Kapitel 3: Konvergenz von Folgen und Reihen

3.1 Folgen

Es sei V ein normierter Vektorraum mit Norm $\|\cdot\|$

Eine **Folge** $(a_n)_{n\in\mathbb{N}}$ ist eine Abbildung $\mathbb{N}\to V$, $n\to a_n\in V$

Beispiele:

- 1) Reelle Folgen ($V = \mathbb{R}$): $a_n = \frac{1}{n}$
- 2) Komplexe Folgen ($V = \mathbb{C}$): $a_n = i^n$
- 3) Folgen von (reellen) Vektoren ($V = \mathbb{R}^d$, d = 3)

$$a_n = \left(\frac{1}{n}, n, \frac{1}{n^2}\right)^T$$

62

Rechenoperationen mit Folgen:

Die Menge aller Folgen in V ist wieder ein Vektorraum $V^{\mathbb{N}}$

$$(a_n)_{n\in\mathbb{N}} + (b_n)_{n\in\mathbb{N}} := (a_n + b_n)_{n\in\mathbb{N}}$$

$$\lambda(a_n)_{n\in\mathbb{N}} := (\lambda a_n)_{n\in\mathbb{N}}$$

Rekursion, Iteration:

Definiere eine Folge in V rekursiv

$$a_{n+1} := \Phi(n, a_n)$$

wobei

$$\Phi: \mathbb{N} \times V \to V$$

eine Iterationsvorschrift ist.

Beispiel: Intervallhalbierung, Bisektionsverfahren Berechnung einer Nullstelle einer stetigen Funktion $f: \mathbb{R} \to \mathbb{R}$ Gegeben seien zwei reelle Zahlen a und b mit $f(a) \cdot f(b) < 0$ Definiere zwei Folgen (u_n) und (v_n) mittels

$$(u_0,v_0) := (a,b)$$

für $n=1,2,...$
 $x := (u_{n-1}+v_{n-1})/2$
falls $f(x) = 0 \rightarrow \text{fertig}$
falls $(f(x) \cdot f(v_{n-1}) < 0) :$
 $u_n := x \quad v_n := v_{n-1}$
sonst
 $u_n := u_{n-1} \quad v_n := x$

64

Sei
$$f(t) = t^2 - 2$$
, $a = 1$ und $b = 2$, so erhält man

n	u_n	v_n
0	1.0000 00000	2.0000 00000
1	1.0000 00000	1.5000 00000
2	1.2500 00000	1.5000 00000
3	1.3750 00000	1.5000 00000
÷	:	ŧ
10	1.4140 62500	1.4150 39063
20	1.4142 13181	1.4142 14134
30	1.4142 13562	1.4142 13562
:	:	:

Konvergenz ist relativ langsam!

Beispiel: Newton-Verfahren

Nullstelle einer stetig-differenzierbaren Funktion $f:\mathbb{R} \to \mathbb{R}$

$$t_{n+1} := t_n - \frac{f(t_n)}{f'(t_n)} \quad (f'(t_n) \neq 0)$$

mit Startwert t_0

Verfahren konvergiert, falls t_0 hinreichend nahe bei einer Nullstelle t^* liegt Sei $f(t) = t^2 - 2$ und $t_0 = 1$, so erhält man

n	t_n
0	1.0000 00000
1	1.5000 00000
2	1.4166 66667
3	1.4142 15686
4	1.4142 13562
÷	i i

66

Definition: Konvergenz von Folgen

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in V (Vektorraum mit Norm $\|\cdot\|$)

- 1) Für $n_j\in\mathbb{N}$ mit $1\leq n_1< n_2< n_3<\dots$ heißt $(a_{n_j})_{j\in\mathbb{N}}$ eine **Teilfolge** von $(a_n)_{n\in\mathbb{N}}$
- 2) Die Folge (a_n) heißt **beschränkt**, falls es ein C>0 gibt mit: $\forall\,n\in\mathbb{N}\;:\;\|a_n\|\leq C$
- 3) Eine Folge (a_n) heißt konvergent mit Grenzwert (Limes) $a \in V$, falls

$$\forall \varepsilon > 0 : \exists N = N(\varepsilon) \in \mathbb{N} : \forall n \ge N : ||a_n - a|| < \varepsilon$$

Eine nicht-konvergente Folge heißt divergent

4) Eine Folge (a_n) heißt **Cauchy–Folge**, falls

$$\forall \varepsilon > 0 : \exists N = N(\varepsilon) \in \mathbb{N} : \forall n, m \ge N : ||a_n - a_m|| < \varepsilon$$

Satz: Es gelten:

- a) (a_n) konvergent $\Rightarrow (a_n)$ beschränkt
- b) (a_n) konvergent $\Rightarrow (a_n)$ Cauchy–Folge
- c) Der Grenzwert einer Folge ist eindeutig bestimmt

Beweis:

