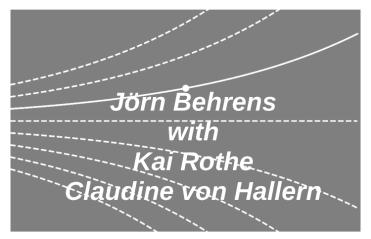
Differential Equations I

Winter 2021/22



Solution of ODEs by Transformation Systems of 1st Order

Chapters 6.6-6.7

Recap: Separation of Variables Variation of Constants

Solution scheme: Let an ODE of the form $y' = \frac{g(x)}{h(y)},$ be given and let g(x) and h(y) for $(x,y) \in Dy$ continuous, $h(y) \neq 0$, G(x), H(y)as before. 1. Write the ODE in form h(y)y' = g(x) resp. h(y)dy = g(x)dx. 2. Integrate left shand side to y and y first y and y for y resp. h(y)dy = g(x)dx. 3. If possible, robe analytically for y: If not possible, the solution g(x) is given in implicit form. 4. $C = C_0 := H(y_0) - G(x_0)$ yields a solution of the IVP $y(x_0) = y_0$. Solution takes y: Solution that y: $y(x) = C(x)e^{-p(x)} - C(x)e^{-p(x)} + y_0(x)e^{-p(x)} + y_0(x)e^{-p(x)} = q(x)$. Eliments and integrate. $C'(x)e^{-p(x)} - g(x) + C'(x) - g(x)e^{-p(x)} = q(x)$. 1. What he haus: $y(x) = e^{-p(x)} - f(x)e^{-p(x)} + f(x)e^{-p(x)} = q(x)e^{-p(x)}$. 1. When $x = e^{-p(x)} - f(x)e^{-p(x)} = e^{-p(x)} - f(x)e^$

Solution scheme:

Let an ODE of the form

$$y' = \frac{g(x)}{h(y)},$$

be given and let g(x) and h(y) for $(x,y) \in D_f$ continuous, $h(y) \neq 0$, G(x), H(y) as before.

- 1. Write the ODE in form h(y)y'=g(x) resp. h(y)dy=g(x)dx.
- 2. Integrate left hand side to y and right hand side to x.
- 3. If possible, solve analytically for y:

$$H(y) = G(x) + C.$$

If not possible, the solution y(x) is given in implicit form.

4. $C=C_0:=H(y_0)-G(x_0)$ yields a solution of the IVP $y(x_0)=y_0$.

Solution Idea 2: (Variation of Constants)

For a general solution of the homogenous linear ODE y'+p(x)y=0 vary C, i.e. use C=C(x).

• Ansatz:

$$y(x) = C(x)e^{-P(x)}.$$

Substitute:

$$C'(x)e^{-P(x)} - C(x)p(x)e^{-P(x)} + p(x)C(x)e^{-P(x)} = q(x).$$

• Eliminate and integrate:

$$C'(x)e^{-P(x)} = q(x) \qquad \Rightarrow \qquad C'(x) = q(x)e^{P(x)}$$

$$\Rightarrow \qquad C(x) = \int_{x_0}^x q(t)e^{P(t)} \ dt + C_1 \quad C_1 \equiv \mathsf{const.}, C_1 \in \mathbb{R}.$$

• Use the Ansatz:

$$y(x) = e^{-P(x)} \left(C_1 + \int_{x_0}^x q(t)e^{P(t)} dt \right)$$

$$= C_1 e^{-P(x)} + e^{-P(x)} \int_{x_0}^x q(t)e^{P(t)} dt$$

$$= y_{\text{hom}}(x) + y_{\text{inh}}(x).$$

Transformation

- Goal: Solution of diverse ODEs of 1st and 2nd order
- Type: Consider ODE of the form

Remark: Let the $2^{\rm nd}$ order ODE be given (note that x does not appear explicitly):

Consider: ODE of the form $y'=\phi(ax+by+c),\ b\neq 0.$ Let ϕ be continuous.

