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Abstract. We study an extension of the triangle removal lemma of Ruzsa

and Szemerédi [Triple systems with no six points carrying three triangles, Com-

binatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, North-
Holland, Amsterdam, 1978, pp. 939–945], which gave rise to a purely combi-

natorial proof of the fact that sets of integers of positive upper density contain

three-term arithmetic progressions, a result first proved by Roth [On certain
sets of integers, J. London Math. Soc. 28 (1953), 104–109].

We obtain a generalization of the triangle removal lemma for subgraphs
of sparse pseudorandom graphs and deduce the following version of Roth’s

theorem, which applies to sparse sets of integers: If A ⊆ [n] = {1, . . . , n}
has the property that all non-trivial Fourier coefficients λ of the indicator
function 1A : [n] → {0, 1} satisfy |λ| = o(|A|3/n2), then any subset B ⊆ A

that contains no three-term arithmetic progression satisfies |B| = o(|A|).

1. Introduction

In the mid-seventies Ruzsa and Szemerédi [25] solved a problem of Brown, Erdős,
and Sós [5] and established the so-called triangle removal lemma. Loosely speaking,
the triangle removal lemma asserts that every graph which does not contain many
triangles can be made triangle-free by removing only a few edges. More precisely,
for a positive integer n we denote by Kn the complete graph with vertex set [n] =
{1, . . . , n}. For two graphs F and H we say H is F -free, if H does not contain
a (not necessarily induced) copy of F . For a graph G = (V,E) we denote the
minimum number of edges that meet any triangle in G by

τ3(G) = min{|E′| : E′ ⊆ E and H = (V,E \ E′) is K3-free} .

Theorem 1 (Ruzsa & Szemerédi). For every δ > 0 there exist c > 0 and n0 such
that every graph G = (V,E) with |V | = n ≥ n0 that contains at most c

(
n
3

)
copies

of K3 satisfies τ3(G) ≤ δ
(
n
2

)
. �

Theorem 1 stimulated a great deal of research and several generalizations for
graphs and hypergraphs are now known (see, e.g., [23] and the references therein
and [10] for a new proof of Theorem 1). Moreover, it was already shown in [25] that
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Theorem 1 yields a new proof of Roth’s famous theorem on arithmetic progressions
of length three [24] (see [3] for the best known quantitative bound). We say a set
of integers is AP3-free, if it does not contain a non-trivial three-term arithmetic
progression, i.e., three distinct elements x, y, z such that x + z = 2y. For a finite
set of integers A we denote the maximum size of an AP3-free subset of A by

r3(A) = max{|B| : B ⊆ A and B is AP3-free}
and we simply write r3(n) for r3([n]).

Theorem 2 (Roth). For every δ > 0 there exists n0 such that for all n ≥ n0 we
have r3(n) ≤ δn. �

Sparse versions of Theorems 1 and 2 were studied in the context of random
discrete structures. In particular, in [16] it was shown that, for any δ > 0, with
high probability a random subsets A ⊆ [n] with |A| = Cδn

1/2 satisfies r3(A) ≤ δ|A|,
where Cδ depends only on δ (see [26] for generalizations of this result to arithmetic
progressions of length k > 3 and see [21] for an alternative proof for the case k =
3). The techniques developed in [16] can be used to obtain a similar extension of
Theorem 1 for subgraphs of random graphs. This extension asserts that for every
fixed δ > 0 there exist constants Cδ and cδ > 0 such that if p ≥ Cδn

−1/2 then
a random graph Γ ∈ G(n, p) satisfies with high probability the following: every
subgraph G ⊆ Γ that contains at most cδp

3
(
n
3

)
copies of K3 satisfies τ3(G) ≤ δp

(
n
2

)
.

Note that Theorem 1 corresponds to the case p = 1 and Theorem 1 implies such a
result for any constant p > 0.

Another example of a relative version of Roth’s theorem appears in the work of
Green [12] who showed that, for the set of primes P, we have r3(P∩[n]) = o(|P∩[n]|),
i.e., any relatively dense subset of the primes contains an arithmetic progression of
length three (see [14] for longer arithmetic progressions).

We obtain extensions of Theorems 1 and 2 for subgraphs of sparse pseudorandom
graphs (see Theorem 3) and for subsets of sparse pseudorandom subsets of [n] (see
Theorem 4). Our proof is based on the sparse regularity lemma [15, 17] and the
main technical result presented here (see part (a ) of Lemma 9 below).

2. New results

Next we define the notions of pseudorandomness considered here. Roughly
speaking, pseudorandom discrete structures “imitate” a truly random object of
the same density. The systematic study of pseudorandom graphs was initiated by
Thomason [28, 29] and continued by Chung, Graham, and Wilson [7] and we will
use a related concept here. In fact, Chung and Graham obtained several general-
izations of those results for other discrete structures and one of the properties of
pseudorandom subsets of Z/nZ studied in [6] is related to our concept of pseudo-
random subsets of [n].

2.1. The triangle removal lemma for pseudorandom graphs. We say a graph
Γ = (V,E) is (p, β)-bijumbled for p and β > 0, if all subsets X, Y ⊆ V satisfy∣∣eΓ(X,Y )− p|X||Y |

∣∣ ≤ β√|X||Y | ,
where eΓ(X,Y ) = |{(x, y) ∈ X × Y : {x, y} ∈ E(Γ)}| denotes the number of edges
of Γ with one endvertex in X and the other endvertex in Y , where edges contained
in X ∩ Y are counted twice.
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It follows from Chernoff’s inequality that the binomial random graph G(n, p)
is with high probability (p, β)-bijumbled for β = C

√
pn for some sufficiently large

constant C > 1, if pn−3 log n→∞. On the other hand, it follows from the work of
Erdős and Spencer [9] (see also [8]) that for every (p, β)-bijumbled n-vertex graph

we have β = Ω(
√
p(1− p)n) as long as p(1− p) > 1/n.

A well known explicit class of (p, β)-bijumbled graphs are the so-called (n,D, λ)-
graphs with D = pn and λ = β. An (n,D, λ)-graph Γ is a D-regular n-vertex graph
which satisfies λ ≥ {λ2, |λn|}, where D = λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues
of the adjacency matrix of Γ (see [2, Chapter 9] and [18] for more details).

Our first result asserts that Theorem 1 can be extended to subgraphs G ⊆ Γ of
(p, β)-bijumbled n-vertex graphs Γ, if β ≤ γp3n for a sufficiently small γ > 0.

Theorem 3. For every δ > 0 there exist c > 0, γ > 0, and n0 such that the
following holds.

Suppose Γ = (V,EΓ) is a (p, γp3n)-bijumbled graph with n vertices and p ≥ 1/
√
n

and let G = (V,EG) ⊆ Γ be a (not necessarily induced) subgraph of Γ. If G contains
at most cp3

(
n
3

)
copies of K3, then τ3(G) ≤ δe(Γ).

We remark the following:

(I) It is easy to show that for sufficiently small γξ > 0 every (p, γp2n)-bijumbled
n-vertex graph Γ contains (1 ± ξ)p3

(
n
3

)
copies of K3. Consequently, The-

orem 3 asserts that if a subgraph G ⊆ Γ contains only a small fraction of
the triangles of the sufficiently pseudorandom host graph Γ, then G can
be made triangle-free by removing a small fraction of the edges of Γ. In
Theorem 1 the complete graph Kn plays the same rôle as Γ.

(II) Note that Theorem 3 applies only to (p, β)-bijumbled n-vertex graphs Γ
with β = γp3n for sufficiently small γ. Since β = Ω(

√
pn) for every graph

with p(1− p) ≥ 1/n, it follows that Theorem 3 only applies to graphs Γ of
density p = p(n) = Ω(n−1/5).

We believe Theorem 3 is also true for (p, β)-bijumbled n-vertex graphs
Γ with β = γp2n, which would allow us to consider graphs of density p ≥
Cn−1/3. On the other hand, Alon [1] constructed a (p, 19

√
pn)-bijumbled

n-vertex graph Γ with p = n−1/3/4 which is K3-free. This indicates that
such a strengthening Theorem 3 would be “best possible.”

2.2. Roth’s theorem for pseudorandom sets. For A ⊆ [n] we consider the
discrete Fourier coefficients λ0(A), . . . , λn−1(A) ∈ C of A defined by

λk(A) =
∑
a∈A

exp

(
2πi

n
· ka
)
. (1)

Clearly, λ0(A) = |A| and we set

λ(A) = max{|λk(A)| : k = 1, . . . , n− 1} .

Theorem 4 extends Theorem 2 to sparse sets A ⊆ [n] for which λ(A) is “small.” A
somewhat related result appears in the work of Green and Tao [13, Proposition 5.1].

Theorem 4. For every δ > 0 there exist γ > 0 and n0 such that for every odd
n ≥ n0 and every A ⊆ [n] with λ(A) ≤ γ|A|3/n2 we have r3(A) ≤ δ|A|.
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Very roughly speaking, the condition on A in Theorem 4 asserts that a certain
Cayley-type graph Γ(A) generated by A on the vertex set [n] is an (n, |A|, γ|A|3/n2)-
graph and, therefore, a (p, γp3n)-bijumbled graph for p = |A|/n. This allows us to
apply similar techniques as in the proof of Theorem 3.

In view of Remark (II) after Theorem 3 we believe that the condition on λ(A)
in Theorem 4 can be relaxed to λ(A) ≤ γ|A|2/n.

2.3. Key technical result. The main technical result behind the proofs of Theo-
rems 3 and 4, namely, Lemma 9, concerns the theory of pseudorandom properties,
which are asserted by the sparse regularity lemma. For the statement of Lemma 9
we require a few definitions.

Definition 5 (DISC). Let G = (V,E) be a graph and let X, Y ⊆ V be disjoint.
We say (X,Y ) satisfies the discrepancy condition DISC(q, p, ε) in G for some q, p,
and ε > 0 if the following holds:∣∣eG(X ′, Y ′)− q|X ′||Y ′|

∣∣ ≤ εp|X||Y | for all X ′ ⊆ X and Y ′ ⊆ Y .

As a shorthand, we shall sometimes say (X,Y )G satisfies DISC(q, p, ε).

Note that Szemerédi’s regularity lemma [27] asserts that the vertex set of every
n-vertex graph G can be partitioned into a bounded number of classes V1∪̇ . . . ∪̇Vt
in such a way that most pairs (Vi, Vj)G satisfy DISC(qij , p, ε), where

qij = dG(Vi, Vj) =
eG(Vi, Vj)

|Vi||Vj |
and p = 1 .