Teil a): Ist (a_n) konvergent, so gilt für $\varepsilon > 0$ und $n \ge N(\varepsilon)$

$$||a_n|| = ||a_n - a + a|| < \varepsilon + ||a||$$

Damit ist die Folge (a_n) beschränkt mit der Konstanten C>0 gegeben durch

$$C := \max\{\|a_1\|, \|a_2\|, \dots, \|a_{N-1}\|, \|a\| + \varepsilon\}$$

Also

$$\forall n \in \mathbb{N} : ||a_n|| < C$$

68

Teil b): Für gegebenes $\varepsilon > 0$ gilt:

$$||a_n - a_m|| = ||a_n - a + a - a_m||$$

$$\leq ||a_n - a|| + ||a_m - a||$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

für alle $n, m \ge N = N(\varepsilon/2)$

Teil c): Für $\varepsilon > 0$ gelte:

$$||a_n - a|| < \varepsilon \quad (\forall n \ge N_1(\varepsilon))$$

$$||a_n - \overline{a}|| < \varepsilon \quad (\forall n \ge N_2(\varepsilon))$$

Dann folgt für $n \ge \max\{N_1, N_2\}$ die Ungleichung

$$||a - \overline{a}|| = ||a - a_n + a_n \overline{a}|| \le ||a_n - a|| + ||a_n - \overline{a}|| < 2\varepsilon$$

Dies gilt für jedes $\varepsilon > 0$, also gilt $a = \overline{a}$

Notation: Für eine konvergente Folge (a_n) schreiben wir

$$\lim_{n\to\infty} a_n = a \quad \text{oder} \quad a_n \to a \ (n\to\infty)$$

Uneigentliche Konvergenz bzw.

Divergenz gegen den uneigentlichen Grenzwert $\pm \infty$:

Für reelle Folgen definieren wir zusätzlich

$$\lim_{n \to \infty} a_n = \infty : \Leftrightarrow \forall C > 0 : \exists N \in \mathbb{N} : \forall n \ge N : a_n > C$$

$$\lim_{n \to \infty} a_n = -\infty : \Leftrightarrow \forall C > 0 : \exists N \in \mathbb{N} : \forall n \ge N : a_n < -C$$

70

Bemerkung: Die Umkehrung zu der Aussage in Teil b)

$$(a_n)$$
 Cauchyfolge \Rightarrow (a_n) konvergent

gilt nur in gewissen normierten Räumen, nämlich den sogenannten

vollständigen Räumen oder Banachräumen

Vollständige Euklidische Vektorräume nennt man auch

Hilberträume

Beispiele vollständiger Räume: $(\mathbb{R}, |\cdot|), (\mathbb{C}, |\cdot|), (\mathbb{R}^n, ||\cdot||), (C[a, b], ||\cdot||_{\infty})$

Beispiel für einen nicht vollständigen Raum: $(C[a,b],\|\cdot\|_2)$

Satz: Sind (a_n) und (b_n) zwei konvergente Folgen, so konvergieren auch die beiden Folgen $(a_n + b_n)$ und (λa_n) und es gelten

a)
$$\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$$

b)
$$\lim_{n\to\infty} (\lambda a_n) = \lambda \lim_{n\to\infty} a_n$$

Beweis: Sei

$$a := \lim_{n \to \infty} a_n \qquad b := \lim_{n \to \infty} b_n$$

Teil a): Für $n \ge \max\{N_1(\varepsilon/2), N_2(\varepsilon/2)\}$ gilt

$$||(a_n + b_n) - (a - b)|| \le ||a_n - a|| + ||b_n - b|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Teil b): Für $n \geq N_1(\varepsilon/|\lambda|)$ und $\lambda \neq 0$ gilt

$$\|\lambda a_n - \lambda a\| = |\lambda| \cdot \|a_n - a\| < |\lambda| \frac{\varepsilon}{|\lambda|} = \varepsilon$$

Der Fall $\lambda = 0$ ist trivial

72

Konvergenzgeschwindigkeit:

Definition: Die Folge (a_n) sei konvergent mit Grenzwert a

a) Die Folge (a_n) heißt (mindestens) **linear konvergent**, falls eine Konstante 0 < C < 1 und ein Index $N \in \mathbb{N}$ existiert mit:

$$\forall n \geq N : ||a_{n+1} - a|| \leq C||a_n - a||$$

b) Die Folge (a_n) heißt (mindestens) **superlinear konvergent**, falls eine nicht-negative Nullfolge $C_n \geq 0$ mit $\lim_{n \to \infty} C_n = 0$ existiert, so dass

$$\forall n : ||a_{n+1} - a|| \le C_n ||a_n - a||$$

c) Die Folge (a_n) heißt konvergent mit der **Ordnung** (mindestens) p>1, falls eine nicht-negative Konstante $C\geq 0$ existiert, so dass

$$\forall n : ||a_{n+1} - a|| \le C||a_n - a||^p$$