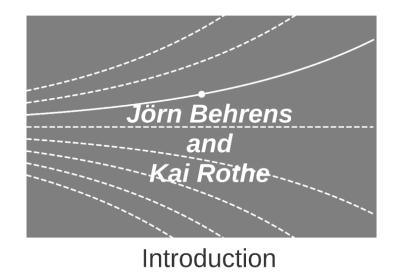
Differential Equations I



Chapter 6.1-6.2

Your Prof

Coordinates:

Prof. Dr. Jörn Behrens Uni Hamburg Mathematik/ CEN Grindelberg 5, Room 411 (4rd floor) Bundesstraße 55, Room 120 (1st floor) Tel. (040) 42838 7734 mail joern.behrens@uni-hamburg.de

Contact me by mail (no regular office hours)

Background

Short CV

since 2009 Prof. @ Uni Hamburg, KlimaCampus/Dept, Mathematics 2006–2000 Head Tisural Group @ AWI, Alginct @ Uni Bremen 2005 Habilitation (Mathematics) @ TUM.
2005 Habilitation (Mathematics) @ TUM.
2005 Assistant Porf. (Alvad. Rat) @ TUM, Sci. Computing 1996–1999 Post Doc @ AWI
1991–1996 Dr. err. nat. (Mathematics) @ AWI/Uni Bremen 1991—1996 Dr. err. nat. (Mathematics) @ Hot Born

Research Acitivities

Adaptive Tsunami Modelling
Adaptive Atmosphere Modelling
Mesh Generation
Multi-Scale Simulation

Coordinates:

Prof. Dr. Jörn Behrens
Uni Hamburg Mathematik/ CEN
Grindelberg 5, Room 411 (4rd floor)
Bundesstraße 55, Room 120 (1st floor)
Tel. (040) 42838 7734
mail joern.behrens@uni-hamburg.de

Contact me by mail (no regular office hours)

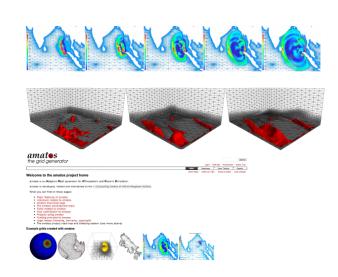
Background

Short CV

since 2009 Prof. @ Uni Hamburg, KlimaCampus/Dept. Mathematics 2006-2009 Head Tsunami Group @ AWI, Adjunct @ Uni Bremen 2005 Habilitation (Mathematics) @ TUM 2003-2004 Visiting Scientist @ NCAR, Boulder, CO, USA 1998-2006 Assistent Prof. (Akad. Rat) @ TUM, Sci. Computing 1996-1998 Post-Doc @ AWI 1991-1996 Dr. rer. nat. (Mathematics) @ AWI/Uni Bremen 1991 Diploma Mathematics @ Uni Bonn

Research Acitivities

Adaptive Tsunami Modelling
Adaptive Atmosphere Modelling
Mesh Generation
Multi-Scale Simulation



Course Info

Literature

G. Bärwolff: Höhere Mathematik für Naturwissenschaftler und Ingenieure (2. Aufl.), Springer, Berlin/Heidelberg, 2009.

Formelsammlung

K.Vetters: Formeln und Fakten im Grundkurs Mathematik, Vieweg+Teubner Verlag, Wiesbaden, 2004.

Übungsleitung und Übungen

Dr. Kai Rothe/Dr. Claudine von Hallern

https://www.math.uni-hamburg.de/home/rothe/ https://www.math.uni-hamburg.de/en/numgeo/team/vonhallern-claudine-dr.htm

Material:

https://www.math.uni-hamburg.de/teaching/export/tuh Stud IP

Please come prepared!

(n

Literature

Examples!

G. Bärwolff: Höhere Mathematik für Naturwissenschaftler und Ingenieure (2. Aufl.), Springer, Berlin/Heidelberg, 2009.

Formelsammlung

K.Vetters: Formeln und Fakten im Grundkurs Mathematik, Vieweg+Teubner Verlag, Wiesbaden, 2004.

