Differential Equations I

Linear Systems of ODEs of 1st Order

Chapter 6.7

Linear Systems of Differential Equations

Motivation: Examples of Systems of ODEs

• 2-Mass-Oscillation

$$m_1x_1'' = -k_1x_1 + k_2(x_2 - x_1),$$
 (1)

$$m_2x_2'' = k_2(x_1 - x_2) - k_3x_2,$$
 (2)

where x_1,x_2 are coordinates of the point masses, m_1,m_2 masses and k_1,k_2,k_3 spring rates.

• Predator-prey system (Lottka-Volterra Equations)

$$x_1' = k_1x_1 - k_2x_1x_2,$$
 (3)

$$x_2' = k_3 x_1 x_2 - k_4 x_2,$$
 (4)

where x_1,x_2 number of individuals of each species (predator, prey, resp.) and k_i ($i=1,\ldots,4$) growth and mortality rates.

Definition: (Linear System of ODEs of 1st Order)

A linear system of ODEs of 1st order is an equation

$$\mathbf{y}'(x) = A(x)\mathbf{y}(x) + \mathbf{g}, \quad A(x) = [a_{ij}(x)]_{i,j=1,...,n}$$

where the $a_{ij}(x)$ are functions, and ${\bf y}$ and ${\bf g}$ column vectors of n components, depending on x.

If $\mathbf{g} \equiv 0$, then the system is called homogeneous, otherwise inhomogeneous.

Motivation: Examples of Systems of ODEs

2-Mass-Oscillation

$$m_1 x_1'' = -k_1 x_1 + k_2 (x_2 - x_1),$$
 (1)

$$m_2 x_2'' = k_2 (x_1 - x_2) - k_3 x_2,$$
 (2)

where x_1, x_2 are coordinates of the point masses, m_1, m_2 masses and k_1, k_2, k_3 spring rates.

Predator-prey system (Lottka-Volterra Equations)

$$x_1' = k_1 x_1 - k_2 x_1 x_2, (3)$$

$$x_2' = k_3 x_1 x_2 - k_4 x_2, (4)$$

where x_1, x_2 number of individuals of each species (predator, prey, resp.) and k_i (i = 1, ..., 4) growth and mortality rates.

Definition: (Linear System of ODEs of 1st Order)
A linear system of ODEs of 1st order is an equation

$$\mathbf{y}'(x) = A(x)\mathbf{y}(x) + \mathbf{g}, \quad A(x) = [a_{ij}(x)]_{i,j=1,...,n}$$

where the $a_{ij}(x)$ are functions, and y and g column vectors of n components, depending on x.

If $g \equiv 0$, then the system is called homogeneous, otherwise inhomogeneous.

Remarks:

- Differential equations of order k can be reduced to systems of k equations of order 1! Idea: $x_1 = y$, $x_2 = y'$, $x_3 = y''$, etc.
- If n = 1, then we have a linear ODE.

Solvability

Proposition: (Solvability of linear systems of 1st order ODEs) Let the elements $a_{ij}(x)$ of matrix A(x) and the components of ${\bf g}$ be continuous in intervall]a,b[. Further, let $x_0\in]a,b[$ and ${\bf y}_0=(y_{01},\ldots,y_{0n})^{\top}$ be given arbitrarily. Then the initial value problem

$$\mathbf{y}' = A(x)\mathbf{y} + \mathbf{g}, \quad \mathbf{y}(x_0) = \mathbf{y}_0,$$

has a unique solution on]a,b[.

