � such that all conditions in Q� are incompatible with p in ℙ⃗ .

∙ P is the empty set and the set d is of the form ⟨1, x⟩, where x is an element of
⋂

�<� UQ� with
the property that x ≠ v holds whenever � <  and d� is of the form ⟨2, v⟩ for some v in C(�⃗).

∙ The set d is of the form ⟨2, x⟩, where x is an element of UP ∩
⋂

�<� UQ� with the property that
x ≠ u holds whenever � <  and d� is of the form ⟨1, u⟩ for some u in C(�⃗).

This definition then ensures that the sequence ⟨d |  < �+⟩ is definable by aΣ1-formula with parameter
z. We define

A = {x ∈ C(�⃗) | ∃ < �+ d = ⟨1, x⟩}.
Then A is definable by a Σ1-formula with parameter z and, by repeating the computations made in the
proof of Theorem 4.5, we can show that A does not have the ⃗ -Baire property. �

Contrary to the perfect set property case, there are no previous results about the possibility of Σ1- or
Σ12-definable sets to have this kind of regularity property. In the following, we will again focus on the
structural consequences of large cardinal assumptions close to the Kunen inconsistency. The following
lemma will allow us to prove an analogue to Theorem 3.1 for the ⃗ -Baire property:

Lemma 4.11. Let �⃗ = ⟨�n | n < !⟩ be a strictly increasing sequence of measurable cardinals with supre-
mum � and letN be an inner model of ZFC with V� ∪ {�⃗} ⊆ N and (2�)N < �+. If ⃗ = ⟨Un | n < !⟩ is
a sequence inN with the property that Un is a normal ultrafilter on �n for all n < ! and

C = {x ∈ C(�) | “x is ℙN
⃗
-generic overN ”},

then C is �-comeager in the ⃗ -EP topology.

Proof. By the Mathias condition for the diagonal Prikry forcing (see [Fuc05]), the set C consists of all
x ∈ C(�⃗) with the property that for every sequence A⃗ = ⟨An ∈ Un | n < !⟩ inN , the function x belongs
to the dense open set

{x ∈ C(�⃗) | ∃m < ! ∀m ≤ n < ! x(n) ∈ An}.
Since (2�)N < �+, there are only �-many dense open sets of this form and Proposition 4.4 yields the
desired conclusion. �

We are now ready to prove our analogue to Theorem 3.1:

Theorem 4.12. Let j ∶ V ⟶ M be an I2-elementary embedding with � being the supremum of its
critical sequence �⃗ = ⟨�n | n < !⟩ and let N be an inner model of ZFC with M j

! ∪ {�⃗} ⊆ N and
(2�)N < �+. Then there exists a sequence ⃗ = ⟨Fn | n < !⟩ inN such that each Fn is a normal ultrafilter
on �n and every subset of C(�⃗) that is definable over V� by a Σ12-formula with parameters in V N

�+1 has the
⃗ -Baire property.

Proof. Since V� ⊆ M
j
! ⊆ N , �⃗ ∈ N and each �n is a measurable cardinal in N , we can pick a sequence

⃗ = ⟨Fn | n < !⟩ inN such that each Fn is a normal ultrafilter on �n. Note that every condition in ℙN⃗ is
a condition in ℙV

⃗
. In V , we define

C = {x ∈ C(�) | “x is ℙN
⃗
-generic overN ”}.
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Then Lemma 4.11 shows that C is �-comeager in the ⃗ -EP topology.
Fix a Σ12-formula '(w0, w1) with second-order variables w0 and w1 and B ∈ V N

�+1 such that the set

X = {A ∈ V�+1 | ⟨V�,∈⟩ ⊧ '(A,B)}

is a subset of C(�⃗). Define O to be the set of all conditions p in ℙN
⃗

with

p ⊩N
ℙN
⃗

“ ⟨V�̌,∈⟩ ⊧ '(ẋ, B̌) ”, (5)

where ẋ denotes the canonical ℙN
⃗
-name for the generic sequence inN .

Work in V and define U to be the union of all sets of the form Np with p ∈ O. Fix x ∈ C . First,
assume that x ∈ U and fix p ∈ O with x ∈ Np. Since

Gx = {p ∈ ℙN
⃗

| x ∈ Np}

is the filter on ℙN
⃗

induced by x, we then know that

⟨V�,∈⟩ ⊧ '(x, B) (6)

holds inN[x] and therefore Corollary 3.6 shows that x is an element ofX. In the other direction, assume
that x ∈ X. Then (6) holds in V and Corollary 3.6 ensures that this statement also holds in N[x]. Then
there is a condition p in Gx with the property that (5) holds. But then p ∈ O, x ∈ Np and hence x ∈ U .
These computations now show that the sets U and C(�⃗) ⧵C witness thatX has the ⃗ -Baire property. �

A quick analysis of the proof shows that the consequences of the above theorem hold for every ⃗ ∈ N .
Note that, since (2�)M

j
![�⃗] < �+ holds in the situation of the above theorem, there exists a sequence ⃗ of

normal measures such that every subset of C(�⃗) that is definable over V� by a Σ12-formula with parameters
in V� ∪ {�⃗} has the ⃗ -Baire property.

