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Abstract. We show that canonical Ramsey numbers for partite hypergraphs grow single
exponentially for any fixed uniformity.

§1 Introduction

Erdős and Rado [7] established the canonical Ramsey theorem, which generalises Ram-
sey’s theorem [12] to an unbounded number of colours. In that work Erdős and Rado
characterised all canonical colour patterns that are unavoidable in colourings of edge sets
of sufficiently large hypergraphs. The canonical Ramsey number ERpK

pkq

t q is the smallest
integer n such that any edge colouring φ : EpKpkq

n q ÝÑ N of the complete k-uniform
hypergraph on n vertices yields a canonical copy of K

pkq

t , i.e., a copy which exhibits one
of those unavoidable colour patterns. (The precise definition of these colour patterns is
not important at this point, however, we remark that for their definition the underlying
vertex set is assumed to be ordered.) We consider quantitative aspects of this theorem. For
the Erdős–Rado theorem discussed above it follows from the work of Erdős, Hajnal, and
Rado [6, §16.4] (see also reference [5, (4.2)]), the work of Lefmann and Rödl [10], and the
work of Shelah [14] that the lower and the upper bound on n grow as pk ´ 1q-times iterated
exponentials in polynomials of t (see also reference [13, §4]). In other words, in terms
of the number of exponentiations the canonical Ramsey number and the non-canonical
Ramsey number (for many colours) display the same behaviour.

We study Erdős–Rado numbers for k-partite k-uniform hypergraphs. The extremal
problem for k-partite k-uniform hypergraphs is degenerate and as a result the Ramsey
number grows much slower. In fact, owing to the work of Kövari, Sós, and Turán [9] and
of Erdős [4] those Ramsey numbers for any fixed number of colours grow only exponential
and random colourings yield a matching lower bound. Roughly speaking, we show that
canonical Ramsey numbers for partite hypergraphs exhibit the same behaviour and, in fact,
these extremal results will be crucial in the proof. We recall the definition of canonical
colourings for partite hypergraphs.
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Definition 1.1. For a k-partite k-uniform hypergraph H “ pV1 Ÿ . . .ŸVk, Eq, a set J Ď rks,
and an edge e P E we write

eJ “ e X
ď

jPJ

Vj

for the restriction of e to the vertex classes indexed by J . We say a colouring φ : E ÝÑ N

is J-canonical, if for all edges e, e1 P E we have

φpeq “ φpe1
q ðñ eJ “ e1

J .

Moreover, we say the colouring is canonical if it is J-canonical for some J Ď rks and a
subhypergraph is a canonical copy, if the colouring φ restricted to its edges is canonical.

Since e∅ “ ∅ for all edges e P E, we observe that ∅-canonical colourings are monochro-
matic. For the other extreme case we note that rks-canonical colourings are injective and
as usual we refer to those as rainbow colourings.

Similarly as above, we define ERpK
pkq

t,...,tq as the smallest integer n such that every
colouring φ : EpKpkq

n,...,nq ÝÑ N of the edges of the complete k-partite k-uniform hypergraph
with vertex classes of size n yields a canonical copy of K

pkq

t,...,t. It follows from the work
of Rado [11] that these numbers exist and a simple probabilistic argument employing a
random colouring with tk ´ 1 colours shows

ERpK
pkq

t,...,tq ě tp1´op1qqtk´1
, (1.1)

where op1q ÝÑ 0 as t ÝÑ 8. We establish a comparable upper bound, which resolves a
problem raised by Dobák and Mulrenin [3].

Theorem 1.2. For sufficiently large t we have ERpK
p2q

t,t q ď t3pt`1q and ERpK
p3q

t,t,tq ď t30t3.
Moreover, for every k ě 4 and t sufficiently large the following holds

ERpK
pkq

t,...,tq ď ttk2
.

Theorem 1.2 for k “ 2 is optimal up to the factor 3 in the exponent and similar bounds
were obtained recently by Gishboliner, Milojević, Sudakov, and Wigderson [8] and by
Dobák and Mulrenin [3]. For k “ 3 there is a more substantial gap between the lower
bound (1.1) and the upper bound provided by Theorem 1.2. In view of that, it would be
interesting to decide if the cubic exponent 30t3 in the upper bound could be improved to
be quadratic.