Übungsleitung und Übungen

Dr. Kai Rothe/Dr. Claudine von Hallern

https://www.math.uni-hamburg.de/home/rothe/ https://www.math.uni-hamburg.de/en/numgeo/team/vonhallern-claudine-dr.html

Material:

https://www.math.uni-hamburg.de/teaching/export/tuhh/ Stud.IP

Please come prepared!

A Bit of History

History

- Differential equations appear first in works of Leibniz and Newton.
- The equations were motivated by time dependent physical problems.

Philosophy

- Solution of a differential equation means predicting a state in the future!
- This paradigm influenced the philosophical main-stream: Determinism.
- Only in the early 20th century Poincaré destroyed the deterministic viewpoint (basis for dynamical systems).

10.

History:

- Differential equations appear first in works of Leibniz and Newton.
- The equations were motivated by time dependent physical problems.

Idea:

- ullet Observe a system at two stages/times t_1 and t_2 , obtain states $s(t_1), s(t_2)$
- Determine difference of states and obtain principles: $\frac{s(t_2)-s(t_1)}{t_2-t_1} \approx g(t)$.
- Conduct a limit process and obtain differential equation: $\lim_{t_1 \to t_2} \frac{s(t_2) s(t_1)}{t_2 t_1} = \frac{ds}{dt} = g(t)$.

Gottfried Wilhelm Leibniz (1646-1716)

Isaac Newton (1642-1726)

Philosophy:

- Solution of a differential equation means predicting a state in the future!
- This paradigm influenced the philosophical main-stream: Determinism.
- Only in the early 20th century Poincaré destroyed the deterministic viewpoint (basis for dynamical systems).

Henri Poincaré (1854-1912)

Remark:

- In the 18th century the concept of diff. equations was extended to several dimensions: *Partial Differential Equations*.
- By this differential equations (in one variable) became *ordinary*.

Applications

Newton's Mechanics

We can write this low as an ODE:

 $m \cdot x^*(t) = F(t,x,x'),$ with m the mass, x^{μ} the acceleration, F a force function depending on $t \in I \subset \mathbb{R}$, the time in an interval $I, x \in \mathbb{R}^2$, the brackion, x^{μ} , the velocity of a mass particle. This is an ODE of second order, since x^{μ} is involved.

- Mathematical modeling of problem by setting up differential
 Formulation of suitable initial and boundary conditions

- Solution of differential equation
 Transfer of mathematical solution to original problem

Reaction Kinetics

Attent 2 derivation species, S_s , S_s , and S_s with concentration densities or near densities g_1 , g_2 , and g_3 respectively. We assure rections $S_s = \frac{g_1}{g_2} - \frac{g_2}{g_3} - \frac{g_3}{g_3} + \frac{g_3}{g_3} - \frac{g_3}{g_3} + \frac{g_3}{g_3} - \frac{g_3}{g_3} + \frac{g_3}{g_3} - \frac{g_3}{g_3} + \frac{g_3}{g_3} - \frac{g_3$

 $x_1' + x_2' + x_3' = \sum_{i \in L_1} x_i' = 0,$ out to $\sum_i x_i = \text{const.}$, i.e. total mass is constant a assume that the initial concentrations are given by

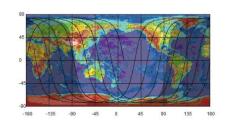
 $x_1(0)=x_{1|C}\quad x_2(0)=x_{2|C}$ where the initial concentration $x_2(0)$ results from the conservation of mass equations.

Biological Systems

 $x'-ax;\quad x(t_0)-x_0,$

analytical solution: $x(t) = x_0 \cdot e^{a(t-a_0)}. \label{eq:xt}$

x' = (a - bx)x; $x(t_0) = x_0.$



Newton's Mechanics

The principle first law of mechanics is given by

force = $mass \times acceleration$.

