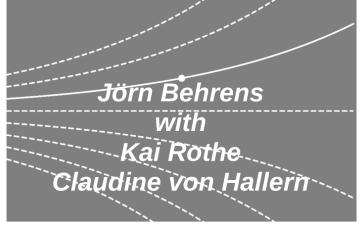
Differential Equations I



Separation of Variables Variation of Constants

Chapters 6.4-6.5

Recap

 $F(x,y,y',y'',\dots,y^{(n)})=0. \quad (\text{implicit form})$

If the equation can be solved for the highest derivative in y, then we obtain the form:

 $y^{(n)} = f(x,y,y',y'',\dots,y^{(n-1)}) \quad \text{(explicit form)}.$

We call the function y, solving the ODE solution or integral of the ODE.

Definition (Initial and Boundary Values): Conditions on the solution of the ODE that apply to exactly one value of the independent variable x are called initial conditions, otherwise boundary conditions.

If the solution of an ODE is required to fulfill initial conditions, we call this problem

an initial value problem (IVP).

Correspondingly, a boundary value problem (BVP) is given, when the solution is required to fulfill boundary conditions.

ODE of Order 1:

- \bullet Let the ODE of order 1 be given in explicit form: y'=f(x,y).
- Pairs $x,y\in D_f$ are in the domain of f.

Definition (Ordinary Differential Equation):

An ordinary differential equation of oder n (n-th order ODE) for a function y=y(x) is an equation of x,y and the derivatives of y up to (including) n-th order:

$$F(x, y, y', y'', \dots, y^{(n)}) = 0.$$
 (implicit form)

If the equation can be solved for the highest derivative in y, then we obtain the form:

$$y^{(n)} = f(x, y, y', y'', \dots, y^{(n-1)})$$
 (explicit form).

We call the function y, solving the ODE solution or integral of the ODE.

Defir Cond indep

If the an ini Corre require

y(x)

the

Definition (Initial and Boundary Values):

Conditions on the solution of the ODE that apply to exactly one value of the independent variable x are called initial conditions, otherwise boundary conditions.

If the solution of an ODE is required to fulfill initial conditions, we call this problem an initial value problem (IVP).

Correspondingly, a boundary value problem (BVP) is given, when the solution is required to fulfill boundary conditions.

ODE of Order 1:

- Let the ODE of order 1 be given in explicit form: y' = f(x, y).
- Pairs $x, y \in D_f$ are in the domain of f.

ODE of order 1 with separable variables

Idea: Let the ODE be given in the orm

 $y' = \frac{g(x)}{h(x)}$

We call this differential equation with separable variables. Let g(x) and h(y) for $(x,y)\in D_f$ continuous and $h(y)\neq 0$.

According to existence theorem there exists at least one solution.

$$G(x) = \int_a^x g(t) \ dt, \quad \text{and} \quad H(y) = \int_b^y h(t) \ dt$$
 primitive functions (antiderivatives) for g and h , and H^{-1} inverse of H (i.e. $H^{-1}(H(y)) = y$).

 $H^{-1}(H(y)) = y$). • Write the ODE as h(y)y' = g(x) then integration yield the solution:

H(y(x)) = G(x) + C

· Application of the inverse results in

 $u(x) = H^{-1}(H(u(x))) = H^{-1}(x)$

 $\begin{tabular}{ll} \bullet & \begin{tabular}{ll} \bullet & \begin{tabular}{ll} \hline & y \\ \hline & \cos y \\ \hline & \end{tabular} = \sin x \ ax \\ \bullet & \begin{tabular}{ll} \bullet & \begin{tabular}{ll} \hline & y \\ \hline & \end{tabular} = -\cos x - C_0 \\ \hline & \end{tabular} = -\cos x - C_0 \\ \bullet & \begin{tabular}{ll} \bullet & \begin{tabular}{ll} \hline & \end{tabular} = -\cos x - C_0 \\ \hline & \e$

• Constant solutions: $y(x) \equiv (k + \frac{1}{2})\pi$

Solution scheme: Let an ODE of the form

 $y' = \frac{g(x)}{h(x)}$

be given and let g(x) and h(y) for $(x,y)\in D_f$ continuous, $h(y)\neq 0,$ G(x), H(y) as before.

- 1. Write the ODE in form $h(y)y^\prime=g(x)$ resp. h(y)dy=g(x)dx.
- 2. Integrate left hand side to y and right hand side to x.
- 3. If possible, solve analytically for y:

H(y) = G(x) + C.