For larger values of k the gap between the lower and the upper bound widens and in the
proof of Theorem 1.2 we made no attempt for obtaining the optimal constant in front of the
exponent k2. However, our method seems fall short to obtain a factor smaller than 1{2. In
particular, we leave it open if the k2 can be improved to opk2q or even to Opkq for k ÝÑ 8,
as suggested by the lower bound (1.1).
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§2 Preparations

The proof of Theorem 1.2 follows the approach of Dobák and Mulrenin [3]. It is based
on an unbalanced variant of Erdős’ extremal result for partite hypergraphs, which we
introduce in §2.1. Another key idea, often used to locate rainbow copies, is to consider
bounded colourings and we introduce those in §2.2.

2.1. Extremal problem for partite hypergraphs. The proof of Theorem 1.2 relies
on the extension of the Kövari–Sós–Turán theorem [9] to hypergraphs due to Erdős [4].
For completeness we include the proof of the following variant of that result for partite
hypergraphs with vertex classes of different sizes. For the inductive proof it is helpful to
consider 1-uniform hypergraphs.

Proposition 2.1. For k ě 1 let H “ pV1 Ÿ . . . ŸVk, Eq be a k-partite k-uniform hypergraph
of density d “

|E|

|V1|¨¨¨|Vk|
. If for some positive integers t1, . . . , tk we have

´ d

4k´1

¯

ś

jăi tj

|Vi| ě 2ti (2.1)

for every i P rks, then the number K
pkq

t1,...,tk
pHq of complete k-partite k-uniform hypergraphs

in H with vertex classes Uj Ď Vj and |Uj| “ tj for every j P rks satisfies

K
pkq

t1,...,tk
pHq ą

´ d

22k´1

¯

ś

jPrks tj ź

jPrks

ˆ

|Vj|

tj

˙

. (2.2)

Proof. The proof is by induction on k. For k “ 1 assumption (2.1) reduces to d|V1| ě 2t1

and yields
`

d|V1|

t1

˘

ą pd{2qt1
`

|V1|

t1

˘

. Consequently, conclusion (2.2) holds.
For the inductive step consider a k-uniform hypergraph H “ pV1 Ÿ . . . Ÿ Vk, Eq of

density d. For every vertex v P Vk we denote by Hpvq the pk ´ 1q-uniform hypergraph on
vertex classes V1, . . . , Vk´1 defined by the link of v and we set

Kpvq “ K
pk´1q

t1,...,tk´1pHpvqq ,

i.e., Kpvq is the number of complete pk ´ 1q-partite pk ´ 1q-uniform hypergraphs in Hpvq

with vertex classes Uj Ď Vj and |Uj| “ tj for every j P rk ´ 1s. Let V ‹
k Ď Vk be the set of

those vertices v with
epHpvqq ě

|E|

2|Vk|
.

In particular,
ř

vPV ‹
k

epHpvqq ě |E|{2 and, more importantly, for every v P V ‹
k the link

hypergraph Hpvq satisfies the assumption (2.1) with k replaced by k ´ 1. Consequently,
the inductive hypothesis applied to Hpvq for every v P V ‹

k yields
ÿ

vPV ‹
k

Kpvq ą
ÿ

vPV ‹
k

ˆ

epHpvqq

22k´3|V1| ¨ ¨ ¨ |Vk´1|

˙

ś

jPrk´1s tj
ź

jPrk´1s

ˆ

|Vj|

tj

˙
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and Jensen’s inequality with weights 1{|Vk| for every v P V ‹
k tells us

ÿ

vPV ‹
k

Kpvq ą |Vk| ¨

ˆ

|E|{2
22k´3|V1| ¨ ¨ ¨ |Vk´1||Vk|

˙

ś

jPrk´1s tj
ź

jPrk´1s

ˆ

|Vj|

tj

˙

“ |Vk| ¨

´ d

4k´1

¯

ś

jPrk´1s tj ź

jPrk´1s

ˆ

|Vj|

tj

˙

. (2.3)