Since DISC(q, p, ε) only gives useful information on the edge distribution of (X,Y )G
if q > εp, Szemerédi’s regularity lemma is mainly suited for applications to “dense”
graphs G with Ω(|V (G)|2) edges. The first two authors observed that Szemerédi’s
regularity lemma can be extended to subgraphs G of sparse graphs Γ, provided
the host graph Γ does not contain “dense spots.” In this context p can be chosen
to be e(Γ)/

(
n
2

)
, i.e., it can tend to 0 as n tends to infinity. For example, (p, β)-

bijumbled graphs Γ do not contain “dense spots” as long as β ≤ γpn for some small
constant γ > 0. Consequently, the sparse regularity lemma is applicable to the
graphs G ⊆ Γ satisfying the assumptions of Theorem 3. For the proof of Theorem 3
we will need a corresponding “counting lemma” for triangles in tripartite graph
with all three induced bipartite graphs satisfying DISC (see Lemma 11 below). For
that we will show that pairs (X,Y )G satisfying DISC will also satisfy the so called
pair condition. For (not necessarily distinct) vertices x and x′ ∈ V and a subset
Y ⊆ V we write degG(x, Y ) for the number of neighbors of x in Y and we write
degG(x, x′, Y ) for the number of joint neighbors of x and x′ in Y . Moreover, we
denote the sets of such neighbors by NG(x, Y ) and NG(x, x′, Y )

Definition 6 (PAIR). Let G = (V,E) be a graph and let X, Y ⊆ V be disjoint.
We say (X,Y ) satisfies the pair condition PAIR(q, p, δ) in G for some q, p, and
δ > 0 if the following holds:∑

x∈X

∣∣degG(x, Y )− q|Y |
∣∣ ≤ δp|X||Y | , (2)∑

x∈X

∑
x′∈X

∣∣degG(x, x′, Y )− q2|Y |
∣∣ ≤ δp2|X|2|Y | . (3)

As a shorthand, we shall sometimes say (X,Y )G satisfies PAIR(q, p, δ).
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It is well known (see, e.g., [7]) that DISC and PAIR are equivalent in the dense
case, i.e., for p = 1.

Theorem 7 (DISC⇔ PAIR (dense case)). For every α > 0 and δ > 0 there exist
ε > 0 and n0 such that the following holds.

Suppose G = (V,E) is a graph and X, Y ⊆ V are disjoint sets with |X|, |Y | ≥ n0.
Then the following statements hold:

(a ) if (X,Y )G satisfies DISC(q, 1, ε) for some q with α ≤ q ≤ 1, then it also
satisfies PAIR(q, 1, δ);

(b ) if (X,Y )G satisfies PAIR(q, 1, ε) for some q with α ≤ q ≤ 1, then it also
satisfies DISC(q, 1, δ). �

The key technical lemma presented here asserts that an analogue of Theorem 7
is true for subgraphs of (p, β)-bijumbled graphs Γ if β is sufficiently small. In fact,
we can slightly relax the bijumbledness condition and consider a partite version
instead. For simplicity we call this property jumbledness.

Definition 8 (jumbledness (partite version)). Let Γ = (U ∪̇V,EΓ) be a bipartite
graph and q, β > 0 be real numbers. We say Γ is (q, β)-jumbled if∣∣eΓ(X,Y )− q|X||Y |

∣∣ ≤ β√|X||Y | for all X ⊆ U and Y ⊆ V .

Moreover, we say a k-partite graph Γ = (V1∪̇ . . . ∪̇Vk, EΓ) with k ≥ 2 is (q, β)-
jumbled if all induced bipartite subgraphs Γ[Vi∪̇Vj ] for 1 ≤ i < j ≤ k are (q, β)-
jumbled.

Note that both discrepancy and jumbledness are two measures of pseudoran-
domness for graphs.

In the context of this paper discrepancy (DISC(q, p, ε) where ε > 0 and the ratio
q/p are constants independent of the size of the graph) is a property of subgraphs
of G that can be obtained by an application of the (sparse) regularity lemma.

On the other hand, jumbledness will be a property imposed on the host graph
Γ ⊇ G. Typically the jumbledness assumption is stronger and cannot be ensured
by an application of the regularity lemma.

Lemma 9 (DISC⇔ PAIR for subgraphs of jumbled graphs). For every α ∈ (0, 1]
and δ > 0 there exists ε > 0 such that for every η > 0 there exist γ > 0 and n0

such that for every n ≥ n0 the following holds.
Suppose

(i ) Γ = (U ∪̇V,EΓ) is a bipartite (p, β)-jumbled graph with |U |, |V | ≥ n and
p ≥ 1/

√
n,

(ii ) G = (U ∪̇V,EG) is a subgraph of Γ, and
(iii ) X ⊆ U and Y ⊆ V with |X|, |Y | ≥ ηn.

Then the following statements hold:

(a ) if β ≤ γp2n and (X,Y )G satisfies DISC(q, p, ε) for some q with αp ≤ q ≤ p,
then (X,Y )G satisfies PAIR(q, p, δ);

(b ) if β ≤ γp3/2n and (X,Y )G satisfies PAIR(q, p, ε) for some q with αp ≤ q ≤
p, then (X,Y )G satisfies DISC(q, p, δ).

The main part of this paper is devoted to the proof of implication (a ) of Lemma 9.
The proofs of Theorems 3 and 4 rely on this implication. On the other hand, the
proof of implication (b ) of the lemma can be established along the lines of the
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argument for the dense case (Theorem 7(b )). We include the proof of part (b )
of Lemma 9 for completeness (see Section 5.1). We note that the jumbledness
assumption on the host graph Γ in part (b ) is less restrictive than in part (a ). We
believe that the assumption for implication (a ) can be weakened (see Section 6)

Organization. In Section 3 we deduce Theorem 3 from Lemma 9(a ) and the
sparse regularity lemma. Section 4 is devoted to the proof of Theorem 4, which is
based on a tripartite variant of Theorem 3 (see Theorem 10 below). The proof of
the key technical result, Lemma 9, is deferred to Section 5.

3. The Ruzsa–Szemerédi theorem for pseudorandom graphs

The proof presented here follows the standard proof of the Ruzsa–Szemerédi
theorem, which is based on Szemerédi’s regularity lemma and the so-called triangle
counting lemma. In fact, the proof of Theorem 3 is based on the sparse regularity
lemma [15, 17] and an appropriate triangle counting lemma for subgraphs of jumbled
graphs (see Lemma 11 below), which we deduce from part (a ) of Lemma 9. First
we state a tripartite version of Theorem 3, which will be convenient for the proof
of Theorem 4.

3.1. Tripartite version of Theorem 3. We shall show that Theorem 3 easily
follows from the following tripartite version.

Theorem 10 (tripartite version of Theorem 3). For every δ > 0 there exist c > 0,
γ > 0, and n0 such that for every n ≥ n0 the following holds.

Suppose Γ = (V1∪̇V2∪̇V3, EΓ) is a tripartite (p, γp3n)-jumbled graph with |Vi| ≥ n
for i ∈ [3], p ≥ 1/

√
n, and G = (V1∪̇V2∪̇V3, EG) ⊆ Γ is a subgraph of Γ. If G

contains at most cp3|V1||V2||V3| copies of K3, then τ3(G) ≤ δe(Γ).

Proof: Theorem 10 ⇒ Theorem 3. For any given δ > 0 we set δ′ = δ/6 and let c′

and γ′ > 0 be given by Theorem 10. For Theorem 3 we then set c = c′ and γ = γ′.
Finally let n be sufficiently large and p ≥ 1/

√
n.

Let Γ = (V,EΓ) be a (p, γp3n)-bijumbled graph and let G = (V,EG) be a
subgraph of Γ which contains at most cp3

(
n
3

)
copies of K3.

We consider tripartite graphs Γ′ = (V ′, EΓ′) ⊇ G′ = (V ′, EG′) defined as follows

V ′ = V × [3]

and

EΓ′ =
{
{(u, i), (v, j)} : {u, v} ∈ EΓ and 1 ≤ i < j ≤ 3

}
,

EG′ =
{
{(u, i), (v, j)} : {u, v} ∈ EG and 1 ≤ i < j ≤ 3

}
.

It follows from the definition of G′ and Γ′ that e(Γ′) = 6e(Γ), |V ′| = 3n, and the
assumptions on Γ and G yield

(a ) Γ′ is a tripartite (p, γp3n)-jumbled graph and
(b ) G′ contains at most 6cp3

(
n
3

)
≤ c′p3n3 triangles.

Consequently, Γ′ and G′ satisfy the assumptions of Theorem 10 and, hence, there
exists a set of edges X ′ ⊆ EG′ such that H ′ = (V ′, EG′ \X) is K3-free and

|X ′| ≤ δ′e(Γ′) = δe(Γ) .

We consider the set of edges X which is the “pullback” of X ′ in G, i.e.,

X =
{
{u, v} : {(u, i), (v, j)} ∈ X ′ for some 1 ≤ i < j ≤ 3

}
.
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Clearly |X| ≤ |X ′| ≤ δe(Γ) and it is easy to check that H = (V,EG \X) is K3-free.
Therefore, τ3(G) ≤ δe(Γ). �

3.2. Triangle counting lemma for subgraphs of tripartite jumbled graphs.
The proof of Theorem 10 outlined here follows the lines of the standard proof of
Theorem 1, which is based on Szemerédi’s regularity lemma and a corresponding
triangle counting lemma. In fact the sparse version of the regularity lemma ap-
plies to subgraphs of (p, γp3n)-jumbled tripartite graphs and below we state an
appropriate triangle counting lemma for subgraphs of jumbled graphs.

Lemma 11. For every α ∈ (0, 1] and ξ > 0 there exists ε > 0 such that for all
η > 0 there exist γ > 0 and n0 such that for every n ≥ n0 the following holds.

Suppose

(i ) Γ = (V1∪̇V2∪̇V3, EΓ) is a tripartite (p, γp3n)-jumbled graph with |Vi| ≥ n
for i ∈ [3] and p ≥ 1/

√
n,

(ii ) G = (V1∪̇V2∪̇V3, EG) ⊆ Γ is a subgraph of Γ, and
(iii ) Ui ⊆ Vi with |Ui| ≥ ηn for i ∈ [3].

If eG(U2, U3) = q23|U2||U3| for some q23 with αp ≤ q23 ≤ p and for j = 2 and 3 the
pair (U1, Uj)G satisfies DISC(q1,j , p, ε) for some q1,j with αp ≤ q1,j ≤ p, then the
induced subgraph G[U1, U2, U3] contains at least (1− ξ)q12q13q23|U1||U2||U3| copies
of K3.

Theorem 10 can be deduced from the sparse version of the regularity lemma and
Lemma 11 by standard arguments and we omit the details here. Below we deduce
Lemma 11 from part (a ) of Lemma 9. In the proof we use the following well known
consequence of the Cauchy–Schwarz inequality.

Lemma 12. For every ν > 0 there exists µ > 0 such that for every m ∈ N and
x1, . . . , xm, x̄ ∈ R the following holds. If∑

i∈[m]

xi ≥ (1− µ)x̄m and
∑
i∈[m]

x2
i ≤ (1 + µ)x̄2m,

then ∣∣{i ∈ [m] : |xi − x̄| ≥ νx̄
}∣∣ ≤ νm . �

Proof: Lemma 9(a ) ⇒ Lemma 11. Note that the quantifications of the involved
constants in Lemma 9 and Lemma 11 are very similar. In fact, there are only two
differences. For an application of Lemma 9 we have to make an appropriate choice
for δ > 0 (depending only on α) and for the proof of Lemma 11 we are given ξ > 0.

Assume we are given α and ξ by Lemma 11. First we fix an auxiliary constant

ν =
αξ

3
(4)

and let µ = µ(ν) be given by Lemma 12. Then we set

δ =

(
α6µ

1200

)2

(5)

and let ε = ε(α, δ) be given by Lemma 9. Following the quantification of Lemma 11
let η be given. For this η Lemma 9 yields an appropriate choice for γ. Without
loss of generality we may assume that

γ ≤ α4µη2

144
. (6)
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Finally, let n be sufficiently large and suppose p ≥ 1/
√
n.