If not possible, the solution y(x) is given in implicit form.

4. $C=C_0:=H(y_0)-G(x_0)$ yields a solution of the IVP $y(x_0)=y_0.$

Differential Equa

Separation of Variable Variation of Constant

Recap

Definition (O-disary Differential Equation). As ordinary differential equation of one n (such order ODE) for a function y=y(x) is an equation of x,y and the derivatives of y up to (including) n+h order. F(x,y,y',y',x',y',y',y')=0 (implicit form) If the equation can be solved for the highest derivative in y, then we obtain the

form: $y^{(n)}=f(x,y,y',y'',\dots,y^{(n-1)}) \quad \text{(asplicit form)}.$ We call the function y_i solving the ODE solution or integral of the ODE.

Defin Condi

Idea:

Let the ODE be given in the orm

$$y' = \frac{g(x)}{h(y)}.$$

We call this differential equation with separable variables. Let g(x) and h(y) for $(x,y) \in D_f$ continuous and $h(y) \neq 0$.

- According to existence theorem there exists at least one solution.
- Let

$$G(x) = \int_a^x g(t) \ dt, \quad \text{and} \quad H(y) = \int_b^y h(t) \ dt$$

primitive functions (antiderivatives) for g and h, and H^{-1} inverse of H (i.e. $H^{-1}(H(y)) = y$).

• Write the ODE as h(y)y' = g(x) then integration yield the solution:

$$H(y(x)) = G(x) + C$$

• Application of the inverse results in

$$y(x) = H^{-1}[H(y(x))] = H^{-1}[G(x) + C].$$

Solut Let a

be gives

- 1.
- 2.
- 3.

4

Solution scheme:

Let an ODE of the form

$$y' = \frac{g(x)}{h(y)},$$

be given and let g(x) and h(y) for $(x,y) \in D_f$ continuous, $h(y) \neq 0$, G(x), H(y) as before.

- 1. Write the ODE in form h(y)y'=g(x) resp. h(y)dy=g(x)dx.
- 2. Integrate left hand side to y and right hand side to x.
- 3. If possible, solve analytically for y:

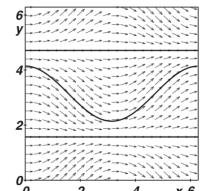
$$H(y) = G(x) + C.$$

If not possible, the solution y(x) is given in implicit form.

4. $C = C_0 := H(y_0) - G(x_0)$ yields a solution of the IVP $y(x_0) = y_0$.

(i.e.

1



Example:

Let

$$y' = \sin x \cos y.$$

- Note: $\cos y \neq 0$ for $y \neq (k + \frac{1}{2})\pi$ $(k \in \mathbb{Z})$.
- Obtain:

$$\frac{y'}{\cos y} = \sin x$$
 resp. $\int \frac{dy}{\cos y} = \int \sin x \ dx$.

- Integrate: $\ln|\tan(\frac{y}{2} + \frac{\pi}{4})| = -\cos x + C_0$.
- Solve for *y*:

$$y(x) = 2\arctan(Ce^{-\cos x}) - \frac{\pi}{2}$$
 $C \in \mathbb{R}$

- \bullet Constant solutions: $y(x) \equiv (k+\frac{1}{2})\pi$
- Remember: slope feld!

Linear ODE of order 1

Definition: (Linear differential equation of first order) Let

a(x)y' + b(x)y = c(x).

Let the coefficients (a(x),b(x),c(x)) be continuous (not necessarily linear) on an interval I and $a(x) \neq 0$. This ODE is called linear ODE of 1st order, if it is linear w.r.t solution y(x), i.e. a linear combination

 $\alpha y_1(x) + \beta y_2(x)$

of the two solutions y_1 and y_2 is again a solution.

Solution Idea 1: The homogenous linear ODE y'+p(x)y=0 is a special case of an ODE with separable variables! For y>0 and y<0 write

 $\frac{dy}{y} = p(x)dx \quad \Rightarrow \quad \ln |y| = -\int p(x) \ dx + C_0$

with $|y|=e^{C_0}e^{-P(x)}$ resp. $y=Ce^{-P(x)}$ $(C\in\mathbb{R},C\neq0).$ Where P(x) is antiderivative of p(x).

uations I

Example: (Bernoulli's Differential Equation)

Solution Idea 2: (Variation of Constants) For a general solution of the homogenous linear ODE y'+p(x)y=0 vary C, i.e. use C=C(x).