In the remainder of this paper, we study the interaction of I0-embeddings with the �-Baire property of
families of sets. One of the key ingredients of the proof of Theorem 4.12 is Corollary 3.6, that states that
there is a certain amount of absoluteness between V and models that containM j

![�⃗]. Woodin and Cramer
proved that I0-embeddings also entail absoluteness-like results.

Remember that, given a limit ordinal �, we define

ΘL(V�+1) = sup{� ∈ Ord | There is a surjection � ∶ V�+1 ⟶ � in L(V�+1)}.

This concept generalizes the definition of Θ for L(ℝ). Since L(ℝ) is not going to appear in this paper and
there is no risk of confusion, we will below write Θ instead of ΘL(V�+1). An ordinal � < Θ is called good
if every element of L�(V�+1) is definable over L�(V�+1) from an element of V�+1. The next theorem is
called Generic Absoluteness in [Woo11]:

Theorem 4.13 (Woodin, [Cra17, Theorem 82]). Let j ∶ L(V�+1) ⟶ L(V�+1) be an I0-embedding that
is !-iterable and let j0,! ∶ L(V�+1) ⟶ M! be the embedding into the !-th iterate of L(V�+1) by j.
Assume that ℙ ∈M! is a partial order and g ∈ V is ℙ-generic overM! with cof(�)M![g] = !. If � < Θ
is good, then for some �̄ < �, there is an elementary embedding

� ∶ L�̄(M![g] ∩ V�+1)⟶ L�(V�+1)

that is the identity below �.

Note that, in the situation of the above theorem the good ordinals are cofinal in Θ (see [Lav01]). More-
over, if there exists an I0-embedding, then there exists an iterable I0-embedding (see [Woo11, Lemma 10,
Lemma 21]). Therefore, the hypothesis of the above result is not restrictive.
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Theorem4.14. Let j ∶ L(V�+1)⟶ L(V�+1) be an I0-embeddingwith critical sequence �⃗ = ⟨�n | n < !⟩.
Then there exists a sequence ⃗ = ⟨Fn | n < !⟩ such that each Fn is a normal ultrafilter on �n and every
subset of C(�⃗) that is definable over V� by a Σ1n-formula with parameters in V�+1 has the ⃗ -Baire property.

Proof. By earlier remarks, wemay assume that j is!-iterable. In the following, we let j0,! ∶ L(V�+1)⟶
M! denote the embedding into the !-th iterate of L(V�+1) by j. Then �⃗ is Prikry-generic overM! and
there is a sequence ⃗ = ⟨Fn | n < !⟩ inM![�⃗] such that each Fn is a normal ultrafilter on �n. Finally, we
define ℙ to be the corresponding diagonal Prikry forcing ℙM![�⃗]

⃗
inM![�⃗].

Given n < !, we fix a Σ1n-formula '(w0, w1) in the language of set theory with free second-order
variables w0 and w1. Given y ∈M![�⃗] ∩ V�+1, we define

X',y = {x ∈ C(�⃗) | ⟨V�,∈⟩ ⊧ '(x, y)}.

As in the proof of Theorem 4.12, we now define O',y to be the open subset of ℙ inM![�⃗] that consists
of all conditions p with

p ⊩M![�⃗]
ℙ “ ⟨V�̌,∈⟩ ⊧ '(ẋ, y̌) ”,

where ẋ denotes the canonical ℙ-name for the generic sequence inM![j⃗]. In addition, we let U',y denote
the union of all sets Np with p ∈ O',y in V . Finally, we define C to be the set of all x in C(�⃗) that are
ℙ-generic overM![�⃗]. Since (2�)M![�⃗] < �+, an application of Lemma 4.11 shows that C is �-comeager
in the ⃗ -EP topology.

Now, fix x in C . Still following the proof of Theorem 4.12, we then know that x is an element of U',y
if and only if

⟨V�,∈⟩ ⊧ '(x, y)

holds inM![�⃗, x]. The modelM![�⃗, x] is a generic extension (via the forcing that is a two-step iteration
of Prikry and diagonal Prikry forcing) ofM! and cof(�)M![�⃗,x] = !. Therefore, we can apply Generic
Absoluteness toM![�⃗, x] to show that x ∈ U',y if and only if x ∈ X',y. These computations show that
U',y ΔX',y ⊆ C(�⃗) ⧵ C and we can conclude that the set X',y has the ⃗ -Baire property.