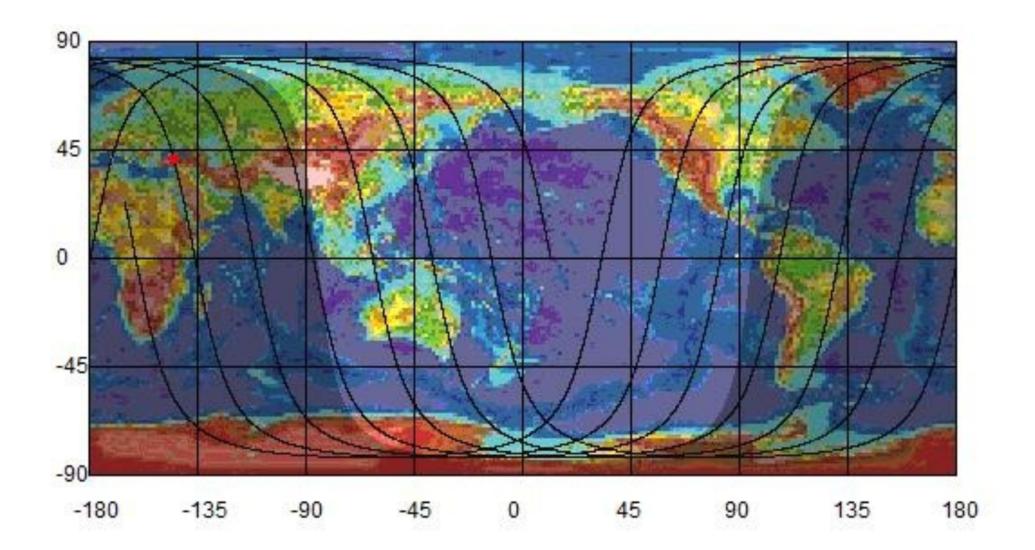
We can write this law as an ODE:

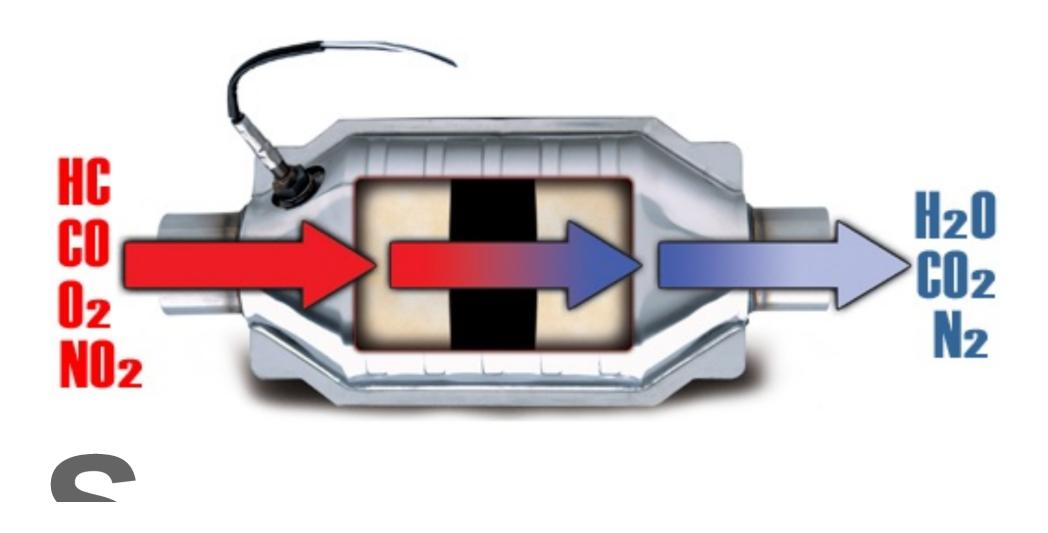
$$m \ x''(t) = F(t,x,x'),$$

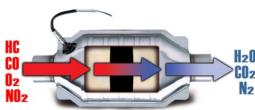
with m the mass, x'' the acceleration, F a force function depending on $t \in I \subset \mathbb{R}$, the time in an interval I, $x \in \mathbb{R}^3$, the location, x', the velocity of a mass particle. This is an ODE of second order, since x'' is involved.