Finally, we arrive at the desired lower bound on K
pkq

t1,...,tk
pHq by double counting and another

application of Jensen’s inequality, i.e.,

K
pkq

t1,...,tk
pHq ě

ź

jPrk´1s

ˆ

|Vj|

tj

˙

¨

ˆř

vPVk
Kpvq{

ś

jPrk´1s

`

|Vj |

tj

˘

tk

˙

(2.3)
ą

ź

jPrk´1s

ˆ

|Vj|

tj

˙

¨

ˆ

`

d
4k´1

˘

ś

jPrk´1s tj
¨ |Vk|

tk

˙

(2.1)
ą

ź

jPrk´1s

ˆ

|Vj|

tj

˙

¨

ˆ

1
2

´ d

4k´1

¯

ś

jPrk´1s tj

˙tk
ˆ

|Vk|

tk

˙

ě

´ d

22k´1

¯

ś

jPrks tj ź

jPrks

ˆ

|Vj|

tj

˙

,

and this concludes the proof of Proposition 2.1. □

2.2. Bounded colourings. For a k-partite k-uniform hypergraph H “ pV1 Ÿ . . . Ÿ Vk, Eq

and J Ď rks we write VJ for the set of |J |-element vertex sets intersecting the vertex classes
indexed by J , i.e.,

VJ “
␣

tvi1 , . . . , vi|J|
u : vij

P Vj for all j P J
(

.

Clearly, we have |V∅| “ 1 and |VJ | “
ś

jPJ |Vj|.
Roughly speaking, the proof of Theorem 1.2 pivots on a classification of the colourings

given by the following definition.

Definition 2.2. We say a colouring φ : E ÝÑ N of the edge set of a k-partite k-uniform
hypergraph H “ pV1 Ÿ . . . Ÿ Vk, Eq is pδ, Jq-bounded for some δ ą 0 and some set J Ĺ rks

if all but at most δ|VJ | of the |J |-tuples S P VJ satisfy
ˇ

ˇte P E : eJ “ S and φpeq “ ℓu
ˇ

ˇ ď δ
ˇ

ˇVrks∖J

ˇ

ˇ

for every colour ℓ P N. For j “ 0, . . . , k ´ 1 we say the colouring φ is pδ, jq-bounded, if it is
pδ, Jq-bounded for every j-element set J P rkspjq.

Moreover, we say φ is δ-bounded for some δ “ pδ0, . . . , δk´1q P p0, 1sk if φ is pδ, jq-bounded
for every j “ 0, . . . , k ´ 1.



CANONICAL RAMSEY NUMBERS FOR PARTITE HYPERGRAPHS 5

Note that being pδ,∅q-bounded simply means that no colour appears more than

δ|Vrks| “ δ|V1| ¨ ¨ ¨ |Vk|

times. Moreover, it is easy to check that p δ2

1`δ
, j`1q-boundedness implies pδ, jq-boundedness.

It is well known, that δ-bounded colourings for sufficiently small choices of δ0, . . . , δk´1

yield large rainbow subhypergraphs. In fact, being pδ, Jq-bounded implies that the number
of those obstructions to a rainbow coloured subhypergraph consisting of two edges e, e1 of
the same colour with e X e1 P VJ is at most

δ|J ||VJ ||Vrks∖J |
2 . (2.4)

This was already exploited in the work of Babai [2], of Lefmann and Rödl [10] and of Alon,
Jiang, Miller, and Pritikin [1] in similar context. The next proposition is based on the
same observation.

Proposition 2.3. For k ě 2 and δ “ pδ0, . . . , δk´1q P p0, 1sk let φ : EpK
pkq

V1,...,Vk
q ÝÑ N be

a δ-bounded colouring with of the complete k-partite k-uniform hypergraph K
pkq

V1,...,Vk
with

vertex partition V1 Ÿ . . . Ÿ Vk. If for some positive integer t ď 1
2 min

␣

|V1|, . . . , |Vk|
(

we have

δj ď
1

23k´j ¨ t2k´j´1 (2.5)

for every j “ 0, . . . , k ´ 1, then φ yields a rainbow copy of the complete k-partite k-uniform
subhypergraph K

pkq

t,...,t with vertex classes of size t.

