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Abstract

We present an algorithm that colors a random 2-colorable 3-uniform hypergraph
optimally in expected running time O(n®log®n).
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1 Introduction

One of the classical problems in complexity theory is to decide whether a given
k-uniform hypergraph is 2-colorable (or bipartite). While for bipartite graphs
a 2-coloring can be found in linear time, it was shown by Lovéasz [10] that
the problem to decide whether a given k-uniform hypergraph is bipartite is
N P-complete for all k& > 3. Moreover, Guruswami et al. [6] proved that it is
N P-hard to color bipartite, k-uniform hypergraphs with a constant number of
colors for k > 4. Tt was also shown by Dinur et al. [3] that this problem remains
inapproximable by a constant for 3-uniform hypergraphs. On the other hand,
recently, Krivelevich et al. [9] gave a polynomial time algorithm which colors
3-uniform bipartite hypergraphs using O(n'/®log®n) colors. Another positive
result is due to Chen and Frieze [1]. Those authors studied colorings of so-
called a-dense bipartite 3-uniform hypergraphs, where a 3-uniform hypergraph
is a-dense if the collective degree of any two vertices is at least an. They
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found a randomized algorithm that colors an a-dense 3-uniform hypergraph
H in n®Y*) time.

The purpose of this note is to present an algorithm that colors a hyper-
graph chosen uniformly at random from the family of all labeled, 3-uniform,
bipartite hypergraphs on n vertices in O(n°log?n) expected time. Indeed, we
prove a slightly more general result for the class of Fano-free hypergraphs, see
Theorem 1.1. Before we state it precisely we review related results for graphs.

In 1984 Wilf [15] noted, using a simple counting argument, that one can
decide in constant expected time, whether a graph is p-colorable. Few years
later Turner [14] found an O(|V| + |E|log p) algorithm for optimally coloring
almost all p-colorable graphs. This result was further expanded by Dyer and
Frieze [4] who developed an algorithm which colored every p-colorable graph
on n vertices properly (with p colors) in O(n?) expected time.

Another line of research concerns the study of monotone properties of the
type Forb(n, L) for a fixed graph L, i.e., the family of all labeled graphs on n
vertices, which contain no copy of L as a (not necessarily induced) subgraph.
Promel and Steger [13] discovered an algorithm that colors properly (regardless
of its value x) a randomly chosen member from Forb(n, K,.;), i.e., the class
of all labeled K, i-free graphs, in O(n?) expected time. This is clearly a
generalization of the result of Dyer and Frieze in the light of the well known
result of Kolaitis et al. [8] that almost all K, ;-free graphs are p-colorable.

In [12] we studied Forb(n, F'), where F' is the 3-uniform hypergraph of the
Fano plane, which is the unique triple system with 7 hyperedges on 7 ver-
tices where every pair of vertices is contained in precisely one hyperedge. It
was shown independently by Fiiredi and Simonovits [5] and Keevash and Su-
dakov [7], that for large n the unique extremal Fano-free hypergraph is the bal-
anced, complete, bipartite hypergraph B,, = (UUW, Ep, ), where |U| = |n/2],
|W| = [n/2] and Ep, consists of all hyperedges with at least one vertex in U
and one vertex in W. The hypergraph of the Fano plane F is not bipartite,
i.e., for every vertex partition XUY = V(F) into two classes there exists a hy-
peredge of F' which is either contained in X or in Y. Consequently, Forb(n, F’)
contains any bipartite 3-uniform hypergraph on n vertices. However, deleting
any hyperedge from F' results in a bipartite hypergraph.

Let B, be the class of all labeled bipartite hypergraphs on n vertices. It
was shown in [12] that

[Forb(n, )| < (1+2720%)|,|. 1)

Our main result here states that one can color a 3-uniform hypergraph



chosen uniformly at random from Forb(n, F') in polynomial expected time.

Theorem 1.1 There is an algorithm with average running time O(n°log®n)
which colors every member from Forb(n, F') optimally.

