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A Bit of Histo

History:

« Differential equations appear first in works
of Leibniz and Newton.

« The equations were motivated by time dependent
physical problems.

‘Gouied Wiheim Leiniz (1646-1716)

1saac Newton (1642-1726)

Philosophy:
« Solution of a differential equation means predicting
a state in the future!
o This paradigm influenced the philosophical main-stream:
Determinism.

o Only in the early 20th century Poincaré destroyed the
deterministic viewpoint (basis for dynamical systems).

Henn Poincaré (1854-1912)
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History:

e Differential equations appear first in works
of Leibniz and Newton.

e The equations were motivated by time dependent
physical problems.

Idea:

e Observe a system at two stages/times ¢; and ¢,
obtain states s(t1), s(t2)

e Determine difference of states and

obtain principles: ﬂt—i;u;t—ll ~ g(t)-

Attp “cdn2.spiegel. defimages/ ; panolée-ytbb-50455 ipg

Isaac Newton (1642-1726)

e Conduct a limit process and
obtain differential equation: lim¢, ., % = % =g(t).
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Philosophy:

e Solution of a differential equation means predicting
a state in the future!

e This paradigm influenced the philosophical main-stream:
Determinism.

e Only in the early 20th century Poincaré destroyed the
deterministic viewpoint (basis for dynamical systems).

http JWw.mlahanas.de/Physics/Biosimages/HenriPoincare.jpg

Henri Poincaré (1854-1912)

Remark:

e In the 18th century the concept of diff. equations was extended to
several dimensions: Partial Differential Equations.

e By this differential equations (in one variable)
became ordinary.
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Newton's Mechanics

The principle first law of mechanics is given by
force = mass x acceleration.

We can write this law as an ODE:

m x’(t) = F(t,x,x’),

with m the mass, z” the acceleration, F' a force function depending on ¢ €
I C R, the time in an interval I, z € R3, the location, z’, the velocity of a
mass particle. This is an ODE of second order, since z” is involved.
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Fields of application

e satellite trajectories, planetary or astro-mechanics
e ballistic problems
e multi-body systems

e robotics
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Reaction Kinetics

Assume 3 chemical species, S;, S, and S3, with concentration densities or
mass densities 1, T2, and x3 respectively. We assume reactions

S1 L’ Sa,
S+ 853 —— 51+ 83,
Sy + Sy —— S5+ 53,
with reaction constants k;, k5, and k3 respectively. These reaction equations

represent a catalytic converter.

This transforms into a system of ODEs, when we consider the mass effects:

) = —kizy + kozo - x3,
.’L‘:; - k1.’L‘1 — ko(L‘o *La — kqxz
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Sl R SZ)
Sy + Sy —— S+ S5,

with reaction constants k;, k3, and k3 respectively. These reaction equations
represent a catalytic converter.

This transforms into a system of ODEs, when we consider the mass effects:

—ki1z1 + kozy - z3,

2
klxl - k2$2 Ty — k3.’L‘2,
Th + ksz2.

8 8
DS~
I
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Ty = —kiZy + koo - T3,

_ 2
To = kixy — koxo-x3 — k3z3,
Th = + kax2.

We need further conditions for a unique solution. For conservation of mass,
we assume that
/ / /I L
T+ Ty +T3= in =0,
1=1:3
which is equivalent to ). z; = const., i.e. total mass is constant over time.
Additionally, we assume that the initial concentrations are given by

z1(0) = z10; 22(0) = z2,

where the initial concentration z3(0) results from the conservation of mass
equations.
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Biological Systems

Consider the simple model of exponential growth of a population (think of
cells that duplicate in each time interval 7). Since the exponential function
is its own derivative (up to a constant) this can be written as

' =ax; z(to) = zo,

analytical solution:
() — »a. oa(t_to)
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2 = az;  o(to) = 2o,

analytical solution:
z(t) = zo - 2710,

We can improve this model by assuming a maximum number of individuals
(a saturation) by exchanging

n_xn_’\m
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We can improve this model by assuming a maximum number of individuals
(a saturation) by exchanging

a — a — bzx.

This yields a non-linear equation

o2
1

deceleration growth

' = (a—bx)z; z(ty) = xo. (

exponential growth at the beginning
Lo

to T
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deceleration growth

\

exponential growth at the beginning
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exponential growth at the beginning
Zo -

zy(t) = (a—bza(t))za(t),
zy(t) = (cai(t) — d)aa(t).

This represents a system of ODFEs, called the Lottka- Voltera equations.
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As a Principle: Application of differential equations to technical problems
1. Mathematical modeling of problem by setting up differential equation
2. Formulation of suitable initial and boundary conditions
3. Solution of differential equation

4. Transfer of mathematical solution to original problem



Basic Terms

Definition (Ordinary Differential Equation):
An ordinary differential equation of oder 1 (n-th order ODE) for a function y = y(z)
is an equation of x,y and the derivatives of y up to (including) n-th order:

Fla,y,y'y",...,y™) =0. (implicit form)

If the equation can be solved for the highest derivative in y, then we obtain the
form:
v™ = ey vy, ..,y V) (explicot form).

