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Abstract. Rödl and Ruciński [Threshold functions for Ramsey properties, J. Amer. Math.
Soc. 8 (1995)] established Ramsey’s theorem for random graphs. In particular, for fixed
integers r and ℓ ě 2 they showed that p̂Kℓ,rpnq “ n´ 2

ℓ`1 is a threshold for the Ramsey property
that every r-colouring of the edges of the binomial random graph Gpn, pq yields a monochromatic
copy of Kℓ. We investigate how this result extends to arbitrary colourings of Gpn, pq with an
unbounded number of colours. In this situation, Erdős and Rado [A combinatorial theorem,
J. London Math. Soc. 25 (1950)] showed that canonically coloured copies of Kℓ can be ensured
in the deterministic setting. We transfer the Erdős–Rado theorem to the random environment
and show that both thresholds coincide when ℓ ě 4. As a consequence, the proof yields
Kℓ`1-free graphs G for which every edge colouring contains a canonically coloured Kℓ.

The 0-statement of the threshold is a direct consequence of the corresponding statement of
the Rödl–Ruciński theorem and the main contribution is the 1-statement. The proof of the
1-statement employs the transference principle of Conlon and Gowers [Combinatorial theorems
in sparse random sets, Ann. of Math. (2) 184 (2016)].

§1. Introduction

In the last three decades, extremal and Ramsey-type properties of random graphs were
considered, which led to several general approaches (see, e.g. [2,3,11,13,22–24] and the references
therein). We consider Ramsey-type questions for the binomial random graph Gpn, pq. For
graphs G and H and an integer r ě 2 we write

G ÝÑ pHqr

to signify the statement that every r-colouring of the edges of G yields a monochromatic
copy of H. Ramsey’s theorem [18] tells us that for fixed H and r the family of graphs G

with G ÝÑ pHqr is non-empty. Obviously, this family is monotone and, hence, there is a
threshold function p̂H,r : N ÝÑ r0, 1s such that

lim
nÝÑ8

P
`

Gpn, pq ÝÑ pHqr

˘

“

#

0 , if p ! p̂H,r,
1 , if p " p̂H,r.

(1.1)

As usual we shall refer to any such function as the threshold of that property, even though it is
not unique.
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Rödl and Ruciński [21,22] determined the threshold p̂H,r for every graph H and every fixed
number of colours r. We restrict ourselves to the situation when H is a clique Kℓ and state
their result for that case only.

Theorem 1.1 (Rödl & Ruciński). For every r ě 2 and ℓ ě 3 we have p̂Kℓ,rpnq “ n´ 2
ℓ`1 . □

In fact, Rödl and Ruciński established a semi-sharp threshold, i.e., the 0-statement in (1.1)
holds as long as ppnq ď cℓ,rn

´ 2
ℓ`1 for some sufficiently small constant cℓ,r ą 0 and, similarly,

the 1-statement becomes true already if ppnq ě Cℓ,rn
´ 2

ℓ`1 for some Cℓ,r. This was sharpened
recently in [8], where the gap between cℓ,r and Cℓ,r was closed. Perhaps surprisingly, the
asymptotic growth of the threshold function p̂Kℓ,rpnq in Theorem 1.1 is independent of the
number of colours r.

We are interested in arbitrary edge colourings of Gpn, pq, i.e., colourings which are not
restricted to a fixed number of colours. However, if the number of colours is unrestricted, then
this allows injective edge colourings and, consequently, monochromatic (nontrivial) subgraphs
might be prevented. Erdős and Rado [6], however, showed that certain canonical patterns are
unavoidable in edge colourings of sufficiently large cliques. Obviously, the monochromatic and
the injective pattern must be canonical. Another type of canonical patterns arises by ordering
the vertices of Kn and colouring every edge uv by mintu, vu or colouring every edge by its
maximal vertex. More generally, for finite graphs G and H with ordered vertex sets, we write

G ∗ÝÑ pHq

if for every edge colouring φ : EpGq ÝÑ N there exists an order-preserving graph embed-
ding ς : H ÝÑ G such that one of the following holds:

(a ) the copy ςpHq of H is monochromatic under φ,
(b ) or φ restricted to EpςpHqq is injective,
(c ) or for all edges e, e1 P EpςpHqq we have φpeq “ φpe1q ðñ minpeq “ minpe1q,
(d ) or for all edges e, e1 P EpςpHqq we have φpeq “ φpe1q ðñ maxpeq “ maxpe1q.