 $\bullet \ \ {\bf Substitution} \colon z=ax+by+c \ \ {\rm and} \ \ z'=a+by' \ \ {\rm yields} ;$

$$a' - a' - a - \phi(a)$$

ration of Variables: Obtain solution
$$\frac{dz}{a+b\phi(z)}=dx \quad \Rightarrow \quad \int \frac{dz}{a+b\phi(z)}=\int dx+C=x+C.$$

Consider: ODE of the form $y'=\phi(\frac{y}{x})$, with $x\neq 0$ and ϕ continuous.

Preliminary Remarks:

• Goal: Solution of diverse ODEs of 1st and 2nd order

• Type: Consider ODE of the form

$$F(x, y', y'') = 0$$

Idea:

• **Substitution**: using v := y' we obtain ODE of 1st order:

$$F(x, v, v') = 0$$

ullet Integration: If $v=\Psi(x,C)$ is a general solution to the ${\bf 1}^{\rm st}$ order ODE, then

$$y(x) = \int \Psi(\zeta, C) \ d\zeta + C_1, \quad C, C_1 \in \mathbb{R}$$

is a general solution to the 2nd order ODE.

1

Remark:

Let the 2^{nd} order ODE be given (note that x does not appear explicitly):

$$F(y, y', y'') = 0$$

Solution Idea:

• **Substitution**: with v(y) := y' and the chain rule we obtain:

$$y'' = \frac{d}{dx}v(y) = \frac{dv}{dy}\frac{dy}{dx} = v'(y)y' = v'(y)v(y)$$

This yields a 1st order ODE for v: F(y, v, v'v) = 0.

• Integration: If $v=\Psi(x,C)$ is general solution of $1^{\rm st}$ order ODE, then with v(y)=y' we obtain

$$y' = \Psi(y, C)$$

an ODE with separable variables for y, with general implicit solution

$$\int_{y_0}^{y} \frac{d\zeta}{\Psi(\zeta, C)} = x + C_1, \quad C, C_1 \in \mathbb{R}.$$

Consider:

ODE of the form $y' = \phi(\frac{y}{x})$, with $x \neq 0$ and ϕ continuous.

Solution Idea:

• **Substitution**: $u = \frac{y}{x}$ yields:

$$y = xu \quad \Rightarrow \quad y' = u + xu' = \phi(u)$$

Therefore

$$xh' = \phi(u) - u \quad \Rightarrow \quad u' = \frac{\phi(u) - u}{x}.$$

• Separation of Variables: We obtain as solution

$$\frac{du}{\phi(u) - u} = \frac{dx}{x} \quad \Rightarrow \quad \int \frac{du}{\phi(u) - u} = \ln|x| + C.$$

Consider:

ODE of the form $y' = \phi(ax + by + c)$, $b \neq 0$. Let ϕ be continuous.

Solution Idea:

• Substitution: z = ax + by + c and z' = a + by' yields:

$$y' = \frac{z' - a}{b} = \phi(z)$$

Therefore

$$z' = a + b\phi(z).$$

• Separation of Variables: Obtain solution

$$\frac{dz}{a+b\phi(z)} = dx \quad \Rightarrow \quad \int \frac{dz}{a+b\phi(z)} = \int dx + C = x + C.$$

Euler's ODE

Definition: Differential equations of the form

with $a_j \in \mathbb{R}$ $(j=0,\ldots,k)$ constant, $a_k \neq 0$, x>0, are called Euler's Differential Equations of k^{th} order.