Let Γ, G, and Ui be as in the statement of Lemma 11. We have to show that
G[U1, U2, U3] contains at least (1 − ξ)q12q13q23|U1||U2||U3| triangles. We will first
show that most pairs {u2, u3} ∈ EΓ(U2, U3) have a “large” joint neighborhood in
the graph G in U1. For that we study the distribution of the triangles in Γ with
one edge in EΓ(U2, U3) and the other two edges in G. For a pair (u2, u3) ∈ U2×U3

we recall that degG(u2, u3, U1) denotes the number of joint neighbors of u2 and u3

in U1 in the graph G. Below we will show the following two estimates.∑{
degG(u2, u3, U1) : {u2, u3}∈EΓ(U2, U3)

}
≥ (1− µ

3 )q12q13|U1| · p|U2||U3|, (7)∑{
deg2

G(u2, u3, U1) : {u2, u3}∈EΓ(U2, U3)
}
≤ (1 + µ

3 )q2
12q

2
13|U1|2 · p|U2||U3|. (8)

Before we verify (7) and (8), we finish the proof of Lemma 11 based on those
estimates.

The (p, γp3n)-jumbledness of Γ, combined with (6), |U2|, |U3| ≥ ηn, and p ≤ 1,
yields∣∣eΓ(U2, U3)− p|U2||U3|

∣∣ ≤ γp3n
√
|U2||U3|

(6)

≤ µ

3
p3|U2||U3| ≤

µ

3
p|U2||U3| . (9)

Note that (7) and (8) show that the assumptions of Lemma 12 are met for m =
eΓ(U2, U3) and x̄ = q12q13|U1|. Therefore

degG(u2, u3, U1) ≥ (1− ν)q12q13|U1|
for all but at most νeΓ(U2, U3) edges {u2, u3} ∈ EΓ(U2, U3). Removing those ex-
ceptional edges from G yields the following lower bound on the number of triangles
with all three edges in G:(

eG(U2, U3)− νeΓ(U2, U3)
)
· (1− ν)q12q13|U1| .

Since eG(U2, U3) = q23|U2||U3| ≥ αp|U2||U3|, the choice of ν in (4) combined
with (9) yields(

eG(U2, U3)− νeΓ(U2, U3)
)
· (1− ν)q12q13|U1| ≥ (1− ξ)q12q13q23|U1||U2||U3| ,

which concludes the proof of Lemma 11 based on estimates (7) and (8). �

Proof of (7). Note that the left-hand side of (7) is the number of triangles in
Γ[U1, U2, U3] with both edges incident to a vertex in U1 being also present in G
and we have∑

{u2,u3}∈EΓ(U2,U3)

degG(u2, u3, U1) =
∑
u1∈U1

eΓ

(
NG(u1, U2), NG(u1, U3)

)
. (10)

The (p, γp3n)-jumbledness of Γ yields

eΓ

(
NG(u1, U2), NG(u1, U3)

)
≥ p degG(u1, U2) degG(u1, U3)−γp3n

√
|U2||U3| . (11)

Moreover, by Lemma 9(a ), the choice of ε and the assumption of Lemma 11 im-
ply that (U1, U2)G and (U1, U3)G satisfy the pair conditions PAIR(q12, p, δ) and
PAIR(q13, p, δ), respectively. In particular, for j = 2 and 3,∑

u1∈U1

∣∣ degG(u1, Uj)− q1,j |Uj |
∣∣ ≤ δp|U1||Uj | .

As q1,j ≥ αp for j = 2 and 3, we have

|NG(u1, Uj)| = degG(u1, Uj) ≥
(
1−
√
δ
)
q1,j |Uj | (12)
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for both j = 2 and j = 3 for all but at most (1 − 2
√
δ/α)|U1| vertices u1 ∈ U1.

Combining this with (10), (11) and (12) yields∑{
degG(u2, u3, U1) : {u2, u3} ∈ EΓ(U2, U3)

}
≥
(
1− 2

√
δ/α

)
|U1| · p

(
1−
√
δ
)2
q12q13|U2||U3| − |U1|γp3n

√
|U2||U3| . (13)

The choice of δ in (5) ensures(
1− 2

√
δ/α

)(
1−
√
δ
)2 ≥ 1− µ/6

and the choice of γ in (6) together with |U2|, |U3| ≥ ηn and q12, q13 ≥ αp gives

|U1|γp3n
√
|U2||U3| ≤

µ

6
pq12q13|U1||U2||U3| .

Plugging the last two estimates into (13) yields (7). �

In the proof of (8) we will use the following estimate, which is a consequence of
the definition of jumbled graphs.

Fact 13. Let Γ = (U ∪̇V,E) be a bipartite (p, β)-jumbled graph. Let X ⊆ U and
Y ⊆ V and ξ > 0. If X satisfies one of the following two conditions: either
degΓ(x, Y ) ≥ (1 + ξ)p|Y | for all x ∈ X or degΓ(x, Y ) ≤ (1− ξ)p|Y | for all x ∈ X,
then

|X| ≤ β2

ξ2p2|Y |
. �

Proof of (8). We start with rewriting the left-hand side of (8) by summing over all
pairs of vertices in U1. We obtain∑{

deg2
G(u2, u3, U1) : {u2, u3} ∈ EΓ(U2, U3)

}
=
∑
u1∈U1

∑
u′

1∈U1

eΓ(
(
NG(u1, u

′
1, U2), NG(u1, u

′
1, U3)

)
and, as in the proof of (7), after applying the jumbledness assumption we arrive at∑{

deg2
G(u2, u3, U1) : {u2, u3} ∈ EΓ(U2, U3)

}
≤
∑
u1∈U1

∑
u′

1∈U1

pDG(u1, u
′
1, U2, U3) + γp3n

√
DG(u1, u′1, U2, U3) , (14)

where we set

DG(u1, u
′
1, U2, U3) = degG(u1, u

′
1, U2) degG(u1, u

′
1, U3) .

It is left to obtain appropriate estimates on degG(u1, u
′
1, U2) and degG(u1, u

′
1, U3).

For that we will appeal to the pair condition, which yields good estimates for those
quantities for “most” pairs (u1, u

′
1) ∈ U1 × U1. For the exceptional pairs (u1, u

′
1)

we will analyze the joint neighborhood of u1 and u′1 in Γ and obtain the required
bounds from the jumbledness of Γ. For that we classify the pairs (u1, u

′
1) according

to their degrees in G and Γ. More precisely, let G be the “good” pairs having the
“right” joint degree in U2 and U3:

G =
{

(u1, u
′
1) ∈ U1 × U1 : degG(u1, u

′
1, Uj) ≤ (1 +

√
δ)q2

1,j |Uj | for j = 2, 3
}
.
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Clearly,∑
(u1,u′

1)∈G

pDG(u1, u
′
1, U2, U3) + γp3n

√
DG(u1, u′1, U2, U3)

≤ |U1|2 · p(1 +
√
δ)2q2

12q
2
13|U2||U3|+ |U1|2 · γp3n

√
4q2

12q
2
13|U2||U3|

≤
(

1 +
µ

6

)
pq2

12q
2
13|U1|2|U2||U3| ,

where we used the choice of δ and γ from (5) and (6) and the assumptions on q1,j

and |Uj | for j = 2 and 3.
Hence, it is left to verify that∑
(u1,u′

1) 6∈G

pDG(u1, u
′
1, U2, U3) + γp3n

√
DG(u1, u′1, U2, U3)

≤ µ

6
pq2

12q
2
13|U1|2|U2||U3| . (15)

Lemma 9(a ), the choice of ε, and the assumption of Lemma 11 imply that
(U1, U2)G and (U1, U3)G satisfy PAIR(q12, p, δ) and PAIR(q13, p, δ) respectively.
Consequently, we have

|G| ≥
(
1− 2

√
δ/α2

)
|U1|2 . (16)

For the contribution of those 2
√
δ|U1|2/α2 “exceptional” pairs we analyze the joint

neighborhoods of u1 and u′1 in Γ ⊇ G. Indeed, we will show that (15) stays valid
when we replace G by Γ in DG(u1, u

′
1, U2, U3) and show∑

(u1,u′
1) 6∈G

pDΓ(u1, u
′
1, U2, U3) + γp3n

√
DΓ(u1, u′1, U2, U3)

≤ µ

6
pq2

12q
2
13|U1|2|U2||U3| . (17)

We split the pairs in (U1 × U1) \ G into the following three classes B1∪̇B2∪̇B3

B1 =
{

(u1, u
′
1) ∈ (U1 × U1) \ G : degΓ(u1, u

′
1, Uj) ≤ 4p2|Uj | for j = 2, 3

}
,

B2 =
{

(u1, u
′
1) ∈ (U1 × U1) \ (G ∪ B1) : degΓ(u1, Uj) ≤ 2p|Uj | for j = 2, 3

}
,

and

B3 = (U1 × U1) \ (G ∪ B1 ∪ B2) .

Below we bound the contribution to (17) for each class separately.

Contribution of pairs from B1. The definition of B1 and (16) yields∑
(u1,u′

1)∈B1

pDΓ(u1, u
′
1, U2, U3) + γp3n

√
DΓ(u1, u′1, U2, U3)

≤ 2

√
δ

α2
|U1|2 ·

(
16p5|U2||U3|+ γp3n

√
16p4|U2||U3|

)
≤ µ

18
pq2

12q
2
13|U1|2|U2||U3| , (18)

because of the choice of δ in (5) and γ ≤ η/36 in (6) and the assumptions on q1j

and |Uj | for j = 2 and 3.



TRIANGLE REMOVAL LEMMA FOR PSEUDORANDOM GRAPHS 11

Contribution of pairs from B2. Fix j ∈ {2, 3} and let u1 ∈ U1 be a vertex with
degΓ(u1, Uj) ≤ 2p|Uj |. Let X(u1, j) be the set of vertices u′1 ∈ U1 with

degΓ(u1, u
′
1, Uj) > 4p2|Uj | .

As Γ is (p, γp3n)-jumbled, Fact 13 applied to X(u1, j) and a superset Y (u1, j) ⊇
NΓ(u1, Uj) in Uj containing precisely 2p|Uj | vertices gives

|X(u1, j)| ≤
γ2p6n2

p2 · 2p|Uj |
=
γ2p3n2

2|Uj |
.

Consequently, since γ ≤ η2 and |Uj | ≥ ηn for j = 1, 2, 3 we have

|B2| ≤ |U1|
(
γ2p3n2

2|U2|
+
γ2p3n2

2|U3|

)
≤ γp3|U1|2 ,

Finally, since degΓ(u1, u
′
1, Uj) ≤ degΓ(u1, Uj) ≤ 2p|Uj | for all (u1, u

′
1) ∈ B2 and

j = 2, 3 we have∑
(u1,u′

1)∈B2

pDΓ(u1, u
′
1, U2, U3) + γp3n

√
DΓ(u1, u′1, U2, U3)

≤ |B2| ·
(

4p3|U2||U3|+ γp3n
√

4p2|U2||U3|
)

≤ µ

18
pq2

12q
2
13|U1|2|U2||U3| , (19)

where we use the choice of γ from (5) and the assumptions on q1,j and |Uj | for
j = 2 and 3.

Contribution of pairs from B3. The analysis for those pairs is similar to the one in
the last case. For j ∈ {2, 3} let Xj be the vertices u1 ∈ U1 with

degΓ(u1, Uj) > 2p|Uj | .