Proposition: (Solution of homogeneous linear systems of ODEs of $1^{\rm st}$ Order) If the elements $a_{ij}(x)$ of matrix A(x) are continuous in]a,b[, then the homogeneous system

$$\mathbf{y}' = A(x)\mathbf{y}$$

has exactly n linear independent solutions on $]a,b[. \label{eq:alpha}$

Proposition: (Solvability of linear systems of 1st order ODEs)

Let the elements $a_{ij}(x)$ of matrix A(x) and the components of \mathbf{g} be continuous in intervall]a,b[. Further, let $x_0\in]a,b[$ and $\mathbf{y}_0=(y_{01},\ldots,y_{0n})^{\top}$ be given arbitrarily. Then the initial value problem

$$\mathbf{y}' = A(x)\mathbf{y} + \mathbf{g}, \quad \mathbf{y}(x_0) = \mathbf{y}_0,$$

has a unique solution on]a, b[.

Proposition: (Solution of homogeneous linear systems of ODEs of 1st 0rder) If the elements $a_{ij}(x)$ of matrix A(x) are continuous in]a,b[, then the homogeneous system

$$\mathbf{y}' = A(x)\mathbf{y}$$

has exactly n linear independent solutions on]a, b[.

Remarks:

- A system of n linearly independent solutions of the system is called fundamental system or basis of solutions.
- The elements of the basis are called fundamental solutions (or holonomic functions).

Wronski-Matrix Wronski-Test

Question: Had we found n solutions $\mathbf{y}_1,\ldots,\mathbf{y}_n$ (a_{ij} continuous), could we then decide, if they form a fundamental system?

Proposition: (Wronski Test)

Let $\mathbf{y}_1, \ldots, \mathbf{y}_n$ be solutions of the system $\mathbf{y}' = A(x)\mathbf{y}$ on]a,b[. If $a_{ij}(x)$ continuous in]a,b[, then

- 1. $W(x) \equiv 0$ or $W(x) \neq 0$ for all $x \in]a, b[$.
- 2. The solutions $\mathbf{y}_1,\dots,\mathbf{y}_n$ form a fundamental system on]a,b[if and only if (iff) $W(x) \neq 0.$

Question: Had we found n solutions y_1, \ldots, y_n (a_{ij} continuous), could we then decide, if they form a fundamental system?

Definition: (Wronski Matrix and Wronski Determinant)

The Wronski matrix Y(x) is formed by the columns of the fundamental system:

$$Y(x) := [\mathbf{y}_1 \ \mathbf{y}_2 \ \cdots \ \mathbf{y}_n].$$

We define the Wronski determinant of the system of solutions y_1, \ldots, y_n of the system y' = A(x)y as

$$W(x) := \det Y(x).$$

Proposition: (Wronski Test)

Let y_1, \ldots, y_n be solutions of the system y' = A(x)y on a_i, b . If $a_{ij}(x)$ continuous in a_i, b , then

- 1. $W(x) \equiv 0$ or $W(x) \neq 0$ for all $x \in]a, b[$.
- 2. The solutions y_1, \ldots, y_n form a fundamental system on]a, b[if and only if (iff) $W(x) \neq 0$.

Holonomic Solutions

 $\begin{array}{ll} \textbf{Proposition:} \ \ \text{(Holonomic Solution)} \\ \text{Let} \ \ \mathbf{y}_1, \dots, \mathbf{y}_n \ \ \text{be a fundamental system on} \ \]a,b[\ \ \text{of} \end{array}$

Then any solution ${\bf y}$ on]a,b[can be written in the form

$$\mathbf{y} = \sum_{i=1}^n c_i \mathbf{y}_i, \quad \mathsf{const.} \equiv c_i \in \mathbb{R} \ \mathsf{or} \ \mathbb{C}.$$

This above y is called holonomic solution of the homogeneous system of differential equations.

 $(A - \lambda E)^{\sigma} \mathbf{v} = \mathbf{0}.$

 $\mathbf{y}_{k} = e^{\lambda k} \sum_{i=0}^{\sigma-1} \frac{x^{j}}{j_{i}^{2}} (A - \lambda E)^{j} \mathbf{v}_{k} \quad (k = 1, ..., \sigma)$ are linearly independent solutions of the 1^{st} order system of ODEs y' = Ay.