We call an ordered copy of H in G canonical if it displays one of the four patterns described
in (a )–(d ).

Note that for the patterns described in (a ) and (b ) the orderings of the vertex sets have no
bearing. Moreover, we shall refer to copies enjoying an injective colouring as rainbow copies
of H (even if |EpHq| ‰ 7). Similarly, we refer to the patterns appearing in (c ) and (d ) as
min-coloured and max-coloured, respectively. In case only the backward implications in (c )
or (d ) are enforced, then we refer to those colourings as non-strict, e.g., if minpeq “ minpe1q

yields φpeq “ φpe1q for all edges e, e1 P EpςpHqq, then ςpHq is a non-strictly min-coloured copy
of H. Obviously, monochromatic copies are also non-strictly min- and max-coloured.

From now on, the vertex sets of all graphs considered are ordered. In particular, for cliques
and random graphs we simply assume

V pKnq “ rns and V pGpn, pqq “ rns .

With this notation at hand, the aforementioned canonical Ramsey theorem of Erdős and
Rado [6] restricted to the graph case asserts that canonical copies are unavoidable.
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Theorem 1.2 (Erdős & Rado). For every ℓ ě 3, there exists n such that Kn
∗ÝÑ pKℓq. □

We are interested in a common generalisation of Theorems 1.1 and 1.2. Owing to Theorem 1.2,
for any ordered graph H, the monotone family tG : G ∗ÝÑ pHqu is non-empty and it raises the
problem of estimating the threshold p̂H : N ÝÑ r0, 1s such that

lim
nÝÑ8

P
`

Gpn, pq ∗ÝÑ pHq
˘

“

#

0 , if p ! p̂H ,
1 , if p " p̂H .

(1.2)

It follows from the definition, that for every graph H not admitting a vertex cover of size at
most two, the only canonical colourings of H using at most two colours are monochromatic.
Consequently,

p̂H ě p̂H,2

for every such graph H. In particular, for cliques on at least four vertices this may suggest that
the asymptotics of the thresholds for those Ramsey properties coincide and our main result
verifies this.

Theorem 1.3. For every ℓ ě 4, there exists C ą 0 such that for p “ ppnq ě Cn´ 2
ℓ`1 we have

lim
nÝÑ8

P
`

Gpn, pq ∗ÝÑ pKℓq
˘

“ 1 .

Combining Theorem 1.3 with the corresponding lower bound on p̂Kℓ,2 shows that the threshold
for the canonical Ramsey property is semi-sharp for ℓ ě 4. For ℓ “ 3 we recall that the canonical
Ramsey threshold is indeed smaller than the Ramsey threshold n´1{2. In fact, one can check
that every edge colouring of K4 yields a canonical copy of the triangle and, hence, p̂K3 ď n´2{3.

Moreover, we note that for p “ Opn´ 2
ℓ`1 q the random graph Gpn, pq is likely to contain

only oppn2q cliques Kℓ`1. In the proof of Theorem 1.3 we can delete an edge from each such
clique. Consequently, we obtain the following statement in structural Ramsey theory, which
can be viewed as a Folkman-type extension of the Erdős–Rado theorem for graphs.

Corollary 1.4. For every ℓ ě 4 there exists a Kℓ`1-free graph G such that G ∗ÝÑ pKℓq.
Moreover, G contains no two distinct copies of Kℓ that share at least three vertices.

In the context of Ramsey’s theorem, the existence of such a graph G was asked for by Erdős
and Hajnal [5]; for two colours this was established by Folkman [7], and for any fixed number of
colours by Nešetřil and Rödl [16]. The graph G in Corollary 1.4 will be obtained by modifying
the random graph and, hence, the proof is non-constructive. Reiher and Rödl [19] pointed out
that the first part of Corollary 1.4 can also be proved in a constructive manner by means of
the partite construction method of Nešetřil and Rödl [17]. While this approach falls short to
exclude Kℓ’s intersecting in triangles, it has the advantage that it readily extends to k-uniform
hypergraphs for every k ě 3.