 $y(x) = C(x) e^{-P(x)}. \label{eq:y}$

 $C'(x)e^{-P(x)} - C(x)p(x)e^{-P(x)} + p(x)C(x)e^{-P(x)} = q(x).$

Eliminate and integrate:

$$\begin{split} C'(x)e^{-P(x)} &= q(x) & \Rightarrow & C'(x) = q(x)e^{P(x)} \\ &\Rightarrow & C(x) = \int_{x_0}^x q(t)e^{T(t)} \; dt + C_1 \quad C_1 \equiv \operatorname{const.}_{*}C_2 \in \mathbb{R}. \end{split}$$

$$y(x) = e^{-P(x)} \left(C_1 + \int_{x_0}^x q(t)e^{P(t)} dt\right)$$

 $= C_1e^{-P(x)} + e^{-P(x)} \int_{x_0}^x q(t)e^{P(t)} dt$
 $= y_{\text{hom}}(x) + y_{\text{nh}}(x).$

Definition: (Linear differential equation of first order) Let

$$a(x)y' + b(x)y = c(x).$$

Let the coefficients (a(x),b(x),c(x)) be continuous (not necessarily linear) on an interval I and $a(x) \neq 0$. This ODE is called linear ODE of 1st order, if it is linear w.r.t solution y(x), i.e. a linear combination

For y > 0

$$\alpha y_1(x) + \beta y_2(x)$$

of the two solutions y_1 and y_2 is again a solution.

with |y| = Where P(

Remarks:

• Assuming $a(x) \neq 0$ ($x \in I$), we have

$$y' + p(x)y = q(x)$$

with $p(x) = \frac{b(x)}{a(x)}$, $q(x) = \frac{c(x)}{a(x)}$ both continuous.

- ullet Existence and uniqueness are guaranteed (no singular solutions) if p(x) and q(x) are continuous in I.
- If q(x) = 0 the ODE is called homogenous, otherwise inhomogenous.

on an linear

Solution Idea 1:

The homogenous linear ODE $y^\prime + p(x)y = 0$ is a special case of an ODE with separable variables!

For y > 0 and y < 0 write

$$\frac{dy}{y} = p(x)dx \quad \Rightarrow \quad \ln|y| = -\int p(x) \ dx + C_0$$

with $|y|=e^{C_0}e^{-P(x)}$ resp. $y=Ce^{-P(x)}$ ($C\in\mathbb{R},C\neq 0$). Where P(x) is antiderivative of p(x).

Solution Idea 2: (Variation of Constants)

For a general solution of the homogenous linear ODE y'+p(x)y=0 vary C, i.e. use C=C(x).

• Ansatz:

$$y(x) = C(x)e^{-P(x)}.$$

• Substitute:

$$C'(x)e^{-P(x)} - C(x)p(x)e^{-P(x)} + p(x)C(x)e^{-P(x)} = q(x).$$

• Eliminate and integrate:

$$\begin{split} C'(x)e^{-P(x)} &= q(x) \qquad \Rightarrow \qquad C'(x) = q(x)e^{P(x)} \\ &\Rightarrow \qquad C(x) = \int_{x_0}^x q(t)e^{P(t)} \ dt + C_1 \quad C_1 \equiv \mathsf{const.}, C_1 \in \mathbb{R}. \end{split}$$

• Use the Ansatz:

$$y(x) = e^{-P(x)} \left(C_1 + \int_{x_0}^x q(t)e^{P(t)} dt \right)$$

$$= C_1 e^{-P(x)} + e^{-P(x)} \int_{x_0}^x q(t)e^{P(t)} dt$$

$$= y_{\text{hom}}(x) + y_{\text{inh}}(x).$$

Observations:

• Differentiation proves:

$$y_{\rm inh}(x) = e^{-P(x)} \int_{x_0}^x q(t)e^{P(t)} dt$$

is a particular solution of the inhomogenous ODE.

Since

$$y_{\text{hom}}(x) = C_1 e^{-P(x)}$$

a general solution of the homogenous ODE, $y(x) = y_{\text{hom}} + y_{\text{inh}}(x)$ is solution to the inhomogenous ODE for each $C_1 \in \mathbb{R}$.

• On the other hand each arbitrary solution $\tilde{y}(x)$ to the inhomogenous ODE is of the above form.

Example: (Bernoulli's Differential Equation)

$$y' + p(x)y = q(x)y^n.$$

Differential Equations I

Recap

Linear ODE of order 1

