Differential Equations I

Methods for Computing Lin. Systems of ODEs

Chapter 6.8

Where we are right now

Proposition (Solvability of from ODE n^{-1} with) In $(A_{ij}(A_{ij}) + i \Phi_{iii}, \dots, h^{-1} - 1 m g)$ of continuous functions in $[a_{ij}]$. In the time is a discussional greating $a_{ij} = b_{ij} + 1 m g$ of $a_{ij} = b_{ij} + 1 m g$. In $(A_{ij} = b_{ij}) = a_{ij} + 1 m g$ and set with the $a_{ij} = a_{ij} + 1 m g$ and set with the $a_{ij} = a_{ij} + 1 m g$ and $a_{ij} = a_{ij} + 1 m g$

Proposition: (Solution of system of ODEs with constant coefficients). Let $A = (a_{ij})$ a constant $n \times r$ -matrix with $a_{ij} \in \mathbb{R}$, λ an eigen value (EVa) of A with corresponding eigen vector (EVc) \mathbf{v} . Then

Then ${\bf y}=e^{\lambda x}{\bf v}$ is a solution of the homogeneous system of ODEs of 1% order ${\bf y}'=A{\bf y}.$

If A has n pairwise different EVa $\lambda_1,\dots,\lambda_n$ with corresponding EVc $\mathbf{v}_1,\dots,\mathbf{v}_n$ the solutions

the solutions ${\bf y}_i=e^{\lambda_i v}{\bf v}_i,\quad i=1,\dots,n$ form a fundamental system. By linear combination

 $\mathbf{y} = \sum_{i=1}^{n} c_i e^{\lambda_i x} \mathbf{v}_i$

all solutions of the homogeneous system of ODEs are given.

Proposition: (Variation of constants for systems) Let:

ullet $\mathbf{y}_1,\dots,\mathbf{y}_n$ Fundamental system on]a,b[,

• Matrix $Y(x) = [\mathbf{y}_1 \dots \mathbf{y}_n]$,

- Inhomogeneous system $\mathbf{y}' = A(x)\mathbf{y} + \mathbf{g}$ with g component-wise continuous.

200

 $\mathbf{y}_p = Y(x) \cdot \mathbf{c}(x)$

is particular solution of the inhomogeneous system, where $\mathbf{c}(x) = \int \mathbf{c}'(x) \ dx$ and $\mathbf{c}'(x) = (c_1'(x), \dots, c_n'(x))^\top$ solution of the system of equations

 $Y(x) \cdot \mathbf{c}'(x) = \mathbf{g}.$

Summarizing: (Matrix Exponential Solution) The mapping $\mathbf{y}(x)=e^{xA}\mathbf{y}(0)$ is solution of the ODE system

y' = Ay

where

 $e^{xA} = \sum_{k=0}^{\infty} \frac{x^k}{k!} A^k.$

Proposition: (Solvability of linear ODE n^{th} order) Let $a_i(x)$, i = 0, ..., n-1 and g(x) continuous functions on]a, b[.

1. Then there is a fundamental system y_1, \ldots, y_n on]a, b[of

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_0(x)y = 0$$

and each solution $y_h(x)$ of this homogeneous ODE has the form

$$y_h(x) = c_1 y_1(x) + \dots + c_n y_n(x)$$

with suitable coefficients c_1, \ldots, c_n .

- 2. Each n solutions of the homogeneous ODE form exactly one fundamental system, if $W(x) \neq 0$ for all $x \in]a,b[$.
- 3. Let $y_p(x)$ for $x \in]a,b[$ a particular solution of

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_0(x)y = g(x)$$

If y_1, \ldots, y_n is fundamental system of the homogeneous ODE, then by

$$y(x) = y_p(x) + c_1 y_1(x) + \dots + c_n y_n(x), \quad c_i \in \mathbb{R}$$

all solutions of the linear inhomogeneous ODE of $n^{\rm th}$ order are given.

4. If $\xi \in]a,b[$ and $\eta_0,\ldots,\eta_{n-1} \in \mathbb{R}$, then there is exactly one solution y(x) of the inhomogeneous ODE, which fulfills the initial conditions

$$y(\xi) = \eta_0, \ y'(\xi) = \eta_1, \dots, y^{(n-1)}(\xi) = \eta_{n-1}.$$

The solution exists in the whole interval]a, b[.

Proposition: (Variation of constants for systems) Let:

- $\mathbf{y}_1, \dots, \mathbf{y}_n$ Fundamental system on]a, b[,
- Matrix $Y(x) = [\mathbf{y}_1 \dots \mathbf{y}_n]$,
- Inhomogeneous system y' = A(x)y + g with g component-wise continuous.

Then

$$\mathbf{y}_p = Y(x) \cdot \mathbf{c}(x)$$

is particular solution of the inhomogeneous system, where $\mathbf{c}(x) = \int \mathbf{c}'(x) \ dx$ and $\mathbf{c}'(x) = (c_1'(x), \dots, c_n'(x))^{\top}$ solution of the system of equations

$$Y(x) \cdot \mathbf{c}'(x) = \mathbf{g}.$$

Proposition: (Solution of system of ODEs with constant coefficients) Let $A = (a_{ij})$ a constant $n \times n$ -matrix with $a_{ij} \in \mathbb{R}$, λ an eigen value (EVa) of A with corresponding eigen vector (EVc) \mathbf{v} . Then

$$\mathbf{y} = e^{\lambda x} \mathbf{v}$$

is a solution of the homogeneous system of ODEs of 1^{st} order y' = Ay.