Fields of application

- satellite trajectories, planetary or astro-mechanics
- ballistic problems
- multi-body systems
- robotics







Reaction Kinetics

Assume 3 chemical species, S_1 , S_2 , and S_3 , with concentration densities or mass densities x_1 , x_2 , and x_3 respectively. We assume reactions

$$S_1 \xrightarrow{k_1} S_2,$$

$$S_2 + S_3 \xrightarrow{k_2} S_1 + S_3,$$

$$S_2 + S_2 \xrightarrow{k_3} S_2 + S_3,$$

with reaction constants k_1 , k_2 , and k_3 respectively. These reaction equations represent a *catalytic converter*.

This transforms into a system of ODEs, when we consider the mass effects:

$$x'_1 = -k_1x_1 + k_2x_2 \cdot x_3,$$

 $x'_2 = k_1x_1 - k_2x_2 \cdot x_3 - k_3x_2^2,$

mass densines $x_1, x_2,$ and x_3 respectively. We assume reactions

$$S_1 \xrightarrow{k_1} S_2,$$
 $S_2 + S_3 \xrightarrow{k_2} S_1 + S_3,$
 $S_2 + S_2 \xrightarrow{k_3} S_2 + S_3,$

with reaction constants k_1 , k_2 , and k_3 respectively. These reaction equations represent a *catalytic converter*.

This transforms into a system of ODEs, when we consider the mass effects:

$$x_1' = -k_1x_1 + k_2x_2 \cdot x_3,$$

 $x_2' = k_1x_1 - k_2x_2 \cdot x_3 - k_3x_2^2,$
 $x_3' = + k_3x_2^2.$

$$egin{array}{lll} x_1' &=& -k_1x_1 & + k_2x_2 \cdot x_3, \ x_2' &=& k_1x_1 & - k_2x_2 \cdot x_3 & - k_3x_2^2, \ x_3' &=& + k_3x_2^2. \end{array}$$

We need further conditions for a unique solution. For conservation of mass, we assume that

$$x_1' + x_2' + x_3' = \sum_{i=1:3} x_i' = 0,$$

which is equivalent to $\sum_{i} x_{i} = \text{const.}$, i.e. total mass is constant over time. Additionally, we assume that the initial concentrations are given by

$$x_1(0) = x_{1,0}; \quad x_2(0) = x_{2,0},$$

where the initial concentration $x_3(0)$ results from the conservation of mass equations.

Biological Systems

Consider the simple model of exponential growth of a population (think of cells that duplicate in each time interval τ). Since the exponential function is its own derivative (up to a constant) this can be written as

$$x'=ax; \quad x(t_0)=x_0,$$

analytical solution:

$$r(t) = r_0 \cdot e^{a(t-t_0)}$$

$$x'=ax; \quad x(t_0)=x_0,$$

analytical solution:

$$x(t) = x_0 \cdot e^{a(t-t_0)}.$$

We can improve this model by assuming a maximum number of individuals (a saturation) by exchanging

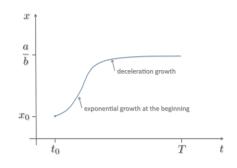
 $a \longrightarrow a - bx$

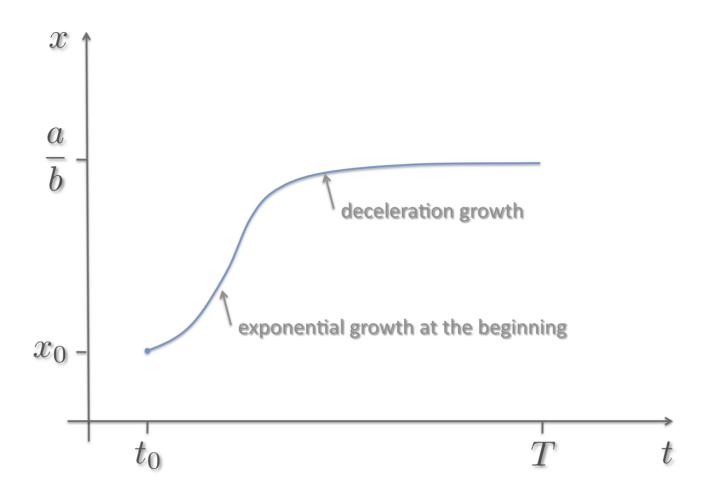
We can improve this model by assuming a maximum number of individuals (a saturation) by exchanging