We conclude this introduction with a short overview of the main ideas of the proof of
Theorem 1.3. Roughly speaking, the proof is inspired by the proof of the canonical graph
Ramsey theorem laid out by Lefmann and Rödl [12] and Alon et al. [1]. This approach pivots
on a case distinction of the edge colouring of the underlying graph Kn. The first case, when
many different colours appear everywhere, which is captured by assuming that every vertex
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is incident to only opnq edges of the same colour, leads to rainbow copies of Kℓ. In the other
case, there is a vertex with a monochromatic neighbourhood of size Ωpnq, which by iterated
applications, as in the standard proof of Ramsey’s theorem, leads to a non-strictly min- or
max-coloured Kpℓ´2q2`2. Such a non-strictly min/max-coloured clique contains a canonical Kℓ

by a straightforward application of Dirichlet’s box principle.
Transferring such an approach from Kn to Gpn, pq for p “ Opn´ 2

ℓ`1 q faces several challenges.
Firstly, we shall not use a Kpℓ´2q2`2 in the coloured host graph, as such large cliques are not
very likely to appear in Gpn, pq for that edge probability. Moreover, in the more challenging
second case, when the colouring is unbounded, it is certainly not sufficient to consider one
vertex with a large monochromatic neighbourhood (of size Ωppnq), as again, this neighbourhood
is too sparse to contain any useful structure in Gpn, pq. Thus we resort to a robust version of
the above-mentioned argument, building a large non-strictly min- or max-coloured subgraph
which contains Ωpn2pq edges.

The bounded case, with at most λ edges of every colour incident to any given vertex of Gpn, pq,
is a problem of independent interest. For example, λ “ 1 corresponds to studying proper edge
colourings of Gpn, pq and anti-Ramsey properties (see, e.g. [9,10,14] and the references therein).
In fact, for ℓ ě 5, there are proper colourings of Gpn, pq with p “ cn´ 2

ℓ`1 which do not contain
a rainbow copy of Kℓ (see [10]), which is an alternative argument for p̂Kℓ

ě cn´ 2
ℓ`1 and another

obstruction for Theorem 1.3. For the proof of Theorem 1.3 presented here, we will need to
guarantee rainbow copies of H under the weaker assumption that λ “ oppnq. This can be
viewed as a partial extension of the work of Kohayakawa, Konstadinidis, and Mota [9]. In
both cases (bounded and unbounded colourings) the transference principle for random discrete
structures developed by Conlon and Gowers [3] is an integral part of the proof.

In the next section, we present the two main lemmata rendering the case distinction sketched
above, and deduce Theorem 1.3. The proofs of these lemmata are deferred to the full version of
the manuscript. We conclude with a discussion of possible generalisations of this work from
cliques Kℓ to general graphs H and of related open problems in Section 3.

§2. Proof of the main result

2.1. Proof of the canonical Ramsey theorem for graphs. The proof of Theorem 1.3
adopts some ideas of the canonical Ramsey theorem for graphs from the work of Lefmann and
Rödl [12] and Alon et al. [1] and below we recall their argument. For ℓ ě 3 we fix

δ “
1

4ℓ3 and n ě 26ℓ2plog2pℓq`1q (2.1)

and first we consider bounded colourings φ : EpKnq ÝÑ N. We say such a colouring is δ-bounded
if for every colour c P N and every vertex v P V pKnq we have

dcpvq “
ˇ

ˇNcpvq
ˇ

ˇ “
ˇ

ˇtw P V pKnq : φpvwq “ cu
ˇ

ˇ ď δn .

Roughly speaking, bounded colourings have the property that many different colours are
“present everywhere” and this yields rainbow copies of Kℓ. In fact, a simple counting argument
shows for δ-bounded colourings that at most δn3{2 triples contain two edges of the same colour
and at most δn4{8 quadruples contain two disjoint edges of the same colour. Consequently,
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selecting every vertex of Kn independently with probability 2ℓ{n and removing a vertex from
every such triple and every such quadruple, establishes the existence of ℓ vertices inducing a
rainbow Kℓ.

The second part of the proof resembles the standard proof of Ramsey’s theorem for graphs
and iterates along large monochromatic neighbourhoods. Given the observation above for
bounded colourings, we may assume that the edge colouring φ is unbounded in a hereditary
way and this requires the exponential lower bound on n above.