Together with (1) we immediately derive in a similar manner to Steger and
Promel [13] that one can color a 3-uniform hypergraph chosen uniformly at
random from B,, in polynomial expected time.

Corollary 1.2 There is an algorithm with average running time O(n°log®n)
which finds a bipartition of every member from B,,.

2 Algorithm for coloring Fano-free hypergraphs
Below we first present the simple algorithm Color(H) which will be based on
the subroutine Partition(H, a):
Algorithm 1 Color (H)
Input: H from Forb(n, F);
Output: Optimal coloring of H;

(1) choose “small” o > 0 appropriately;

(2) ( Y) « Partition (H, «);

(3) If e(X) + e(Y) = 0

(4) then output 2-coloring corresponding to (X,Y);

(5) else try all n™ = 2"1°8™ possible colorings and output the one

that minimizes the number of colors used;

Obviously, Color(H) finds an optimal coloring of H. For proving Theorem 1.1
we will show that there exists an o > 0 such that Step 5 of the algorithm
will be executed for at most 27™1°6"|Forb(n, F)| 3-uniform hypergraphs from
Forb(n, F), while Step 2 has a running time of O(n°log?n) for all H.

The subroutine Partition(H, «) finds a locally minimal partition X gUYy =
V(H), i.e., a partition for which e(Xy) + e(Yy) cannot be decreased by mov-
ing a single vertex from one class to another. Moreover, for “most” 3-uniform
hypergraphs H from Forb(n, F') the algorithm Partition(H, ) outputs a par-
tition with the additional property e(Xg) + e(Yg) < an?.

Algorithm 2 Partition (H, «)
Input: H € Forb(n, F), a > 0;
Output: locally minimal vertex partition of H: V = XzUYy;



choose ¢ := e(a) and n := n(«a) appropriately;
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apply Regularize(H, e, [1/¢]) and obtain an e-reqular partition Vi, ..., Vi;
define cluster hypergraph H(n) with densities at least n;

4
5) retrieve corresponding vertex bipartition of H : WiUW, = V;
(6) while Jw € W; s.t. degy, (w) > degy,,

find minimal vertex bipartition of H(n);

W}(w) do move w to Wigp iy

In Step 2 the algorithm Regularize(H,e,t,) was used. This algorithm, due
to Czygrinow and Rédl [2], finds an e-regular partition of a 3-uniform hy-
pergraph H on n vertices and at least ty many clusters in time O(n®log®n).
Since all of the steps can be implemented in O(n°log®n) time, it follows that
Partition(H, ) requires O(n°log?n) steps.

Thus, it is still left to analyze the amount of the hypergraphs H from
Forb(n, F') for which an exhaustive search in Color(H) is needed (Step 5). In
the main part of the proof we show that there are at most 2-")|Forb(n, F)|
such hypergraphs in Forb(n, F'). To prove this, we study structural properties
of a typical H from Forb(n, F). Our analysis is based on the techniques
from [12]. We introduce a chain of subsets of Forb(n, F) such that all members
of them possess certain “typical” properties. The first subset of it will be
F (a), which will consist of those members that admit a bipartition such that
the number of hyperedges inside the bipartition classes is at most an®. Using
the properties of the weak hypergraph regularity lemma (i.e. it partitions
the vertex set of a hypergraph into constantly many equal-sized pieces), it
can be shown that, firstly, most of the hypergraphs from Forb(n, F') lie in
F (a) and, secondly, that for most of the members from F) («) the algorithm
Partition(H, «) finds a locally minimal partition for given .

The further analysis proceeds as follows. We introduce two more proper
subsets of Forb(n, F'), which describe two further “useful” properties of almost
all Fano-free hypergraphs on n vertices. We then deduce that the last property
implies in fact bipartiteness. As a seemingly surprising fact, we obtain, that
for almost all members from Forb(n, F') any locally minimal partition for some
appropriate « already satisfies e(Xy) + e(Yy) = 0. The details can be found
in the full version of the article [11].
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