$$a \longrightarrow a - bx$$
.

This yields a non-linear equation

$$x'=(a-bx)x; \quad x(t_0)=x_0.$$





~ (~ ~~/~, ~(~0) ~~0.

$$x'_1(t) = (a - bx_2(t))x_1(t),$$

 $x'_2(t) = (cx_1(t) - d)x_2(t).$

This represents a system of ODEs, called the Lottka-Voltera equations.

As a Principle: Application of differential equations to technical problems

- 1. Mathematical modeling of problem by setting up differential equation
- 2. Formulation of suitable initial and boundary conditions
- 3. Solution of differential equation
- 4. Transfer of mathematical solution to original problem

Basic Terms

Definition (Ordinary Differential Equation): An ordinary differential equation of oder n (n-th order ODE) for a function y=y(x) is an equation of x,y and the derivatives of y up to (including) n-th order:

$$F(x, y, y', y'', \dots, y^{(n)}) = 0.$$
 (implicit form)

If the equation can be solved for the highest derivative in y, then we obtain the

$$y^{(n)} = f(x,y,y',y'',\dots,y^{(n-1)}) \quad (\text{explicot form}).$$

We call the function y, solving the ODE solution or integral of the ODE.

Definition (Initial and Boundary Values): Conditions on the solution of the ODE that apply to exactly one value of the independent variable x are called initial conditions, otherwise boundary conditions.

If the solution of an ODE is required to fulfill initial conditions, we call this problem

an initial value problem (IVP).

Correspondingly, a boundary value problem (BVP) is given, when the solution is required to fulfill boundary conditions.

Definition (Ordinary Differential Equation):

An ordinary differential equation of oder n (n-th order ODE) for a function y=y(x) is an equation of x,y and the derivatives of y up to (including) n-th order:

$$F(x, y, y', y'', \dots, y^{(n)}) = 0.$$
 (implicit form)

If the equation can be solved for the highest derivative in y, then we obtain the form:

$$y^{(n)} = f(x, y, y', y'', \dots, y^{(n-1)})$$
 (explicot form).

We call the function y, solving the ODE solution or integral of the ODE.

2

Definition (Initial and Boundary Values):

Conditions on the solution of the ODE that apply to exactly one value of the independent variable x are called initial conditions, otherwise boundary conditions.

If the solution of an ODE is required to fulfill initial conditions, we call this problem an initial value problem (IVP).

Correspondingly, a boundary value problem (BVP) is given, when the solution is required to fulfill boundary conditions.

Note Instead of y = y(x), we may also use y = y(t), since many ODEs describe behavior of a system in time.

ODEs of order 1

Preliminary Remark

- Let the ODE be given in explicit form: y' = f(x, y).
- By this, the ODE prescribes in each $x,y\in D_f$, the domain of f, a "slope" y' of the solution graph.
- ullet We will call a short section with slope y' in (x,y) as line element.

Solvability of Differential Equation

- Let f(x,y) be defined in a domain $D_f \subset \mathbb{R}^2$ and let $(x_0,y_0) \in D_f$.
- An initial value problem (IVP) is given by

 $y'=f(x,y)\quad \text{with}\quad y(x_0)=y_0.$

Further Terms

- $\bullet \ \ {\rm The \ function} \ y=\phi(x,C) \ {\rm is \ called \ general \ solution \ of} \ y'=f(x,y).$
- For a certain C_0 one obtains a particular solution $y=\phi(x,C_0)$.
- If a solution $y=\Phi(x)$ has the property that at least one other solution runs through each of its points, then it is called <u>singular</u> solution.