Proposition: (Solution of system of ODEs with constant coefficients) Let $A=(a_{ij})$ a constant $n \times n$ -matrix with $a_{ij} \in \mathbb{R}$, λ an eigen value (EVa) of A with corresponding eigen vector (EVc) \mathbf{v} . Then

Then ${\bf y}=e^{\lambda x}{\bf v}$ is a solution of the homogeneous system of ODEs of 1^{st} order ${\bf y}'=A{\bf y}$. If A has n pairwise different EVa $\lambda_1,\dots,\lambda_n$ with corresponding EVc $\mathbf{v}_1,\dots,\mathbf{v}_n$ the solutions

 $\mathbf{y} = \sum_{i=1}^{n} c_i e^{\lambda_i x} \mathbf{v}_i$

all solutions of the homogeneous system of ODEs are given

Proposition: (Holonomic Solution)

Let $\mathbf{y}_1, \dots, \mathbf{y}_n$ be a fundamental system on]a, b[of

$$\mathbf{y}' = A(x)\mathbf{y}.$$

Then any solution y on a,b can be written in the form

$$\mathbf{y} = \sum_{i=1}^n c_i \mathbf{y}_i, \quad \mathsf{const.} \equiv c_i \in \mathbb{R} \; \mathsf{or} \; \mathbb{C}.$$

This above y is called holonomic solution of the homogeneous system of differential equations.

Remark: The linear combinations are solutions of $\mathbf{y}' = A(x)\mathbf{y}$, since $\mathbf{y} = \sum_{i=1}^{n} c_i \mathbf{y}_i$ yields:

$$\mathbf{y}' = \sum_{i=1}^{n} c_i \mathbf{y}'_i = \sum_{i=1}^{n} c_i A(x) \mathbf{y}_i = A(x) \sum_{i=1}^{n} c_i \mathbf{y}_i = A(x) \mathbf{y}.$$

Proposition: (Solution of system of ODEs with constant coefficients) Let $A = (a_{ij})$ a constant $n \times n$ -matrix with $a_{ij} \in \mathbb{R}$, λ an eigen value (EVa) of A with corresponding eigen vector (EVc) \mathbf{v} . Then

$$\mathbf{y} = e^{\lambda x} \mathbf{v}$$

is a solution of the homogeneous system of ODEs of 1st order y' = Ay.

If A has n pairwise different EVa $\lambda_1, \ldots, \lambda_n$ with corresponding EVc $\mathbf{v}_1, \ldots, \mathbf{v}_n$, the solutions

$$\mathbf{y}_i = e^{\lambda_i x} \mathbf{v}_i, \quad i = 1, \dots, n$$

form a fundamental system. By linear combination

$$\mathbf{y} = \sum_{i=1}^{n} c_i e^{\lambda_i x} \mathbf{v}_i$$

all solutions of the homogeneous system of ODEs are given.

Remarks: (Application of Linear Algebra)

- Matrices not always have pairwise different EVa, multiplicity > 1 is possible.
 Therefore, construction of a fundamental system is only possible, if algebraic and geometric multiplicity correspond.
- If the algebraic multiplicity $\sigma_k < n$ corresponding to EVa λ_k equals the geometric multiplicity, then there exists σ_k linearly independent EVc $\mathbf{v}_{k_1}, \ldots, \mathbf{v}_{k_{\sigma_k}}$, and thus σ_k linearly independent solutions

$$\mathbf{y}_{k_1} = e^{\lambda_k x} \mathbf{v}_{k_1}, \dots, y_{k_{\sigma_k}} = e^{\lambda_k x} \mathbf{v}_{k_{\sigma_k}}.$$

• In this case for m different EVa $\lambda_1, \ldots, \lambda_m$ with multiplicities $\sigma_1, \ldots, \sigma_m$ there are n linearly independent solutions (fundamental system)

$$\mathbf{y}_{k_1} = e^{\lambda_k x} \mathbf{v}_{k_1}, \dots, y_{k_{\sigma_k}} = e^{\lambda_k x} \mathbf{v}_{k_{\sigma_k}}, \quad (k = 1, \dots, m),$$

since
$$\sum_{k=1}^{n} \sigma_k = n$$
.