Proof. For every i P rks we choose a random subset Wi Ď Vi of size 2t and these k choices
are carried out independently. For a subset J Ĺ rks let XJ be the random variable of the
number of pairs of edges te, e1u present in the induced subhypergraph HrW1, . . . , Wks with

e X e1
P WJ and φpeq “ φpe1

q .

Clearly, we have

EXJ

(2.4)
ď

ź

jPJ

2t

|Vj|
¨
ź

jRJ

2t ¨ p2t ´ 1q

|Vj| ¨ p|Vj| ´ 1q
¨ δ|J ||VJ ||Vrks∖J |

2
ď δ|J | ¨ p2tq2k´|J |

(2.5)
ă

t

2k

and, hence, E
“
ř

JĹrks
XJ

‰

ă t. Consequently, there exists a choice of sets Wi Ď Vi which,
after removing one vertex for every instance counted by XJ for every J Ĺ rks, induces a
rainbow copy of K

pkq

t,...,t. □

We shall use a variant of Proposition 2.3, where we move away from complete partite
hypergraphs. Instead we start with a partite hypergraph of density d and we are interested
in large rainbow subhypergraphs of similar density.
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Proposition 2.4. For k ě 2 let H “ pV1 Ÿ . . . ŸVk, Eq be a k-partite k-uniform hypergraph
of density d “

|E|

|V1|¨¨¨|Vk|
ą 0 and for δ “ pδ0, . . . , δk´1q P p0, 1sk let φ : E ÝÑ N be a

δ-bounded colouring. If for some integer m we have

2k`3

d
ď m ď min

␣

|V1|, . . . , |Vk|
(

and δj ă
1

2k`1 ¨ m2k´j
(2.6)

for every j “ 0, . . . , k ´ 1, then H contains a rainbow subhypergraph of density at least d{2
with vertex classes Uj Ď Vj and |Uj| “ m for every j P rks.

The proof of Proposition 2.4 parallels the proof of Proposition 2.3. Roughly speaking,
we show that a randomly chosen subhypergraph inherits the density of H. However, for
technical reasons we will refrain from removing vertices from the randomly chosen vertex
sets and instead we require smaller values of δj in the assumption (2.6) leading to no
expected obstructions for the rainbow subhypergraph.

Proof. For every i P rks we choose a random subset Wi Ď Vi of size m and these k choices
are carried out independently. Let HW “ HrW1, . . . , Wks be the random subhypergraph
induced on the chosen vertex sets. Again for every J Ĺ rks we consider the random
variable XJ counting the pairs of edges te, e1u spanned in HW with

e X e1
P WJ and φpeq “ φpe1

q .

Appealing to the pδ|J |, Jq-boundedness of φ we have

EXJ

(2.4)
ď

ź

jPJ

m

|Vj|
¨
ź

jRJ

m ¨ pm ´ 1q

|Vj| ¨ p|Vj| ´ 1q
¨ δ|J ||VJ ||Vrks∖J |

2
ă δ|J | ¨ m2k´|J | (2.6)

“
1

2k`1

and, owing to Markov’s inequality, we arrive at

P
´

ÿ

JĹrks

XJ ą 1
¯

ă
1
2 . (2.7)

For the edge density of HW we consider the random variable Y “
ř

ePE 1e “ EpHWq.
Clearly,

EY “

k
ź

i“1

m

|Vi|
¨ |E| “ dmk

and we can bound the variance by

Var Y ď EY `
ÿ

∅‰JĹrks

ÿ

ePE

ÿ

fPE
eXfPVJ

Er1e1f s ď EY `
ÿ

∅‰JĹrks

mk´|J |
¨ EY ă 2kmk´1EY .