Fact 13 applied to Xj and Y = Uj yields

|Xj | ≤
γ2p6n2

p2|Uj |
≤ γp4|U1| ,

since γ ≤ η2. Therefore, we have |B3| ≤ 2γp4|U1|2 and since degΓ(u1, u
′
1, Uj) ≤ |Uj |

for j = 2 and 3 we have∑
(u1,u′

1)∈B2

pDΓ(u1, u
′
1, U2, U3) + γp3n

√
DΓ(u1, u′1, U2, U3)

≤ 2γp4|U1|2 ·
(
p|U2||U3|+ γp3n

√
|U2||U3|

)
≤ µ

18
pq2

12q
2
13|U1|2|U2||U3| , (20)

where we use γ ≤ α4µη/72.
Finally, we note that (18), (19) and (20) implies (17), which concludes the proof

of (8). �



12 Y. KOHAYAKAWA, V. RÖDL, M. SCHACHT, AND J. SKOKAN

4. Roth’s theorem for pseudorandom sets of integers

We prove Theorem 4 in this section. We shall in fact consider pseudorandom
subsets of finite abelian groups. Throughout this section G is a finite abelian group,
of order n = |G|, which is assumed to be odd. (Roth’s theorem was generalized to
this setting by Brown and Buhler [4]. For a proof based on the triangle removal
lemma, see [11] and for better quantitative bounds see [20, 19].)

Let χ0, . . . , χn−1 : G → C be the n characters of G. We suppose χ0 is the
principal character, that is, χ0(g) = 1 for all g ∈ G.

Suppose now that we are given a set A ⊆ G. Let

λk(A) =
∑
a∈A

χk(a) ∈ C (21)

for all 0 ≤ k < n. Clearly, λ0(A) = |A|. If |λk(A)| ≤ λ for all 1 ≤ k < n, we say
that A is an (n, λ)-subset of G or an (n, λ)-set for short. We let

r3(A) = max{|B| : B is an AP3-free subset of A}. (22)

We shall prove the following result.

Theorem 14. For every δ > 0 there exist γ > 0 and n0 such that for every odd
n ≥ n0 the following holds.

Suppose A is an (n, λ)-subset of an abelian group G of order n and

λ ≤ γ |A|
3

n2
. (23)

Then r3(A) ≤ δ|A|.

The proof of Theorem 14 will be given in Section 4.2.

4.1. Proof of Theorem 4. Let us deduce Theorem 4 from Theorem 14. Let
us first specialize the latter theorem to G = Z/nZ. Let ϑ = exp(2πi/n). The
characters χk (0 ≤ k < n) of Z/nZ are given by

χk(x) = ϑkx (x ∈ Z/nZ). (24)

Therefore, the λk(A) in (21) are given by (1). We conclude that the hypothesis in
Theorem 4 simply says that A is an (n, λ)-subset of Z/nZ satisfying (23). Theo-
rem 14 tells us that, for any δ > 0, for suitable γ and n0 we have r3(A) ≤ δ|A|.

To finish the proof of Theorem 4, we have to deal with the issue that an arithmetic
progression in Z/nZ is not necessarily an arithmetic progression in the integers. For
instance, (5, 2, 6) is a 3-term arithmetic progression with difference 4 modulo 7, as is
(1, 5, 2). This is easy to handle, by making use of the following easy fact: let (a, b, c)
be a triple of distinct integers with 0 ≤ a, b, c ≤ n/2 or with n/2 < a, b, c ≤ n, and
suppose that the residue classes of a, b and c modulo n form a 3-term arithmetic
progression, i.e., a+ c ≡ 2b (mod n). Then (a, b, c) is an arithmetic progression in
[n], i.e., a+ c = 2b.

Since, for any B ⊆ [n], either |B ∩ {1, . . . , bn/2c}| ≥ |B|/2 or else we have
|B ∩ {dn/2e, . . . , n}| ≥ |B|/2, Theorem 14 applied to subsets of Z/nZ, implies the
desired result for subsets on [n]. �
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4.2. Proof of Theorem 14. We shall present the proof of Theorem 14 in this
section.

We shall make use of a certain tripartite graph Γ = Γ(A), defined in terms of
the given (n, λ)-set A ⊆ G.

Definition 15 (Graph Γ = Γ(A)). The tripartite graph Γ = Γ(A) has vertex
classes X1, X2, and X3, where each Xi is a disjoint copy of G. For every x1 ∈ X1,
we join x1 to the vertices x1 + a ∈ X2 and x1 + 2a ∈ X3 for all a ∈ A. Moreover,
we join every x2 ∈ X2 to the vertex x2 + a ∈ X3 for all a ∈ A.

It is clear that the bipartite graph Γ[X1 ∪X2] induced by X1 ∪X2 in Γ and the
bipartite graph Γ[X2∪X3] induced by X2∪X3 in Γ are isomorphic in a natural way.
The bipartite graph Γ[X1∪X3] induced byX1∪X3 in Γ is “similar” to those bipartite
graphs, but one uses, so to speak, the set 2A instead of A to obtain this graph. In
what follows, we study these bipartite graphs Γ1(A) ' Γ[X1 ∪ X2] ' Γ[X2 ∪ X3]
and Γ2(2A) ' Γ[X1 ∪X3] that form Γ.

4.2.1. The graph Γ1 = Γ1(A). The two vertex classes of Γ1 = Γ1(A) are two disjoint
copies X and Y of G. A vertex x ∈ X is joined to a vertex y ∈ Y if y − x ∈ A.
Thus, the edges of Γ1 = Γ1(A) = (X∪̇Y,E1) are of the form (x, x + a) ∈ X × Y ,
where x ∈ X and a ∈ A. It is clear that Γ1 is |A|-regular. The graph Γ = Γ(A)
defined above contains two copies of Γ1(A).

A key fact about Γ1 = Γ1(A) is given in the following lemma, which is a bipartite
version of the so called expander mixing lemma (see, e.g., [2, Corollary 9.2.5]).

Lemma 16. Suppose A is an (n, λ)-subset of G and let Γ1 = Γ1(A) = (X∪̇Y,E1)
be as defined above. Then, for any X ′ ⊆ X and any Y ′ ⊆ Y , we have∣∣∣∣e(X ′, Y ′)− |A|n |X ′||Y ′|

∣∣∣∣ ≤ λ√|X ′||Y ′|. (25)

The proof of Lemma 16 is given in Section 4.2.4.

4.2.2. The graph Γ2 = Γ2(2A). Consider 2A = {2a : a ∈ A} and let Γ2 = Γ2(2A)
be defined as follows: the vertex classes of Γ2 are two disjoint copies X and Y of G,
and a vertex x ∈ X is joined to a vertex y ∈ Y if y − x ∈ 2A. Thus, the edges
of Γ2 = Γ2(2A) = (X∪̇Y,E2) are of the form (x, x + 2a) ∈ X × Y , where x ∈ X
and a ∈ A. Since n is odd, the map g 7→ 2g is a bijection on G, and hence |2A| = |A|.
Therefore, Γ2 = Γ2(2A) is |A|-regular. The graph Γ = Γ(A) defined above contains
a copy of Γ2 = Γ2(2A).

Observe now that, for all k, we have

λk(2A) =
∑
a∈A

χk(2a) =
∑
a∈A

χk(a)2. (26)

Recall that the characters χk (0 ≤ k < n) form a group Ĝ under pointwise multipli-

cation. As |Ĝ| = n is odd, the map χk 7→ χ2
k is a bijection on Ĝ, fixing the principal

character χ0. Therefore,

{λk(A) : 1 ≤ k < n} = {λk(2A) : 1 ≤ k < n}. (27)

Moreover, λ0(2A) = |2A| = |A|. We have just proved the following fact.

Lemma 17. If A ⊆ G is an (n, λ)-set, then so is 2A and, in particular, inequal-
ity (25) holds for Γ2 = Γ2(2A) = (X∪̇Y,E2) for any X ′ ⊆ X and any Y ′ ⊆ Y . �
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An immediate corollary of Lemmas 16 and 17 is the following crucial fact about
the graph Γ = Γ(A) (see Definition 15).

Corollary 18. Let A ⊆ G be an (n, λ)-set. Then Γ = Γ(A) is a (|A|/n, λ)-jumbled
tripartite graph (see Definition 8). �

4.2.3. Proof of Theorem 14. To prove Theorem 14, it suffices to run the well known
derivation of Roth’s theorem from the triangle removal lemma (see, e.g., [25]) in
our context. Theorem 10 and Corollary 18 will be crucial here.

For convenience, let us first make a simple remark, whose proof is included for
completeness.

Fact 19. Let A ⊆ G be an (n, λ)-set, with |A| ≤ 3n/4. Then λ ≥
√
|A|/2.

Proof. We follow a proof in, e.g., [18]. Let M = (mxy) ∈ {0, 1}n×n be a {0, 1}-
matrix with rows and columns indexed by the group elements of G and

mxy =

{
1, if y − x ∈ A ,
0, otherwise.

We denote by M∗ the conjugate transpose of M . Computing the trace tr(M∗M)
of M∗M in two ways, we obtain that

n|A| = tr(M∗M) =
∑

0≤k<n

λ2
k = |A|2 +

∑
1≤k<n

λ2
k ≤ |A|2 + λ2(n− 1), (28)

whence λ2 ≥ |A|(1− |A|/n) ≥ |A|/4, and the result follows. �

Proof of Theorem 14. Let δ > 0 be given. We invoke Theorem 10 with δ/3 and
obtain positive constants c and γ and let n be a sufficiently large odd integer.

Let A ⊆ G be an (n, λ)-set satisfying (23). Without loss of generality we may
assume that |A| ≤ 3n/4, since, for any ξ > 0 and |A| ≥ ξn, Theorem 14 follows
from the result of Brown and Buhler [4].

Therefore Fact 19 implies that the (n, λ)-sets A must satisfy λ ≥
√
|A|/2. Con-

sequently, (23) implies that γ|A|3/n2 ≥
√
|A|/2, which gives

|A| ≥ (2γ)−2/5n4/5 >
√
n . (29)

Let p = |A|/n. We have just seen that p > 1/
√
n.

Suppose B ⊆ A is such that |B| > δ|A|. We shall show that B contains a 3-term
arithmetic progression.

In order to do so, we consider the graphs Γ = Γ(A) and G = Γ(B). I.e., G is a
tripartite graph with the vertex set X1∪̇X2∪̇X3 consisting of three disjoint copies
of G and {x, y} is an edge in G[X1∪̇X2] and G[X2∪̇X3] if y − x ∈ B and it is an
edge in G[X1∪̇X3] if y − x in 2B. Clearly, G is a subgraph of Γ = Γ(A).

Corollary 18 tells us that Γ = Γ(A) is a (p, λ)-jumbled tripartite graph. Together
with assumption (23), this implies that Γ is a (p, γp3n)-jumbled tripartite graph. In
view of Theorem 10, this implies that G ⊆ Γ satisfies one of the following properties:

(*) either G contains more than cp3n3 = c|A|3 triangles, or else

τ3(G) ≤ δ

3
e(Γ) = δn|A|
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(recall that we defined c and γ invoking Theorem 10 with δ/3).
Clearly, G is a spanning subgraph of Γ and the edges of G are of the form

(x1, x1 + b) ∈ X1 × X2, (x1, x1 + 2b) ∈ X1 × X3, and (x2, x2 + b) ∈ X2 × X3,
where x1 ∈ X1, x2 ∈ X2, and b ∈ B.