More precisely, assuming that φ fails to induce a rainbow copy of Kℓ gives rise to a vertex
v P V pKnq, a colour c, and a comparability sign ˛ P tă , ąu such that

d˛
cpvq “

ˇ

ˇN˛
c pvq

ˇ

ˇ “
ˇ

ˇtw P V pKnq : φpvwq “ c and v ˛ wu
ˇ

ˇ ą
δn

2 .

Restricting our attention to the colouring φ on the edges contained in N˛
c pvq and iterating this

argument L “ 2pℓ ´ 2q2 ` 2 times leads to a sequence pvi, ci, ˛iqiPrLs such that for every i P rLs

we have
ˇ

ˇ

ˇ

ˇ

i
č

j“1
N˛j

cj
pvjq

ˇ

ˇ

ˇ

ˇ

ą

´δ

2

¯i

n . (2.2)

In fact, owing to the choices in (2.1) we can iterate this step L times.
Furthermore, we may assume that there are indices 1 ď i0 ă ¨ ¨ ¨ ă ipℓ´2q2 ă L such that ˛ij

is ă for all j. Consequently, the correspondingly indexed vertices vi0 , . . . , vi
pℓ´2q2 together

with vL induce a non-strictly min-coloured clique on pℓ ´ 2q2 ` 2 vertices. Finally, if one of the
colours appears ℓ ´ 1 times among ci0 , . . . , ci

pℓ´2q2 , then this yields a monochromatic Kℓ among
vi0 , . . . , vi

pℓ´2q2 , and vL. Otherwise, at least ℓ ´ 1 distinct colours appear and we are guaranteed
to find a min-coloured Kℓ instead.

2.2. Bounded and unbounded colourings in random graphs. For the proof of Theorem 1.3
we derive appropriate random versions of the facts above that analyse bounded and unbounded
colourings of Gpn, pq (see Lemmata 2.1 and 2.2 below). We begin by defining a notion of
boundedness central to our proof. Roughly speaking, an edge colouring of Gpn, pq is bounded if
at most oppnq edges of the same colour are incident to any given vertex. However, similar to
the proof in the deterministic setting, it will be useful to define this property for large subsets
of vertices, which is made precise as follows.

Given a graph G “ pV, Eq with an edge colouring φ : E ÝÑ N, a subset U Ď V , and reals
δ ą 0, p P p0, 1s we say φ is pδ, pq-bounded on U if for every colour c P N and every vertex u P U

we have
dcpu, Uq “

ˇ

ˇNcpu, Uq
ˇ

ˇ “
ˇ

ˇtw P U : φpuwq “ cu
ˇ

ˇ ď δp|U | .

The first lemma asserts that bounded edge colourings of Gpn, pq for p " n´ 2
ℓ`1 yield rainbow

copies of Kℓ asymptotically almost surely, i.e., with probability tending to 1 as n ÝÑ 8.
In view of Corollary 1.4, we define the ℓ-clean subgraph Gℓ of a given graph G on rns as

follows: Consider all edges of G in lexicographic order and remove an edge e in the current
subgraph of G, if the edge e is contained in two distinct Kℓ’s intersecting in at least three vertices.
Actually, the precise definition is not relevant for our argument, but it will be convenient that
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this way the ℓ-clean subgraph Gℓ Ď G is unique. Note that Gℓ contains no copy of Kℓ`1, since
this would yield two Kℓ’s intersecting in ℓ ´ 1 vertices.

Lemma 2.1. For all integers ℓ ě 4 and every ν ą 0 there is some constant C ą 0 such that
for p “ ppnq ě Cn´ 2

ℓ`1 asymptotically almost surely the following holds for G P Gpn, pq.
If φ : EpGq ÝÑ N is pℓ´5{4, pq-bounded on some U Ď V pGq with |U | ě νn, then U induces a

rainbow copy of Kℓ in G.
Moreover, if in addition we have ppnq ď n

´
2ℓ´2

ℓ2`ℓ´4 {ωpnq for some arbitrary function ω tending
to infinity as n ÝÑ 8, then the ℓ-clean subgraph Gℓ Ď G also contains a rainbow copy of Kℓ.

Lemma 2.1 strengthens a result of Kohayakawa, Konstadinidis, and Mota [9], where a more
restrictive boundedness assumption is required. The proof of Lemma 2.1 makes use of the
transference principle of Conlon and Gowers [3], which allows us to transfer the bounded case
in the deterministic setting to the random environment. The second lemma yields canonical
copies in unbounded colourings.