Remarks:

- The solution $y:I\to\mathbb{R}$ of the NP is maximal in the following sense: y(x) runs to the boundary of D_I and cannot be further extended in D_I as a continuously differentiable curve. Under condition 2 of the proposition there exists exactly one such maximal solution to the NP and I is the maximal domain/interest.
- · Continuity is sufficient for existence only, uniqueness follows from condition
- If f is continuously partially differentiable in D_f, then the solutions to y' = f(x, y) form a family y = φ(x, C), where each initial condition corresponds to one value of C.

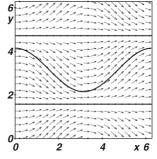
Preliminary Remark:

- Let the ODE be given in explicit form: y' = f(x, y).
- By this, the ODE prescribes in each $x,y\in D_f$, the domain of f, a "slope" y' of the solution graph.
- ullet We will call a short section with slope y' in (x,y) as line element.

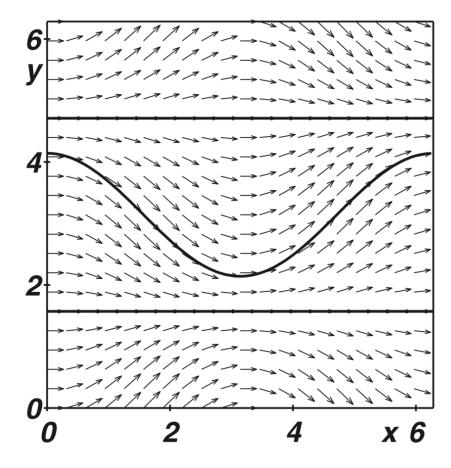
Definition (Slope Field):

The slope field of an ODE is given by the entire set of line elements.

Remark: the solutions of y' = f(x, y) represent curves that "fit" into the slope field.



Slope field of the ODE $y' = \sin x \cos y$



Slope field of the ODE $y' = \sin x \cos y$

Solvability of Differential Equations:

- Let f(x,y) be defined in a domain $D_f \subset \mathbb{R}^2$ and let $(x_0,y_0) \in D_f$.
- An initial value problem (IVP) is given by

$$y' = f(x, y) \quad \text{with} \quad y(x_0) = y_0.$$

Proposition (Existence and Uniquenes):

- 1. Let f(x,y) in D_f be continuous. Then in some interval $I=\{x: x_0-a < x < x_0+b\}$ around x_0 (a,b>0 suitable) there exists at least one solution y(x) of the IVP.
- 2. Let the function f(x,y) and its partial derivative $\frac{\partial f}{\partial y}(x,y)$ in D_f be continuous. Then there is exactly one solution y(x) to the IVP through each point $(x_0,y_0)\in D_f$, which exists in an interval I around x_0 .
- 3. Each solution curve y(x) of the IVP can be extended to both directions (i.e., for $x < x_0$ and $x > x_0$) until it reaches or gets arbitrarily close to the boundary of the domain D_f , resp.

Remarks:

5

- ullet The solution $y:I o\mathbb{R}$ of the IVP is maximal in the following sense: y(x) runs to the boundary of D_f and cannot be further extended in D_f as a continuously differentiable curve. Under condition 2 of the proposition there exists exactly one such maximal solution to the IVP and I is the maximal domain/interval.
- Continuity is sufficient for existence only, uniqueness follows from condition 2.
- If f is continuously partially differentiable in D_f , then the solutions to y' = f(x,y) form a family $y = \phi(x,C)$, where each initial condition corresponds to one value of C.

Profit for the profit men

Further Terms:

- The function $y = \phi(x, C)$ is called general solution of y' = f(x, y).
- For a certain C_0 one obtains a particular solution $y = \phi(x, C_0)$.
- If a solution $y = \Phi(x)$ has the property that at least one other solution runs through each of its points, then it is called singular solution.

Course Info

ODEs of order 1