The graph G contains some triangles that are trivial : triangles whose vertex sets
are of the form {x1, x1 + b, x1 + 2b}, where x1 ∈ X1, x1 + b ∈ X2, and x1 + 2b ∈
X3. Clearly, these triangles are pairwise edge-disjoint. Since there are n|B| such
triangles, we see that τ3(G) ≥ n|B| > δn|A|. In view of assertion (*) above, we
deduce that G contains more than cp3n3 = c|A|3 triangles. Now note that, because
of (29), we have c|A|3 � n|A| ≥ n|B|, that is, the total number of triangles in G
is larger than the number of trivial triangles in G. Therefore G contains a non-
trivial triangle. Let the vertex set of such a non-trivial triangle be {x1, x2, x3}
(with xi ∈ Xi for all i). Then, for some b1, b2, and b3 ∈ B with b1 6= b3, we
have x2 = x1 + b1, x3 = x1 + 2b2 = x2 + b3. We deduce that b1 + b3 = 2b2, and
hence (b1, b2, b3) is a 3-term arithmetic progression in B, as required. �

4.2.4. Proof of Lemma 16. We follow the proof of the expander mixing lemma in,
e.g., [18] (see also [2]). We state and prove an auxiliary lemma before turning to
Lemma 16.

Let M = (mxy)x∈X, y∈Y be the {0, 1}-bipartite adjacency matrix of Γ1 = Γ1(A),
by which we mean that mxy = 1 if x and y are adjacent in Γ1 and mxy = 0
otherwise. Hence mxy = 1A(y − x). Let us consider the characters χk as column
vectors, with the xth entry equal to χk(x). Let us also set

uk =
1√
n
χk ∈ Cn (30)

for all 0 ≤ k < n. Moreover, let U be n × n matrix whose kth column is uk. In
what follows, we use the standard notation U∗ to denote the conjugate transpose
of U .

Lemma 20. Let M , u0, . . . ,un−1, and U be as above. Then the following holds:

(i ) The eigenvalues of M are the λk(A) (0 ≤ k < n), with associated eigenvec-
tors uk (0 ≤ k < n).

(ii ) The uk (0 ≤ k < n) form an orthonormal basis of Cn. Thus U∗U = In,
where In is the n× n identity matrix.

(iii ) We have

M =
∑

0≤k<n

λkuku
∗
k. (31)

Proof. Let us compute the product Mχk. For any x ∈ G, we have

(Mχk)x =
∑
y∈G

mxyχk(y) =
∑
y∈G

1(y − x)χk(y) =
∑
a∈A

χk(x+ a)

= χk(x)
∑
a∈A

χk(a) = χk(x)λk(A), (32)

whence (i ) follows. For (ii ), we recall that, for any k and `, we have∑
x∈G

χk(x)χ`(x) =

{
n if k = `

0 otherwise.
(33)
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Therefore (ii ) follows. Finally, let us consider (iii ). Since the uk form a basis of Cn,
it suffices to check that M and the matrix on the right-hand side of (31) act the
same way on the uk. For any fixed 0 ≤ ` < n, recalling (ii ), we see that( ∑

0≤k<n

λkuku
∗
k

)
u` = λ`u`u

∗
`u` = λ`u` = Mu`. (34)

Identity (31) follows and (iii ) is proved. �

We are now ready to prove Lemma 16.

Proof of Lemma 16. Using part (iii ) of Lemma 20, we can write M as M0 + E,
where M0 = λ0u0u

∗
0 and E =

∑
0<k<n λkuku

∗
k. Note that, then,

M0 = λ0u0u
∗
0 = |A|χ0χ

∗
0/n = (|A|/n)Jn, (35)

where Jn is the n× n matrix all whose entries are 1.
To prove (25), we let X ′ ⊆ X and Y ′ ⊆ Y be fixed. It is clear that

e(X ′, Y ′) = 1
∗
X′M1Y ′ = 1

∗
X′M01Y ′ + 1

∗
X′E1Y ′ . (36)

In view of (35), we have

1
∗
X′M01Y ′ =

|A|
n
1
∗
X′Jn1Y ′ =

|A|
n
|X ′||Y ′|. (37)

Now let us write 1X′ and 1Y ′ in the orthonormal basis formed by the uk (0 ≤ k < n):

1X′ =
∑

0≤k<n

αkuk (38)

and

1Y ′ =
∑

0≤k<n

βkuk. (39)

Again, by the orthonormality of the uk, we have

|1∗X′E1Y ′ | =
∣∣∣( ∑

0≤j<n

αjuj

)( ∑
0<k<n

λkuku
∗
k

)( ∑
0≤`<n

β`u`

)∣∣∣
=
∣∣∣ ∑

1≤k<n

λkαkβk

∣∣∣ ≤ ∑
1≤k<n

|λkαkβk| ≤ λ
∑

1≤k<n

|αkβk|, (40)

which, by the Cauchy–Schwarz inequality, is at most

λ

√ ∑
1≤k<n

|αk|2
√ ∑

1≤k<n

|βk|2 ≤ λ‖1X′‖2‖1Y ′‖2 = λ
√
|X ′|

√
|Y ′|. (41)

Inequality (25) follows from (36), (37), (40), and (41). �

5. Proof of the key technical lemma

Section 5.1 is devoted to the proof of part (b ) of Lemma 9. The main tool in the
proof of part (a ) of Lemma 9 is Lemma 21. We discuss Lemma 21 in Section 5.2
and deduce Lemma 9(a ) from Lemma 21 in Section 5.3. The proof of Lemma 21
is deferred to Section 5.4.



TRIANGLE REMOVAL LEMMA FOR PSEUDORANDOM GRAPHS 17

5.1. PAIR implies DISC. In this section we prove implication (b ) of Lemma 9.
The proof of this implication “imitates” the well known proof of the dense case,
i.e., of the implication (b ) of Theorem 7.

Proof of Lemma 9 part (b ). Let α and δ > 0 be given. Applying Lemma 12 with
ν = δ/4 we obtain µ > 0 and we set

ε = α2δ2µ/4 . (42)

For any given η > 0, we let
γ = δη/2. (43)

Finally, let n be sufficiently large and p ≥ 1/
√
n.

Let Γ = (U ∪̇V,EΓ), G = (U ∪̇V,EΓ), and sets X ⊆ U and Y ⊆ V satisfy
assumptions (i )–(iii ) of Lemma 9. Moreover, we suppose Γ is (p, γp3/2n)-jumbled
and (X,Y )G satisfies PAIR(q, p, ε) for some q ∈ [αp, p], i.e.,∑

x∈X

∣∣∣ degG(x, Y )− q|Y |
∣∣∣ ≤ εp|X||Y | (44)

and ∑
x∈X

∑
x′∈X

∣∣∣degG(x, x′, Y )− q2|Y |
∣∣∣ ≤ εp2|X|2|Y | . (45)

Let X ′ ⊆ X and Y ′ ⊆ Y . We will show that∣∣∣eG(X ′, Y ′)− q|X ′||Y ′|
∣∣∣ ≤ δp|X||Y | . (46)

First we consider the case in which at least one of the sets X ′ or Y ′ is small.
Suppose |X ′| < δ|X|/2 or |Y ′| < δ|Y |/2. In this case we have

q|X ′||Y ′| ≤ δq|X||Y | ≤ δp|X||Y | .
Moreover, we infer from the (p, γp3/2n)-jumbledness of Γ combined with |X|, |Y | ≥
ηn, and p ≤ 1 that

eG(X ′, Y ′) ≤ eΓ(X ′, Y ′) ≤ p|X ′||Y ′|+ γp3/2n
√
|X ′||Y ′|

≤ δ

2
p|X||Y |+ γ

η
p|X||Y |

(43)

≤ δp|X||Y | ≤ q|X ′||Y ′|+ δp|X||Y | ,

which yields (46) for this case.
Now we assume |X ′| ≥ δ|X|/2 and |Y ′| ≥ δ|Y |/2. In this case (44) yields∑
x∈X′

∣∣∣degG(x, Y )− q|Y |
∣∣∣ ≤∑

x∈X

∣∣∣ degG(x, Y )− q|Y |
∣∣∣ ≤ εp|X||Y | (42)

≤ µq|X ′||Y |

and, therefore,∑
y∈Y

degG(y,X ′) =
∑
x∈X′

degG(x, Y ) ≥ (1− µ)q|X ′||Y | . (47)

Similarly, since X ′ ⊆ X, (45) yields∑
x∈X′

∑
x′∈X′

∣∣∣degG(x, x′, Y )− q2|Y |
∣∣∣ ≤ εp2|X|2|Y |

(42)

≤ µq2|X ′|2|Y |

and, therefore,∑
y∈Y

deg2
G(y,X ′) =

∑
x∈X′

∑
x′∈X′

degG(x, x′, Y ) ≤ (1 + µ)q2|X ′|2|Y | . (48)
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Owing to (47) and (48), we infer from Lemma 12 that all but at most ν|Y | vertices
y ∈ Y satisfy ∣∣degG(y,X ′)− q|X ′|

∣∣ ≤ νq|X ′| . (49)

Since we chose ν < δ/2, we have

eG(X ′, Y ′) ≥ (1−ν)|Y ′|·(1−ν)q|X ′| ≥ (1−δ)q|X ′||Y ′| ≥ q|X ′|Y ′|−δp|X||Y | . (50)

On the other hand, the (p, γp3/2n)-jumbledness of Γ yields by Fact 13 that all but
at most

γ2p3n2

p2|X ′|
≤ γ2pn2

δ|X|
≤ γ2pn2

δηn
≤ γ2p|Y |

δη2

(43)

≤ δ

4
p|Y | (51)

vertices y ∈ Y ′ we have

degG(y,X ′) ≤ degΓ(y,X ′) ≤ 2p|X ′| . (52)

Consequently, owing to (49), (51), and (52) we have

eG(X ′, Y ′) ≤ |Y ′| · (1 + ν)q|X ′|+ ν|Y ′| · 2p|X ′|+ δ

4
p|Y | · |X ′|

≤ q|X ′||Y ′|+ 3νp|X||Y |+ δ

4
p|Y ||X| ≤ q|X ′||Y ′|+ δp|X||Y | , (53)

where we used ν ≤ δ/4. Finally, (46) follows from (50) and (53). �

5.2. Inheritance of the pair condition in neighborhoods of jumbled graphs.
Lemma 21 asserts that the pair condition of a dense graph (i.e., p = 1) is inherited
on neighborhoods of a (possibly sparse) sufficiently jumbled graph. More pre-
cisely, suppose that B = (X1∪̇X2, EB) is a dense bipartite graph that has property
PAIR(%, 1, µ) for some constant % > 0 and sufficiently small µ > 0. Further-
more, let Γ = (U ∪̇V,EΓ) be a bipartite (p, γp2n)-jumbled graph with X1, X2 ⊆ U .
Lemma 21 states that if γ and µ are sufficiently small, then for most vertices v ∈ V
the pair condition PAIR(%, 1, ν) is inherited on the subgraph of B induced on the
neighborhood of v in Γ.