Lemma 2.2. For all integers ℓ ě 3 and every δ ą 0 there is some constant C ą 0 such that
for p “ ppnq ě Cn´ 2

ℓ`1 asymptotically almost surely the following holds for G P Gpn, pq.
If φ : EpGq ÝÑ N has the property that every U Ď V pGq with size |U | ě δ5ℓ2

n satisfies
ˇ

ˇtu P U : dcpu, Uq ě 8δp|U | for some colour cu
ˇ

ˇ ě
|U |

2 , (2.3)

then G contains a canonical copy of Kℓ.
Moreover, if in addition we have ppnq ď n

´
2ℓ´2

ℓ2`ℓ´4 {ωpnq for some arbitrary function ω tending
to infinity as n ÝÑ 8, then the ℓ-clean subgraph Gℓ Ď G also contains a rainbow copy of Kℓ.

As in the unbounded case in the deterministic setting, the proof of Lemma 2.2 yields either
a monochromatic, or a min-coloured, or a max-coloured copy of Kℓ. We conclude this section
with the short proof of Theorem 1.3 and Corollary 1.4 based on Lemmata 2.1 and 2.2.

Proof of Theorem 1.3 and Corollary 1.4. Given ℓ ě 4 we set δ “ ℓ´5{64 and ν “ δ5ℓ2
{2 and

let C be sufficiently large so that we can appeal to Lemma 2.1 with ℓ and ν and to Lemma 2.2
with ℓ and δ. Owing to the monotonicity of the canonical Ramsey property, for the proof of
Theorem 1.3 we may assume p “ ppnq “ Cn´ 2

ℓ`1 . Since ℓ ě 4 this implies ppnq ď n
´

2ℓ´2
ℓ2`ℓ´4 {ωpnq

for some function ω tending to infinity with n.
Let G P Gpn, pq satisfy the conclusion of both lemmata and consider an arbitrary edge

colouring φ : EpGq ÝÑ N of G.
For every U Ď V pGq we consider its subset of unbounded vertices in U

BpUq “ tw P U : dcpw, Uq ě 8δp|U | for some colour cu .

Owing to Lemma 2.2 we may assume that there is a set U Ď V pGq satisfying |U | ě δ5ℓ2
n and

|BpUq| ă |U |{2. Removing the unbounded vertices from U we arrive at a set

U 1
“ U ∖ BpUq with |U 1

| ą
|U |

2 ě νn .
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For every vertex u P U 1 and every colour c we have

dcpu, U 1
q ď dcpu, Uq ă 8δp|U | ă 16δp|U 1

| .

In other words, φ is p16δ, pq-bounded on U 1 and Lemma 2.1 yields asymptotically almost surely
a rainbow copy of Kℓ in the ℓ-clean subgraph Gℓ Ď G. □

§3. Concluding remarks

3.1. Thresholds for canonical Ramsey properties for general graphs. Recall that for
an ordered graph H, we defined p̂H as the threshold for the property Gpn, pq ∗ÝÑ pHq and
Theorem 1.3 establishes p̂Kℓ

“ n´ 2
ℓ`1 . The problem of determining the threshold p̂H for ordered

graphs H which are not complete is still open, but there are some partial results.
Firstly, Alvarado, Kohayakawa, Morris, and Mota [15] studied a closely related problem for

even cycles C2ℓ. Their result implies that for p “ Cn´1{m2pC2ℓq log n, any colouring of Gpn, pq

contains a canonical copy of the cycle C2ℓ. However, in their work the ordering of the random
graph Gpn, pq is determined after the colouring.

Secondly, for a strictly balanced graph H, our proof guarantees for p " n´1{m2pHq a canonical
copy of H, but one cannot require a specific vertex ordering of H.

3.2. Canonical colourings in random hypergraphs. Furthermore, it would be interesting
to investigate extensions of Theorem 1.3 to k-uniform hypergraphs for k ě 3. Namely, in
their original work Erdős and Rado [6] established a canonical Ramsey theorem for k-uniform
hypergraphs. However, their proof for k-uniform hypergraphs used Ramsey’s theorem for 2k-
uniform hypergraphs and this seems to be an obstacle for transferring it to random hypergraphs
at the right threshold. Hence, for transferring their result to the random setting, it seems
necessary to start with a proof which avoids the use of hypergraphs with larger uniformity.
Such proofs can be found in [20,25].
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