Consequently, Chebyshev’s tells us

P
´

Y ă
1
2EY

¯

ď
Var Y

p1
2EY q2 ď

2k`2mk´1

dmk
ď

2k`2

dm

(2.6)
ă

1
2 . (2.8)
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Owing to the estimates (2.7) and (2.8), there exist subsets Ui Ď Vi for every i P rks each of
size m such that no two edges of HrU1, . . . , Uks have the same colour under φ and we have
epHrU1, . . . , Uksq ě dmk{2. □

§3 Proof the main result

In this section we deduce Theorem 1.2 from Propositions 2.1 – 2.4.

Proof of Theorem 1.2. We first address the general case giving a slightly weaker bound
for k “ 2 and 3. For a fixed integer k, let t is sufficiently large, set c “ 1{22k`1. We fix
auxiliary constants

δj “

´ c

tk

¯p2ktkqk´1´j

and mj “

´ 1
δj

¯tk

“

´tk

c

¯p2kqk´1´jtkpk´jq

for j “ 2, . . . , k ´ 1 and we set

δ1 “ δ0 “

´ c

tk

¯p2ktkqk´2

and δ “ pδ0, . . . , δk´1q. Moreover, by assumption of Theorem 1.2 we have

n “ ttk2
.

The choices above yield the following order of the involved constants

2 ď k ă
1
c

ă t ă
1

δk´1
ă mk´1 ă ¨ ¨ ¨ ă

1
δ2

ă m2 ă
1
δ1

“
1
δ0

ă n .

Besides this monotonicity we shall employ a few more relations between these constants.
In fact, the proof relies on Propositions 2.1 – 2.4 and their applications will be justified
by the tailored inequalities (3.1)–(3.5) below. These estimates are mainly based on the
facts that for j ě 2 we have mj “ δ´tk

j , that δj´1 “ δ2ktk

j , and that we assume that t is
sufficiently large as a function of k.

We shall apply Proposition 2.1 in three different ways and for those applications we rely
on the following three sets of inequalities

´ δ0

4k´1

¯tk´1

n ě 2t , (3.1)

δ1

4k´1 ¨
a

δ1n ě 2t and
´ δ1

4k´1

¯tk´1

n ě 2t , (3.2)

and for j “ 2, . . . , k ´ 1
´δ2

j {2
4k´1

¯tj´1

mj ě 2t and
´δ2

j {2
4k´1

¯tk´1

n ě 2t . (3.3)

Similarly, preparing for an application of Proposition 2.3, we observe

δk´1 “
1

22k`1 ¨ tk
and δj ď δk´2 ď

1
23k´j ¨ t2k´j´1 for j “ 0, . . . , k ´ 2 . (3.4)
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Finally, for an intended application of Proposition 2.4, we note that for all 0 ď j ă j‹ ď k´1
and j‹ ě 2 we have

δj‹
mj‹

ą 2j‹`3 and δj

δj‹

ă
1

2j‹`1m2j‹´j
j‹

. (3.5)

This concludes the discussion of the constants.
We shall show that every colouring φ : EpKpkq

n,...,nq ÝÑ N yields a canonical copy of K
pkq

t,...,t.
Let V1 Ÿ . . . Ÿ Vk be the vertex partition of Kpkq

n,...,n. Given a colouring φ we consider several
cases depending on the ‘boundedness properties’ of φ.

Note that, if φ is indeed δ-bounded, then in view of (3.4) our choice of δ yields a rainbow
coloured copy of K

pkq

t,...,t by Proposition 2.3. Consequently, there exists a minimal index
j‹ P t0, . . . , k ´ 1u such that φ is not pδj‹

, j‹q-bounded and let J‹ P rkspj‹q be a set that
witnesses this and without loss of generality we may assume J‹ “ t1, . . . , j‹u.

In case j‹ “ 0, then one of the colours appears at least δ0n
k times. In view of inequal-

ity (3.1), Proposition 2.1 applied with

d “ δ0 , n1 “ ¨ ¨ ¨ “ nk “ n , and t1 “ ¨ ¨ ¨ “ tk “ t ,

yields a monochromatic copy of K
pkq

t,...,t in this case.
In case j‹ “ 1, then there is a set U Ď V1 of size at least δ1n such that every u P U is

contained in at least δ1n
k´1 edges of the same colour and we denote this colour by ℓpuq.

The box principle yields a subset U‹ Ď U of size at least
?