Lemma 21. For every %0 > 0 and ν > 0 there exists µ > 0 such that for every
η > 0 there exist γ > 0 and n0 such that for every n ≥ n0 the following holds.

Suppose

(i ) Γ = (U ∪̇V,EΓ) is a bipartite (p, γp2n)-jumbled graph with p ≥ 1/
√
n,

(ii ) X1, X2 ⊆ U and Y ⊆ V with |X1|, |X2|, |Y | ≥ ηn, and
(iii ) B = (X1∪̇X2, EB) is an arbitrary bipartite graph.

Then the following statements hold:

(a ) if (X1, X2)B satisfies PAIR(%, 1, µ) for some % with %0 ≤ % ≤ 1, then for all
but at most ν|Y | vertices y ∈ Y the pair (NΓ(y,X1), NΓ(y,X2))B satisfies
PAIR(%, 1, ν);

(b ) if (X1, X2)B satisfies DISC(%, 1, µ) for some % with %0 ≤ % ≤ 1, then for all
but at most ν|Y | vertices y ∈ Y the pair (NΓ(y,X1), NΓ(y,X2))B satisfies
DISC(%, 1, ν).

¿From the equivalence of DISC and PAIR for dense graphs (see Theorem 7), we
infer that statements (a ) and (b ) are equivalent, and for the proof of Lemma 21
it suffices to verify only one of them. We will apply part (b ) of Lemma 21 in the
proof of Lemma 9(a ) (see Section 5.4 below).
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5.3. DISC implies PAIR. The proof of Lemma 9(a ) is based on part (b ) of
Lemma 21 and we briefly outline the main ideas below.

We will study an auxiliary graph with vertex set X and edges corresponding
to pairs {x, x′} for which |degG(x, x′, Y ) − q2|Y || > ξq2|Y | for some constant ξ
depending only on δ. We split those edges into two sets depending on whether
degG(x, x′, Y ) > (1 + ξ)q2|Y | or degG(x, x′, Y ) < (1− ξ)q2|Y | and call the resulting
graphs B+ and B−. The assumption that Lemma 9(a ) fails implies that at least

one of the graphs B+ or B− has %
(|X|

2

)
edges for some % depending on α and δ.

Suppose e(B+) = %
(|X|

2

)
(the argument for the other case is very similar). Applying

Szemerédi’s regularity lemma (or a weaker version ensuring just one pair with the
discrepancy property (see Fact 22 below) to B+ shows that there exist subsets X1

and X2 ⊆ X such that (X1, X2)B satisfies DISC(%, 1, µ) for some small constant
0 < µ� ξ and, hence, we can apply part (b ) of Lemma 21 to B = B+[X1, X2] and
Γ. Since |NG(y,Xi)| ≥ (α−ε)NΓ(y,Xi) for most y ∈ Y and i = 1, 2, the conclusion
of part (b ) of Lemma 21 yields good estimates on eB(NG(y,X1), NG(y,X2)) for
most y ∈ Y . Based on this and the right choice of constants we will be able to show
that the number of triples (x1, x2, y) ∈ X1 × X2 × Y with x1 ∈ NG(y,X1), x2 ∈
NG(y,X2), and {x1, x2} ∈ E(B) is bounded from above by (1+ξ)q2e(B)|Y |. On the
other hand, the definition of B+ implies that there are more than (1 + ξ)q2e(B)|Y |
such triples, which gives the desired contradiction. In the proof we will use the
following fact, which asserts that every dense graph contains a pair of linear size
that satisfies the discrepancy property.

Fact 22. Suppose %0 > 0, µ > 0, and B = (X,EB) is a graph with |EB | ≥ %0

(|X|
2

)
.

Then there exist disjoint subsets X1, X2 ⊆ X such that

(a ) (X1, X2)B satisfies DISC(%, 1, µ) for some % ≥ %0 and

(b ) |X1|, |X2| ≥ ζn for ζ = %
100/µ2

0 /4.

Proof. Fact 22 follows from [22, Theorem 1.1] applied with d = %0 and ε = 3µ/4. �

Proof of Lemma 9 part (a ). First we define all constants required in this proof. Let
α > 0 and δ > 0 be given. We set

ξ =
δ

6
(54)

and for the application of Lemma 21 we define

%0 =
δ

50
(55)

and

ν =
α2ξ%0

64
. (56)

For this choice of %0 and ν Lemma 21 ensures the existence of some constant µ > 0.
Without loss of generality we may assume that

µ ≤ ξ%0

4
(57)

Preparing for an application of Fact 22 we set

ζ =
%

100/µ2

0

4
(58)
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and for Lemma 9 we define ε = ε(α, δ) by

ε = min

{
αδ2

36
,

(
α3ξ%0ζ

64

)2
}
. (59)

Following the quantification of Lemma 9, we are given some η > 0. We set

ηL.21 = ηζ . (60)

For this choice of ηL.21 Lemma 21 yields γL.21 > 0 and for Lemma 9 we set

γ = min
{
γL.21 , η

√
δ/3 , α

√
ξ%0ηηL.21/24

}
. (61)

Finally, let n be sufficiently large and suppose p ≥ 1/
√
n.

After we fixed all constants involved in the proof of Lemma 9 consider bipartite
graphs Γ = (U ∪̇V,EΓ) and G = (U ∪̇V,EG) and sets X ⊆ U and Y ⊆ V that
satisfy the assumptions of Lemma 9. In particular, (X,Y )G satisfies DISC(q, p, ε)
for some q ≥ αp. We want to infer that (X,Y )G satisfies PAIR(q, p, δ), i.e., we have
to verify that (X,Y )G satisfies (2) and (3) in Definition 6.

Verifying (2) for (X,Y )G. As we will see, this is a simple consequence of the given
discrepancy property of (X,Y )G and the jumbledness of Γ. First we note that all
but at most δ|X|/6 vertices x ∈ X satisfy∣∣degG(x, Y )− q|Y |

∣∣ ≤ δ

3
q|Y | .

Otherwise there exists a set X ′ ⊆ X with |X ′| ≥ δ|X|/12 such that for all x ∈ X ′
either degG(x, Y ) > (1 + δ/3)q|Y | or degG(x, Y ) < (1 − δ/3)q|Y |. In either case,
we would face∣∣e(X ′, Y )− q|X ′||Y |

∣∣ > δ2

36
q|X||Y | ≥ δ2α

36
p|X||Y |

(59)

≥ εp|X||Y | ,

which would contradict the assumption that (X,Y )G satisfies DISC(q, p, ε).
Fact 13 implies that the number of vertices x ∈ X with degΓ(x, Y ) ≥ 2p|Y | is

bounded from above by γ2p2n2/|Y |. Consequently,∑
x∈X

∣∣degG(x, Y )− q|Y |
∣∣ ≤ |X| · δ

3
q|Y |+ δ

6
|X| · 2p|Y |+ γ2p2 n

2

|Y |
· |Y | ≤ δp|X||Y | ,

where the last inequality follows from q ≤ p, the choice of γ in (61) and assump-
tion (iii ) of Lemma 9.

Verifying (3) for (X,Y )G. For the proof of (3) we proceed by contradiction. We
consider the “bad” pairs (x, x′) ∈ X×X for which degG(x, x′, Y ) deviates substan-
tially from q2|Y |. First we consider the following sets of bad pairs

B1 =
{

(x, x′) ∈ X ×X : degΓ(x, Y ) > 2p|Y |
}
,

B2 =
{

(x, x′) ∈ (X ×X) \ B1 : degΓ(x, x′, Y ) > 4p2|Y |
}
.

¿From the (p, γp2n)-jumbledness of Γ, the choice γ in (61), and assumption (iii ) of
Lemma 9 combined with Fact 13, it follows that

|B1| ≤ γ2p2 n
2

|Y |
· |X| ≤ δ

3
p2|X|2 .

For an upper bound on |B2| we consider a vertex x ∈ X with degΓ(x, Y ) ≤ 2p|Y |.
Applying Fact 13 to a superset of NΓ(x, Y ) with 2p|Y | elements implies that there
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are at most γ2pn2/(2|Y |) vertices x′ such that degΓ(x, x′, Y ) > 4p2|Y |. Conse-
quently,

|B2| ≤ |X| · γ2p
n2

2|Y |
≤ δ

6
p|X|2 .

Combining those estimates on |B1| and |B2| with the assumption that (3) fails, we
infer ∑

(x,x′)6∈B1∪B2

∣∣degG(x, x′, Y )− q2|Y |
∣∣ > δp2|X|2|Y | − |B1| · |Y | − |B2| · 2p|Y |

≥ δ

3
p2|X|2|Y | . (62)

In other words we have just shown that ignoring the contribution of pairs (x, x′) ∈
B1∪B2 does not affect in an essential way the property drawn from the assumption
that (3) fails.

Moreover, note that the total contribution of pairs (x, x′) 6∈ B1 ∪ B2 with
|degG(x, x′, Y )− q2|Y || ≤ δq2|Y |/6 to the sum considered in (62) is at most

δ

6
q2|X|2|Y | ≤ δ

6
p2|X|2|Y | .

Since, furthermore, for all (x, x′) 6∈ B1 ∪ B2 we have∣∣degG(x, x′, Y )− q2|Y |
∣∣ ≤ max{q2|Y |, (4p2 − q2)|Y |} ≤ 4p2|Y |,

there are at least δ|X|2/24 pairs (x, x′) ∈ (X ×X) \ (B1 ∪ B2) such that∣∣degG(x, x′, Y )− q2|Y |
∣∣ > δ

6
q2|Y | (54)

= ξq2|Y | . (63)

Next we consider the graphs B+ and B− with vertex set X and edges corresponding
to those pairs defined by

E(B+) =
{
{x, x′} : (1 + ξ)q2|Y | < degG(x, x′, Y ) ≤ 4p2|Y | and x 6= x′

}
(64)

and

E(B−) =
{
{x, x′} : degG(x, x′, Y ) < (1− ξ)q2|Y | and x 6= x′

}
.

Since there are at least δ|X|2/24 ordered pairs (x, x′) for which (63) holds, for
sufficiently large n we have

max
{
e(B+), e(B−)

}
≥ δ

96
|X|2 − |X|

(55)

≥ %0

(
|X|
2

)
.

Below we assume e(B+) ≥ %0

(|X|
2

)
and remark that the argument for the case

e(B−) ≥ %0

(|X|
2

)
follows the same lines.

Fact 22, combined with the choice of ζ in (58), gives that there exist disjoint
subsets X1, X2 ⊆ X such that (X1, X2)B+ satisfies DISC(%, 1, µ) for some % ≥ %0

and |X1|, |X2| ≥ ζ|X| ≥ ζηn = ηL.21n (see (60)).
Hence, it follows from part (b ) of Lemma 21 that for all but at most ν|Y | vertices

y ∈ Y we have that

(NΓ(y,X1), NΓ(y,X2))B+ satisfies DISC(%, 1, ν) . (65)

Based on (65) we obtain estimates on the number of triplets (x1, x2, y) from
X1×X2×Y such that {x1, x2} is an edge in B+ contained in the neighborhood of
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y in G. Let

T =
{

(x1, x2, y) ∈ X1 ×X2 × Y :

x1 ∈ NG(y,X1), x2 ∈ NG(y,X2), and {x1, x2} ∈ E(B+)
}
.