We call the function y, solving the ODE solution or integral of the ODE.

©

Definition (Initial and Boundary Values):
Conditions on the solution of the ODE that apply to exactly one value of the
independent variable z are called initial conditions, otherwise boundary conditions.

If the solution of an ODE is required to fulfill initial conditions, we call this problem
an initial value problem (IVP).

Correspondingly, a boundary value problem (BVP) is given, when the solution is
required to fulfill boundary conditions.

29.



Definition (Ordinary Differential Equation):
An ordinary differential equation of oder . (n-th order ODE) for a function y = y(x)
is an equation of x,y and the derivatives of y up to (including) n-th order:

F(z,y,y',y",...,y™) =0. (implicit form)

If the equation can be solved for the highest derivative in y, then we obtain the

form:
y™ = f(x,y,9,y", ...,y V) (explicot form).

We call the function y, solving the ODE solution or integral of the ODE.

O
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Definition (Initial and Boundary Values):
Conditions on the solution of the ODE that apply to exactly one value of the
independent variable = are called initial conditions, otherwise boundary conditions.

If the solution of an ODE is required to fulfill initial conditions, we call this problem
an initial value problem (IVP).

Correspondingly, a boundary value problem (BVP) is given, when the solution is
required to fulfill boundary conditions.

Note Instead of y = y(z), we may also use y = y(t),
since many ODEs describe behavior of a system in time.
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ODEs of order 1

‘Sobvability of Differential Equations:

Prefiminary Remark-
o Let f(x.y) be defined in 3 domain Dy C R? and ket (x0,w) € Dy
» Let the ODE be given in explicit form: f = f(x. )

1 B X e 2 €5, o . e V-tan) o v

o An initial value problem (IVP) i given by

‘@ We wil call a short section with slope §/ in (x,g) as line clement

Remarks:

Further Tarms: » The solution y = 1 — R of the VP is maximal in the following sense: y(z)
runs to the boundary of Dy and cannot be further extended in Dy 3 2
o § § _ continuously differentiable curve. Under condition 2 of the proposition there
» The function y = 8(z,C) is called general solution of ' = f(x,p). exists exactly one such maxima solution to the IVP and 1 is the maximal
® For a certain Cy one obtains a particular solution y = ¢, Cg). domain/interval.
 If a solution y = B(x) has the property that at least one other solution runs » Continuity is sufficient for existence only, uniqueness follows from condition
through each of its points, then it is called singu/ar solution. 2

o If f i continuously partially differentiable in D, then the solutions to y' =
S, u) form a family y = ¢{z,C), where each initial condition corresponds

to one value of C.
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Preliminary Remark:

e Let the ODE be given in explicit form: ¢y’ = f(z,vy).

e By this, the ODE prescribes in each z,y € Dy, the domain of f, a “slope”
y’ of the solution graph.

e We will call a short section with slope 3 in (z,y) as line element.

Definition (Slope Field):
The slope field of an ODE is given by the entire set of line elements.

6 P RN NN

TTT ¢

o=

Slope field of the ODE 3y’ = sinz cosy
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Solvability of Differential Equations:

e Let f(z,y) be defined in a domain Dy C R? and let (zo,y0) € Dy.

e An initial value problem (IVP) is given by
Yy = f(zy) with y(zo) = yo.

Proposition (Existence and Uniquenes):

1. Let f(x,y) in Dy be continuous. Then in some interval I = {z : p —a <
x < xog + b} around z( (a,b > 0 suitable) there exists at least one solution
y(z) of the IVP.

2. Let the function f(z,y) and its partial derivative g—i(:v,y) in Dy be continu-

ous. Then there is exactly one solution y(z) to the IVP through each point
(0,Y0) € Dy, which exists in an interval I around z.

3. Each solution curve y(x) of the IVP can be extended to both directions (i.e..
for x < g and x > () until it reaches or gets arbitrarily close to the boundary
of the domain Dy, resp.
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Remarks:

e The solution y : I — R of the IVP is maximal in the following sense: y(x)
runs to the boundary of D and cannot be further extended in Dy as a
continuously differentiable curve. Under condition 2 of the proposition there
exists exactly one such maximal solution to the IVP and I is the maximal
domain/interval.

e Continuity is sufficient for existence only, uniqueness follows from condition
2.

e If f is continuously partially differentiable in Dy, then the solutions to 3’ =
f(z,y) form a family y = ¢(z, C), where each initial condition corresponds

to one value of C.
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Further Terms:

e The function y = ¢(z,C) is called general solution of ¢y’ = f(z,y).

e For a certain Cj one obtains a particular solution y = ¢(z, Cp).

e If a solution y = ®(z) has the property that at least one other solution runs
through each of its points, then it is called singular solution.
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