Solution Approach: The ansatz $y(x)=x^r$ for the homogenous equation, i.e. $f(x)\equiv 0$, yields:

$$\sum_{i=0}^{k} a_j r(r-1) \cdots (r-j+1) = 0.$$

We obtain: Solution of this equation are roots of a polynomial in \boldsymbol{r} of degree $\boldsymbol{k}.$

Computation for case k=2:

- Euler's ODE (homogenous): $a_0y + a_1xy' + a_2x^2y'' = 0$.
- ullet Substitution yields: $a_0+a_1r+a_2r(r-1)=0$, quadratic polynomial.
- \bullet Differentiation proves: $y=x^r$ is solution of homogenous Euler's ODE, if r root of polynomial.
- If $r_1 \neq r_2$ are real roots of polynomial, then $y_1 = x^{r_1}$ and $y_2 = x^{r_2}$ are solutions of ODE.
- If $r_1,r_2\in\mathbb{C}$ are complex roots, then if $r_1=a+ib$ is root, so is $r_2=\bar{r}_1=a-ib.$
- $\bullet \ \ {\sf Complex \ solution \ for} \ y=x^r;$
- $x^{a+ib}=e^{\ln x^{a+ib}}=e^{(a+ib)\ln x}=e^{a\ln x}e^{ib\ln x}=x^a[\cos(b\ln x)+i\sin(b\ln x)]$
- For complex solutions of the problem one finds

General solution: due to linearity the general solution is

 $y(x) = c_1 x^a \cos(b \ln x) + c_2 x^a \sin(b \ln x).$

Definition:

Differential equations of the form

$$\sum_{j=0}^{k} a_j x^j y^{(j)}(x) = f(x),$$

with $a_j \in \mathbb{R}$ (j = 0, ..., k) constant, $a_k \neq 0$, x > 0, are called Euler's Differential Equations of k^{th} order.

Solution Approach:

The ansatz $y(x) = x^r$ for the homogenous equation, i.e. $f(x) \equiv 0$, yields:

$$\sum_{j=0}^{k} a_j r(r-1) \cdots (r-j+1) = 0.$$

We obtain: Solution of this equation are roots of a polynomial in r of degree k.

Computation for case k = 2:

- Euler's ODE (homogenous): $a_0y + a_1xy' + a_2x^2y'' = 0$.
- Substitution yields: $a_0 + a_1r + a_2r(r-1) = 0$, quadratic polynomial.
- Differentiation proves: $y = x^r$ is solution of homogenous Euler's ODE, if r root of polynomial.
- If $r_1 \neq r_2$ are real roots of polynomial, then $y_1 = x^{r_1}$ and $y_2 = x^{r_2}$ are solutions of ODE.
- If $r_1, r_2 \in \mathbb{C}$ are complex roots, then if $r_1 = a + ib$ is root, so is $r_2 = \bar{r}_1 = a ib$.
- Complex solution for $y = x^r$:

$$x^{a+ib} = e^{\ln x^{a+ib}} = e^{(a+ib)\ln x} = e^{a\ln x}e^{ib\ln x} = x^a[\cos(b\ln x) + i\sin(b\ln x)]$$

• For complex solutions of the problem one finds

$$y_1(x) = x^a \cos(b \ln x)$$
 and $y_2(x) = x^a \sin(b \ln x)$

two solutions of the homogenous Euler's ODE.

• General solution: due to linearity the general solution is

$$y(x) = c_1 x^a \cos(b \ln x) + c_2 x^a \sin(b \ln x).$$

Transformation

The proved had not believe to an object the second of the

When the contract of the cont

Euler's ODE

Definition: Differential equations of the form: $\sum_{j=1}^{n} \gamma_j v_j^j E^j(v) = 2|v|$ with $u_j = 2i$ $(j = 1, \dots, d)$ generate, $u_j \neq 0, v > 0$ are called failer to Otherstein Countries of $\theta^{(i)}$ order

Solution Approach: The sensity $g(x)=a^{r}$ for the homogeneous equation, i.e. f(x)=0, yields: $\sum_{j=0}^{\infty}a_{j}x^{j}(r-1)\cdots (r-j+1)=0.$

• Sent SS (Moneymod as a read of a read of a set and a read of a set and a read of a set and a set and