We now know that the statement

“X',y has the ⃗ -Baire property ” (7)

holds in L(V�+1) for every Σ1n-formula '(w0, w1) and for all y ∈ M![�⃗] ∩ V�+1. We claim that this
statement can be expressed by a formula that only uses a single existential quantifier bounded by the set
V�+2 of all subsets of V�+1. Notice that, as a consequence of this, it follows that the ⃗ -Baire property is
upward absolute. By definition of ⃗ -Baire property, the set X',y has the ⃗ -Baire property if and only if
there exist an open subset U of C(�⃗) and a sequence ⟨C� | � < �⟩ of closed nowhere dense subsets of C(�⃗)
with the property that AΔU ⊆

⋃

�<� C� . Notice now that each open setW is determined by the subset
{p ∈ ℙ⃗ | Np ⊆ W } of V�+1. Hence, the set U and the sequence ⟨C� | � < �⟩ can be determined by a
�-sequence of subsets of V�+1, which in turn can be canonically identified with a subset of V�+1. It is now
easy to see that the claim holds.

Now, given y ∈ V�+1 with the property that (7) holds in L(V�+1), we define �y to be the least ordinal �
below Θ such that (7) holds in L�(V�+1). Such an ordinal exists below Θ because all the subsets of V�+1
in L(V�+1) are elements of LΘ(V�+1) (see, for example, [Dim18, Lemma 5.6]). In addition, we define
�y = 0 for all y ∈ V�+1 with the property that (7) fails in L(V�+1). The resulting function y ↦ �y is then
definable in L(V�+1). We now want to prove that

� = sup{�y | y ∈ V�+1} < Θ.
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For any x ∈ V�+1, we define<x to be the canonical well-ordering ofHOD
L(V�+1)
x , the inner model of all

sets hereditarily definable in L(V�+1) with ordinals and x as parameters.7 In addition, for all x, y ∈ V�+1,
we let gx(y) denote the <x-smallest surjection from V�+1 to �y, if it exists and otherwise gx(y) = 0. The
map x↦ gx is also definable in L(V�+1). It is now easy to see that the function f defined by

f (x, y, z) =

{

gx(y)(z), if gx(y) ≠ 0
0, otherwise

is a surjection from V 3�+1 to � and hence � < Θ.
In particular, we know that (7) holds inL�(V�+1) for all y ∈M![�⃗]∩V�+1. By the fact that the sequence

of good ordinals is cofinal in Θ and that the ⃗ -Baire property is upward absolute, we can assume that � is
good. Then, by Theorem 4.13, there exist �̄ < � and an elementary embedding

� ∶ L�̄(M![�⃗] ∩ V�+1)⟶ L�(V�+1)

such that � ↾ (M![�⃗] ∩ V�+1) = idM![�⃗]∩V�+1
. Thus, we can conclude that

∀y ∈M![�⃗] ∩ V�+1 L�(V�+1) ⊧ “X',y has the ⃗ -Baire property ”

⟺ ∀y ∈M![�⃗] ∩ V�+1 L�̄(M![�⃗] ∩ V�+1) ⊧ “X',y has the ⃗ -Baire property ”

⟺ L�̄(M![�⃗] ∩ V�+1) ⊧ ∀y ∈ V�+1 “X',y has the ⃗ -Baire property ”

⟺ L�(V�+1) ⊧ ∀y ∈ V�+1 “X',y has the ⃗ -Baire property ”.

These computation show that every set of the form X',y with y ∈ V�+1 has the ⃗ -Baire property. �

5. OPEN QUESTIONS

We close this paper by stating two questions raised by the above results. As mentioned in the introduc-
tion, our results suggest that large cardinals assumptions can be studied through the provable validity of
Perfect Set Theorems for simply definable sets at singular cardinals of countable cofinality. In particular,
our results suggest that the existence of an I2-embedding with critical sequence �⃗ naturally corresponds to
the validity of a Perfect Set Theorem for subsets ofC(�⃗) that are definable by Σ1-formulas with parameters
in V� ∪ {�⃗}, where � is the supremum of the sequence �⃗. We therefore ask if the conclusion of Theorem
1.4 can also be derived from substantially weaker large cardinal assumptions:

Question 5.1. Let �⃗ = ⟨�n | n < !⟩ be a strictly increasing sequence of cardinals with supremum � such
that �n is a <�-supercompact cardinal for all n < !. If X is a subset of (�) of cardinality greater than �
that is definable by aΣ1-formula with parameters in V�∪{�⃗}, is there a perfect embedding � ∶ !�⟶ (�)
with ran(�) ⊆ X? If yes, what about subsets of (�) that are definable by Σ1-formulas with parameters in
V� ∪ {V�, �⃗}?

In another direction, we also ask which large cardinal assumptions are necessary to overcome the lim-
itations to the influence of I2-embeddings given by Theorem 1.5. Note that, by Theorem 1.1, an I0-
embedding suffices for this task. Remember that an I1-embedding is a non-trivial elementary embedding
j ∶ V�+1 ⟶ V�+1.

Question 5.2. Let j ∶ V�+1 ⟶ V�+1 be an I1-embedding. If X is a subset of (�) of cardinality
greater than � that is definable by a Σ1-formula with parameters in V�+1, is there a perfect embedding
� ∶ !� ⟶ (�) with ran(�) ⊆ X? If yes, what about subsets of (�) that are definable over V� by
Σ1n-formulas with parameters in V�+1?

7It is a standard argument that L(V�+1) =
⋃

{HODL(V�+1)
x | x ∈ V�+1}
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