From the definition ofB+ in (64) and the fact that (X1, X2)B+ satisfies DISC(%, 1, µ)
we infer

|T | > (1 + ξ)q2|Y | · eB+(X1, X2) ≥ (1 + ξ)q2|Y | · (%− µ)|X1||X2|
(57)

≥
(

1 +
ξ

2

)
%q2|X1||X2||Y | . (66)

On the other hand,

|T | =
∑
y∈Y

eB+

(
NG(y,X1), NG(y,X2)

)
.

Let Y ′ = {y ∈ Y : degΓ(y,Xi) ≤ 2p|Xi| for i = 1, 2}. It follows from (65) that for
all but at most ν|Y | vertices y ∈ Y ′ we have

eB+

(
NG(y,X1), NG(y,X2)

)
≤ %|NG(y,X1)||NG(y,X2)|+ ν|NΓ(y,X1)||NΓ(y,X2)|
≤ %degG(y,X1) degG(y,X2) + 4νp2|X1||X2| .

Fact 13 gives ∣∣Y \ Y ′∣∣ ≤ γ2p2 n2

|X1|
+ γ2p2 n2

|X2|
.

Consequently,

|T | ≤
∑
y∈Y ′

(
%degG(y,X1) degG(y,X2) + 4νp2|X1||X2|

)
+ ν|Y | · 4p2|X1||X2|+

(
γ2p2 n2

|X1|
+ γ2p2 n2

|X2|

)
· |X1||X2|

and the choices of ν in (56) and γ in (61), combined with |X1|, |X2| ≥ ηL.21n and
Y ≥ ηn and % ≥ %0, yield

|T | ≤ %
∑
y∈Y ′

degG(y,X1) degG(y,X2) +
ξ

4
%q2|X1||X2||Y | . (67)

Finally, we appeal to the assumption of Lemma 9(a ) stating that (X,Y )G satisfies
DISC(q, p, ε). As |X1|, |X2| ≥ ζ|X| and q ≥ αp we have for i = 1 and 2∣∣{y ∈ Y : degG(y,Xi) > (1 +

√
ε)q|Xi|}

∣∣ ≤ εp|X||Y |√
εq|Xi|

≤
√
ε

αζ
|Y |

(59)

≤ ξα2%

64
|Y | .

Since
√
ε ≤ ξ/24 we can further bound the right-hand side of (67) and obtain

|T | ≤ %|Y | · (1 +
√
ε)2q2|X1||X2|+

ξα2%

32
|Y | · 4p2|X1||X2|+

ξ

4
%q2|X1||X2||Y |

≤
(

1 +
ξ

2

)
%q2|X1||X2||Y | ,

which contradicts (66). �
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5.4. Proof of Lemma 21. Recall that it suffices to prove part (a ) of Lemma 21
and then part (b ) follows from Theorem 7.

Proof of Lemma 21. Let %0 and ν be given. We fix an auxiliary constant

ν′ =
ν2

100
(68)

and let µ′′ > 0 be given by Lemma 12 applied with ν′′ = ν′/4. Moreover, fix µ′

and ξ with 0 < µ′ ≤ µ′′/2 and 0 < ξ < min{µ′′/6, ν′/4} so that

(1− µ′)2

1 + ξ
≥ 1− µ′′

2
and (1 + ξ)

√
1 + µ′ ≤ 1 +

µ′′

2
. (69)

Next let µ be sufficiently small, so that

µ ≤ %4
0µ
′

5
,

√
µ

%2
(1 + µ)2(1 + ξ)2 ≤ µ′%4

5
, and (1 + µ)4(1 +

√
µ)2 ≤ 1 +

µ′

5
. (70)

For any given η > 0, we let

γ = min
{
ξη
√
ν/12 , µ3/2η%0/2

}
. (71)

Let n be sufficiently large and suppose p ≥ 1/
√
n.

Suppose the bipartite graph Γ = (U ∪̇V,EΓ), the sets X1, X2 ⊆ U , and Y ⊆
V , and the bipartite graph B = (X1∪̇X2, EB) satisfy assumptions (i )–(iii ) of
Lemma 21, Moreover, suppose that (X1, X2)B satisfies PAIR(%, 1, µ) for some % ≥
%0. We have to show that for all but ν|Y | vertices y ∈ Y the pair condition
is inherited in the subgraph of B induced on the neighborhoods of y in Γ, i.e.,
(NΓ(y,X1), NΓ(y,X2))B satisfies PAIR(%, 1, ν).

In the first step we exclude all vertices y ∈ Y for which degΓ(y,X1) or degΓ(y,X2)
deviates substantially from its “expectation.” For i = 1 and 2 we set

Y ∗i = {y ∈ Y : |degΓ(y,Xi)− p|Xi|| > ξp|Xi|} and Y ∗ = Y ∗1 ∪ Y ∗2 .

Since Γ is (p, γp2n)-jumbled and |X1|, |X2|, |Y | ≥ ηn, Fact 13 yields

|Y ∗| ≤ |Y ∗1 |+ |Y ∗2 | ≤
2γ2p4n2

ξ2p2|X1|
+

2γ2p4n2

ξ2p2|X2|
≤ 4γ2p2|Y |

ξ2η2
.

Since p ≤ 1, the choice of γ in (71) yields

|Y ∗| ≤ ν

3
|Y | . (72)

For the rest of the proof we will ignore the vertices from Y ∗ and they will be
included in the set of ν|Y | exceptional vertices.

Next we study the triplets (x1, x2, y) ∈ X1 ×X2 × (Y \ Y ∗) with {x1, x2} being
an edge of B and {x1, y} and {x2, y} being present in Γ. We set

Y ′ = Y \ Y ∗

and define

t1,1 =
∑
y∈Y ′

∑
x1∈NΓ(y,X1)

degB
(
x1, NΓ(y,X2)

)
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as well as

t1,2 =
∑
y∈Y ′

∑
x1∈NΓ(y,X1)

deg2
B

(
x1, NΓ(y,X2)

)
,

t2,1 =
∑
y∈Y ′

∑
x2∈NΓ(y,X2)

deg2
B

(
x2, NΓ(y,X1)

)
,

and

t2,2 =
∑
y∈Y ′

∑
x1∈NΓ(y,X1)

∑
x′

1∈NΓ(y,X1)

deg2
B

(
x1, x

′
1, NΓ(y,X2)

)
.

Below we will verify the following bounds on t1,1 and t2,2

t1,1 ≥ (1− µ′)%p2|X1||X2||Y ′| (73)

and

t2,2 ≤ (1 + µ′)%4p4|X1|2|X2|2|Y ′| . (74)

Before we prove (73) and (74) we deduce the conclusion of Lemma 21 from these
estimates.

Since |NΓ(y,X1) − p|X1|| ≤ ξp|X1| for all y ∈ Y ′ the number of summands
m considered in t1,1 is bounded by |Y ′|(1 + ξ)p|X1|. Hence, it follows from (73)
combined with the Cauchy–Schwarz inequality

∑m
i=1 a

2
i ≥ (

∑m
i=1 ai)

2/m that

t1,2 ≥
(1− µ′)2

1 + ξ
%2p3|X1||X2|2|Y ′|

(69)

≥ (1− µ′′/2)%2p3|X1||X2|2|Y ′| . (75)

Moreover, owing to the identity

t1,1 =
∑
y∈Y ′

∑
x2∈NΓ(y,X2)

degB
(
x2, NΓ(y,X1)

)
the same argument gives

t2,1 ≥ (1− µ′′/2)%2p3|X1|2|X2||Y ′| . (76)

Similarly, since we can rewrite t2,1 as

t2,1 =
∑
y∈Y ′

∑
x1∈NΓ(y,X1)

∑
x′

1∈NΓ(y,X1)

degB
(
x1, x

′
1, NΓ(y,X2)

)
the bound in (74) combined with the Cauchy–Schwarz inequality yields

t2,1 ≤ (1 + ξ)
√

1 + µ′%2p3|X1|2|X2||Y ′|
(69)

≤ (1 + µ′′/2)%2p3|X1|2|X2||Y ′| . (77)

In a very similar way we obtain

t1,2 ≤ (1 + µ′′/2)%2p3|X1||X2|2|Y ′| . (78)

Summarizing (75)–(78), we showed that (73) and (74) yield∣∣∣t1,2 − %2p3|X1||X2|2|Y ′|
∣∣∣ ≤ µ′′

2
%2p3|X1||X2|2|Y ′| (79)

and ∣∣∣t2,1 − %2p3|X1|2|X2||Y ′|
∣∣∣ ≤ µ′′

2
%2p3|X1|2|X2||Y ′| . (80)

In particular, (73) gives

t1,1 ≥ (1− µ′′)(1 + ξ)%p2|X1||X2||Y ′|
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and, similarly, (79) gives

t1,2 ≤ (1 + µ′′)(1− ξ)%2p3|X1||X2|2|Y ′| .

Recalling the definition of Y ′, by Lemma 12 we see that those estimates yield∣∣|NB(x1, NΓ(y,X2))| − %|NΓ(y,X2)|
∣∣

≤
∣∣|NB(x1, NΓ(y,X2))| − %p|X2|

∣∣+ ξ%p|X2|

≤
(ν′

4
+ ξ
)
%p|X2| ≤ ν′|NΓ(y,X2)| (81)

for all but at most ν′(1+ξ)p|X1||Y ′| pairs (y, x1) ∈ Y ×X1 with x1 ∈ NΓ(y,X1). Let
Y ∗∗ ⊆ Y ′ contain those vertices y for which there are at least ν|NΓ(y,X1)|/2 vertices
x1 ∈ NΓ(y,X1) such that (81) fails. Since (81) fails for at most ν′(1 + ξ)p|X1||Y ′|
pairs and each y ∈ Y ∗∗ is contained in at least ν|NΓ(y,X1)|/2 such pairs we have

|Y ∗∗| ≤ 2ν′(1 + ξ)p|X1||Y ′|
ν(1− ξ)p|X1|

(68)

≤ ν

3
|Y | . (82)

Recalling that for y 6∈ Y ∗∪Y ∗∗ a “typical” vertex x1 ∈ NΓ(y,X1) satisfies (81) and
that there are at most ν|NΓ(y,X1)|/2 “atypical” vertices we infer∑

x1∈NΓ(y,X1)

∣∣∣∣∣NB(x1, NΓ(y,X2)
)∣∣| − %∣∣NΓ(y,X2)

∣∣∣∣∣
≤
(
ν′ +

ν

2

)
|NΓ(y,X1)||NΓ(y,X2)| ≤ ν|NΓ(y,X1)||NΓ(y,X2)| , (83)

which verifies the first part of PAIR(%, 1, ν) (i.e., (2)) for (NΓ(y,X1), NΓ(y,X2))B
for all y ∈ Y \ (Y ∗ ∪ Y ∗∗).

Next we deduce the second part of PAIR(%, 1, ν) (i.e., (3)) for “most” vertices
y ∈ Y \ (Y ∗ ∪ Y ∗∗) from (80) and (74) in a very similar manner.

In fact, (80), (74), and ξ ≤ µ′′/6 imply

t2,1 ≥ (1− µ′′)(1 + ξ)2%2p3|X1|2|X2||Y ′|

and

t2,2 ≤ (1 + µ′′)(1− ξ)2%4p4|X1|2|X2|2|Y ′| .