δ1n such that either all
colours ℓpuq for u P U‹ are equal or they are all distinct. We consider the k-partite
k-uniform hypergraph H‹ with vertex partition

U‹ Ÿ V2 Ÿ . . . Ÿ Vk

and
EpH‹q “

ď

uPU‹

␣

e P Vrks : u P e and φpeq “ ℓpuq
(

.

Since every vertex u P U‹ has degree at least δ1n
k´1, the hypergraph H‹ has density at

least δ1. Again we apply Proposition 2.1 to H‹, this time with

d “ δ1 , n1 “ |U‹| ě
a

δ1n , n2 “ ¨ ¨ ¨ “ nk “ n , and t1 “ ¨ ¨ ¨ “ tk “ t ,

which is justified by (3.2) and we obtain either a monochromatic or an t1u-canonical copy
of K

pkq

t,...,t. This concludes the proof for the cases j‹ ď 1.
It is left to consider the case J‹ “ t1, . . . , j‹u for some j‹ “ 2, . . . , k ´ 1. Let UJ‹

Ď VJ‹

be a set of size at least δj‹
nj‹ such that every j‹-tuple S P UJ‹

extends to at least δj‹
nk´j‹

edges of the same colour and we denote this colour by ℓpSq. We consider the j‹-partite
j‹-uniform hypergraph G with vertex partition

V1 Ÿ . . . Ÿ Vj‹
and EpGq “ UJ‹

.
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Moreover, we define a colouring φG : EpGq ÝÑ N through

φGpSq “ ℓpSq

for all S P EpGq. Owing to the minimal choice of j‹, a moment of thought reveals that
the colouring φG is

`

δj{δj‹
, j
˘

-bounded for every j “ 0, . . . , j‹ ´ 1. In other words, the
colouring φG of the j‹-partite j‹-uniform hypergraph G is

`

δ0{δj‹
, . . . , δj‹´1{δj‹

˘

-bounded.
In view of the estimates (3.5), we may apply Proposition 2.4 to G with

k “ j‹ , d “ δj‹
,

`

δ0{δj‹
, . . . , δj‹´1{δj‹

˘

, and mj‹
.

This way we obtain a rainbow j‹-uniform subhypergraph G‹ of density at least δj‹
{2 with

vertex classes Uj Ď Vj and |Uj| “ m for every j P rj‹s.
Finally, we consider the natural k-uniform extension H‹ of G‹ on the vertex partition

U1 Ÿ . . . Ÿ Uj‹
Ÿ Vj‹`1 Ÿ . . . Ÿ Vk

with

EpH‹q “
ď

SPEpG‹q

␣

e P Vrks : S Ď e and φpeq “ ℓpSq
(

and note that the colouring φ restricted to H‹ is J‹-canonical. Moreover, since every
j‹-tuple S P EpG‹q extends to at least δj‹

nk´j‹ distinct k-tuples of colour ℓpSq under φ, the
k-uniform hypergraph H‹ has density at least δ2

j‹
{2. Another application of Proposition 2.1

to H‹ with

d “
δ2

j‹

2 , n1 “ ¨ ¨ ¨ “ nj‹
“ m , nj‹`1 “ ¨ ¨ ¨ “ nk “ n , and t1 “ ¨ ¨ ¨ “ tk “ t ,

which is justified by the estimates (3.3), yields a J‹-canonical copy of K
pkq

t,...,t. This concludes
the proof of Theorem 1.2 for k ě 4 and it is left to discuss the better bounds on n for the
cases k “ 2 and k “ 3.

For the case k “ 2 one can check that the same proof works for n “ t3pt`1q for sufficiently
large t with δ1 “ δ0 “ 2´6t´3. In fact, for graphs the proof is somewhat simpler, since the
case j‹ ě 2 does not arise.

Similarly, for k “ 3 and n “ t30t3 one can check that the choices

δ2 “
1

27t3 , m2 “ t7t , and δ1 “ δ0 “
1

210 ¨ t29t

satisfy inequalities (3.1)–(3.5) for sufficiently large t and, consequently, the proof presented
yields the claimed bound in this case. □
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