2

Proposition: (Solution from Generalized Eigenvektor)

Let λ be eigen value of the $n \times n$ -matrix A with algebraic multiplicity σ and $\mathbf{v}_1, \dots, \mathbf{v}_{\sigma}$ linearly independent solutions of the linear system

$$(A - \lambda E)^{\sigma} \mathbf{v} = \mathbf{0}.$$

Then

$$\mathbf{y}_k = e^{\lambda k} \sum_{j=0}^{\sigma-1} \frac{x^j}{j!} (A - \lambda E)^j \mathbf{v}_k \quad (k = 1, \dots, \sigma)$$

are linearly independent solutions of the 1st order system of ODEs y' = Ay.

Linear Systems of **Differential Equations**

Meniculate: Except of Spirms of COSS

3 Mean Costletion: $m_{ij} \mathcal{C}_{ij}^{ij} = -b_{j1}v_{j} + b_{j1}v_{j} - v_{j1}, \qquad (1)$ $m_{ij} \mathcal{C}_{ij}^{ij} = b_{j1}v_{j} + b_{j2}v_{j} - v_{j1}, \qquad (2)$ $m_{ij} \mathcal{C}_{ij}^{ij} = b_{j1}v_{j} - v_{j1}, \qquad (3)$ $m_{ij} \mathcal{C}_{ij}^{ij} = b_{ij}v_{ij} - v_{ij} - b_{ij}v_{ij}, \qquad (3)$ $d_{ij} = a_{ij}v_{ij} - a_{ij}v_{ij} - a_{ij}v_{ij}, \qquad (3)$ $d_{ij}^{ij} = a_{ij}v_{ij} - a_{$ **Definition** (Union System of CODEs of Y^k Cycle) A horizonth of CODEs of Y^k Cycle) and equation $Y^k(x) = A(x_0)(x) + y_k$. $A(x) = (a_{x_0}(x)_{x_0})a_{x_0} - a_{x_0}(x)$ when the $a_{x_0}(x)$ is tracticate, and y and y column sectors of y components, depending on y. If y = 0, these they were in call of the response of y components of y components of y considerables of y continues y continue

Differential Equations I

Holonomic Solutions

Solvability

 $\mathbf{y}' = A(\mathbf{x})\mathbf{y} + \mathbf{g}, \quad \mathbf{y}(\mathbf{x}_0) = \mathbf{y}_0,$

system $\mathbf{y}' = A(x)\mathbf{y}$ has exactly n linear independent solutions on]a, b[.

Wronski-Matrix Wronski-Test

Question: Had we found u solutions y_1,\dots,y_n $\{\alpha_{ij}$ continuous), could we then decide, if they form a fundamental system?

The Woods ratios Y(x) is formed by the consens of the haddenential system: $Y(x) := [y_1 y_2 \cdots y_n].$ We define the Woods determined of the system of subdices y_1, \ldots, y_n of the system y' = A(x)y as $W(x) := \det Y(x).$

$$\begin{split} & \textbf{Proposition:} \; (\text{Wronski Test}) \\ & \text{Let } y_1, \dots, y_n \; \text{be solutions of the system } y' = A(x) \mathbf{y} \; \text{on} \;]a,b[. \\ & \text{if } a_{ij}(x) \; \text{continuous in} \;]a,b[. \; \text{then} \\ & 1. \; W(x) \equiv 0 \; \text{or} \; W(x) \neq 0 \; \text{for all} \; x \in]a,b[. \end{split}$$

- 2. The solutions y_1,\dots,y_n form a fundamental system on]a,b[if and only if (iff) $W(x)\neq 0$.