By the definition of Y ′, Lemma 12 yields∣∣|NB(x1, x
′
1, NΓ(y,X2))| − %2|NΓ(y,X2)|

∣∣
≤
∣∣|NB(x1, x

′
1, NΓ(y,X2))| − %2p|X2|

∣∣+ ξ%2p|X2|

≤
(ν′

4
+ ξ
)
%2p|X2| ≤ ν′|NΓ(y,X2)| (84)

for all but at most ν′(1 + ξ)2p2|X1|2|Y ′| triplets (y, x1, x
′
1) ∈ Y × X1 × X1 with

x1, x
′
1 ∈ NΓ(y,X1). Let Y ∗∗∗ ⊆ Y ′ contain those vertices y for which there are

at least ν|NΓ(y,X1)|2/2 vertices x1, x
′
1 ∈ NΓ(y,X1) such that (84) fails. It follows

from the definition of Y ∗∗∗ that

|Y ∗∗∗| ≤ 2ν′(1 + ξ)2p2|X1|2|Y ′|
ν(1− ξ)2p2|X1|2

(68)

≤ ν

3
|Y | . (85)
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Finally, we note that for all vertices y ∈ Y \ (Y ∗ ∪ Y ∗∗∗) we have∑
x1∈NΓ(y,X1)

∑
x′

1∈NΓ(y,X1)

∣∣∣∣∣NB(x1, x
′
1, NΓ(y,X2)

)∣∣− %2
∣∣NΓ(y,X2)

∣∣∣∣∣
≤
(
ν′ +

ν

2

) ∣∣NΓ(y,X1)|2|NΓ(y,X2)| ≤ ν|NΓ(y,X1)|2|NΓ(y,X2)| , (86)

which verifies (3) for (NΓ(y,X1), NΓ(y,X2))B for all y ∈ Y \ (Y ∗ ∪ Y ∗∗∗).
Inequalities (83) and (86) imply that for every y 6∈ Y ∗ ∪ Y ∗∗ ∪ Y ∗∗∗ the pair

(NΓ(y,X1), NΓ(y,X2))B satisfies PAIR(%, 1, ν). Moreover, owing to (72), (82),
and (85), we have

|Y ∗ ∪ Y ∗∗ ∪ Y ∗∗∗| ≤ ν|Y | .
This concludes the proof of part (a ) of Lemma 21. It remains to verify (73) and (74).

�

Proof of (73). In order to verify (73) we have to estimate the number of triplets
(x1, x2, y) ∈ X1 × X2 × Y ′ such that {x1, x2} is an edge of B and x1 and x2 are
neighbors of y in Γ.

We recall the assumption that (X1, X2)B satisfies PAIR(%, 1, µ) and, therefore,∑
x1∈X1

∣∣degB(x1, X2)− %|X2|
∣∣ ≤ µ|X1||X2| .

Consequently,

eB(X1, X2) ≥ (%− µ)|X1||X2| . (87)

Moreover, owing to Fact 13 all but at most

γ2p2n2

µ2|Y ′|
≤ γ2p2n2

µ2(1− ν/3)|Y |
(71)

≤ µ|X1| . (88)

vertices x1 ∈ X1 satisfy

degΓ(x1, Y
′) ≥ (1− µ)p|Y ′| . (89)

Finally, for every vertex x1 for which (89) holds another application of Fact 13
yields that

degΓ(x2, NΓ(x1, Y
′)) ≥ (1− µ)pdegΓ(x1, Y

′) ≥ (1− µ)2p2|Y ′| (90)

for all but at most

γ2p2n2

µ2 degΓ(x1, Y ′)
≤ γ2p2n2

µ2 · (1− µ)p|Y ′|
≤ γ2p2n2

µ2 · (1− µ)(1− ν/3)p|Y |
(71)

≤ µ|X2| . (91)

vertices x2 ∈ X2. Summarizing (88)–(91), we infer that for all but at most
2µ|X1||X2| pairs of vertices (x1, x2) ∈ X1 ×X2 we have

degΓ(x1, x2, Y
′) ≥ (1− µ)2p2|Y ′| .

Combining this with (87) yields

t1,1 ≥
(
eB(X1, X2)− 2µ|X1||X2|

)
· (1− µ)2p2|Y ′|

≥ (%− 3µ)|X1||X2| · (1− µ)2p2|Y ′|
(70)

≥ (1− µ′)%p2|X1||X2||Y ′| ,

which concludes the proof of (73). �
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Proof of (74). In order to verify (74) we will find an upper bound on the number of
5-tuples (x1, x

′
1, y, x2, x

′
2) satisfying y ∈ Y ′, x1, x′1 ∈ NΓ(y,X1), x2, x′2 ∈ NΓ(y,X2),

with x1, x′1, x2, and x′2 spanning a cycle of length 4 in B.
First we appeal to the assumption that (X1, X2)B satisfies PAIR(%, 1, µ) and,

hence, ∑
x1∈X1

∑
x′

1∈X1

∣∣degB(x1, x
′
1, X2)− %2|X2|

∣∣ ≤ µ|X1|2|X2|.

Consequently, all but at most √
µ

%2
|X1|2 (92)

pairs (x1, x
′
1) ∈ X1 ×X1 satisfy∣∣ degB(x1, x

′
1, X2)− %2|X2|

∣∣ ≤ √µ%2|X2| . (93)

Three applications of Fact 13 yield the following estimates:

(A ) all but at most

2γ2p4n2

µ2p2|Y ′|
(71)

≤ µp2|X1| (94)

vertices x1 ∈ X1 satisfy∣∣degΓ(x1, Y
′)− p|Y ′|

∣∣ ≤ µp|Y ′| . (95)

(B ) for every x1 ∈ X1 satisfying (95), all but at most

γ2p4n2

µ2p2|NΓ(x1, Y ′)|
(95)

≤ γ2p2n2

µ2(1− µ)p|Y ′|
(71)

≤ µp|X1| (96)

vertices x′1 ∈ X1 satisfy

degΓ(x1, x
′
1, Y

′) ≤ (1 + µ)p|NΓ(x1, Y
′)|
∣∣ ≤ (1 + µ)2p2|Y ′| . (97)

(C ) for every (x1, x
′
1) ∈ X1 ×X1 satisfying (93), all but at most

γ2p4n2

µ2p2|NB(x1, x′1, X2)|
(93)

≤ γ2p2n2

µ2(1−√µ)%2|X2|
(71)

≤ µp2|Y | (98)

vertices y ∈ Y ′ satisfy

degΓ(y,NB(x1, x
′
1, X2)) ≤ (1 + µ)p degB(x1, x

′
1, X2) . (99)

For the proof of the upper bound on t2,2 we consider the following “exceptional”
5-tuples (x1, x

′
1, y, x2, x

′
2) ∈ X2

1 × Y ′ ×X2
2

T1 = {(x1, x
′
1, y, x2, x

′
2) : (95) fails for x1 and x2, x

′
2 ∈ NΓ(y,X2)} ,

T2 = {(x1, x
′
1, y, x2, x

′
2) : (95) holds for x1 but (97) fails for x′1,

y ∈ NΓ(x1, Y
′), and x2, x

′
2 ∈ NΓ(y,X2)} ,

T3 = {(x1, x
′
1, y, x2, x

′
2) : (95) holds for x1, (97) holds for x′1,

but (93) fails for (x1, x
′
1), y ∈ NΓ(x1, x

′
1, Y

′), and x2, x
′
2 ∈ NΓ(y,X2)} ,

and

T4 = {(x1, x
′
1, y, x2, x

′
2) : (95) holds for x1, (97) holds for x′1,

(92) holds for (x1, x
′
1), but (99) fails for y and x2, x

′
2 ∈ NΓ(y,X2)} .
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We note that

t2,2 ≤ |T1|+ |T2|+ |T3|+ |T4|
+ |X1|2 · (1 + µ)2p2|Y ′| · (1 + µ)2p2(1 +

√
µ)2%4|X2|2 , (100)

where the last term stands for the 5-tuples (x1, x
′
1, y, x2, x

′
2) for which (93), (95),

(97), and (99) hold. Since |NΓ(y,X2)| ≤ (1+ξ)p|X2| for every y ∈ Y ′ the estimates
from (92)–(99) imply

|T1|
(94)

≤ µp2|X1| · |X1| · |Y ′| · (1 + ξ)2p2|X2|2 ,

|T2|
(96)

≤ |X1| · µp|X1| · (1 + µ)p|Y ′| · (1 + ξ)2p2|X2|2 ,

|T3|
(92)

≤
√
µ

%2
|X1|2 · (1 + µ)2p2|Y ′| · (1 + ξ)2p2|X2|2 ,

and

|T4|
(98)

≤ |X1|2 · µp2|Y ′| · (1 + ξ)2p2|X2|2.

Applying these estimates to (100) gives

t2,2 ≤ µp2|X1| · |X1| · |Y ′| · (1 + ξ)2p2|X2|2

+ |X1| · µp|X1| · (1 + µ)p|Y ′| · (1 + ξ)2p2|X2|2

+

√
µ

%2
|X1|2 · (1 + µ)2p2|Y ′| · (1 + ξ)2p2|X2|2

+ |X1|2 · µp2|Y ′| · (1 + ξ)2p2|X2|2

+ |X1|2 · (1 + µ)2p2|Y ′| · (1 + µ)2p2(1 +
√
µ)2%4|X2|2

≤ (1 + µ′)%4p4|X1|2|X2|2|Y ′| ,

where the last inequality follows from the choice of µ from (70), which ensures√
µ(1 + µ)2(1 + ξ)2/%2 ≤ µ′%4/5 and (1 + µ)4(1 +

√
µ)2 ≤ 1 + µ′/5. This concludes

the proof of (74). �

6. Concluding remarks

In this paper, we prove an extension of the well known theorem of Ruzsa and
Szemerédi for subgraphs of (p, γp3n)-bijumbled graphs Γ with sufficiently small
γ > 0 (see Theorem 3). It would be interesting to find weaker assumptions for the
host graph Γ which allow one to prove the same result. In particular, one can ask
if the jumbledness condition in Theorem 3 can be replaced by (p, β)-bijumbledness
for some β > γp3n. Our approach taken here is based on an appropriate triangle
counting lemma (Lemma 11), for the proof of which we needed β = γp3n. We
note that the triangle counting lemma fails to be true if β = 145p2n. Indeed,
Alon [1] has constructed (p, β)-bijumbled graphs with n vertices for p = n−1/3/4
and β = 145p2n which contain no triangle at all. Using a blowup-type construction
one obtains (p, 145p2n)-bijumbled graphs Γp for any p with n−1/3 � p = o(1)
which are triangle-free. Since all subgraphs of Γp are triangle-free, the conclusion
of Lemma 11 can hold only for (p, β)-bijumbled graphs with β < 145p2n. We believe
that under the assumption β = o(p2n) Lemma 11 is true. Such a result would imply



TRIANGLE REMOVAL LEMMA FOR PSEUDORANDOM GRAPHS 29

that Theorem 3 holds even if γp3n is replaced by γp2n and the condition on λ(A)
in Theorem 4 is replaced by λ(A) ≤ γ|A|2/n.

In the proof of the triangle counting lemma, we make use of the implication
“DISC implies PAIR” (see part (a ) of Lemma 9), which was established under the
condition that β ≤ γp2n. Note that the reverse implication (see Lemma 9(b )) holds
under a less restrictive assumption, namely, β ≤ γp3/2n. Finding the thresholds
for β under which these implications are valid remains an open problem.
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