If A has n pairwise different EVa $\lambda_1, \ldots, \lambda_n$ with corresponding EVc $\mathbf{v}_1, \ldots, \mathbf{v}_n$, the solutions

$$\mathbf{y}_i = e^{\lambda_i x} \mathbf{v}_i, \quad i = 1, \dots, n$$

form a fundamental system. By linear combination

$$\mathbf{y} = \sum_{i=1}^{n} c_i e^{\lambda_i x} \mathbf{v}_i$$

all solutions of the homogeneous system of ODEs are given.

Summarizing: (Matrix Exponential Solution)

The mapping $\mathbf{y}(x) = e^{xA}\mathbf{y}(0)$ is solution of the ODE system

$$\mathbf{y}' = A\mathbf{y},$$

where

$$e^{xA} = \sum_{k=0}^{\infty} \frac{x^k}{k!} A^k.$$

Reduction Principle

Principle: (Reduction of Order of Differential Equation) Let $u(x) \neq 0$ be solution of a linear ODE of n^{th} order

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_0(x)y = 0.$$

The the Product-Ansatz y(x)=v(x)u(x) yields a homogeneous linear ODE of order n-1 for w:=v':

$$w^{(n-1)} + b_{n-1}(x)w^{(n-2)} + \dots + b_1(x)w = 0.$$

If w_1,\ldots,w_{n-1} is a fundamental system of the ODE of $n-1^{\rm st}$ order and v_1,\ldots,v_{n-1} antiderivatives of w_1,\ldots,w_{n-1} , then

$$u, uv_1, \ldots, uv_{n-1}$$

form a fundamental system of the ODE of $n^{\rm th}$ order.

Principle: (Reduction of Order of Differential Equation) Let $u(x) \neq 0$ be solution of a linear ODE of n^{th} order

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_0(x)y = 0.$$

The the Product-Ansatz y(x)=v(x)u(x) yields a homogeneous linear ODE of order n-1 for w:=v':

$$w^{(n-1)} + b_{n-1}(x)w^{(n-2)} + \dots + b_1(x)w = 0.$$

If w_1, \ldots, w_{n-1} is a fundamental system of the ODE of $n-1^{\text{st}}$ order and v_1, \ldots, v_{n-1} antiderivatives of w_1, \ldots, w_{n-1} , then

$$u, uv_1, \ldots, uv_{n-1}$$

form a fundamental system of the ODE of $n^{\rm th}$ order.

Linear ODEs of Order n with Constant Coefficients

Definition: (Linear Differential Equation of n^{th} Order with Constant Coefficients) Let $a_k \in \mathbb{R}, \ k=0,\dots,n-1.$ Then

 $y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_0y = g(x).$

is a linear differential equation of $n^{\rm th}$ order with constant coefficients,

- \bullet Consider the homogeneous ODE of order n.

$\bullet \ \ \text{We have:} \ y^{(k)}=\frac{d^k}{dx^k}e^{\lambda_E}=\lambda^ke^{\lambda_E} \ \text{and} \ y=e^{\lambda_E}\neq 0 \ \text{for} \ x\in \mathbb{R}.$

Therefore $y=e^{\lambda x}$ (g=0) is solution, iff λ is a root of

 $P(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_0.$

Solution Approach: Ivestigating the roos of $P(\lambda)$ yields the following cases:

- 1. $P(\lambda)$ has n different real roots $\lambda_1, \dots, \lambda_n$.
- 2. $P(\lambda)$ has a complex root λ_k .
- 3. $P(\lambda)$ has a (real or complex) r-multiple root λ_1 $(r \ge 2)$.

1. If λ has algebraic multiplicity $r \geq 1$, then

 $y_1(x)=e^{\lambda x},\dots,y_r(x)=x^{r-1}e^{\lambda x}$ are fundamental solutions of the ODE.

2. If $\lambda=a+ib$ is complex and has algebraic multiplicity $r\geq 1$, then $z_1(x)=e^{\lambda x},\dots,z_r(x)=x^{r-1}e^{\lambda x}$ and $w_1(x)=e^{\lambda x},\dots,w_r(x)=x^{r-1}e^{\lambda x}$

 $y_1(x) = e^{ax} \cos bx, \dots, y_r(x) = x^{r-1}e^{ax} \cos bx$ $y_{r+1}(x) = e^{ax} \sin bx, \dots, y_{2r}(x) = x^{r-1}e^{ax} \sin bx$

are real fundamental solutions of the homogeneous ODE.

Definition: (Linear Differential Equation of n^{th} Order with Constant Coefficients) Let $a_k \in \mathbb{R}$, $k = 0, \ldots, n-1$. Then

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0y = g(x).$$

is a linear differential equation of n^{th} order with constant coefficients.

Remarks:

- For linear ODEs or systems of ODEs with constant coefficients we have a constructive solution theory!
- Define the linear differential operator

$$L[y] := y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0y,$$

then we can write the equation from the definition in short form L[y] = g(x).

• We call this equation *homogeneous of order* n, resp. *inhomogeneous of order* n (in case of uniqueness).

Observation:

- Consider the homogeneous ODE of order *n*.
- Ansatz:

$$y(x) = e^{\lambda x}.$$

- We have: $y^{(k)}=\frac{d^k}{dx^k}e^{\lambda x}=\lambda^k e^{\lambda x}$ and $y=e^{\lambda x}\neq 0$ for $x\in\mathbb{R}$.
- Therefore $y=e^{\lambda x}$ (g=0) is solution, iff λ is a root of

$$P(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_0.$$

Definition: (Characteristic Polynomial)

The polynomial $P(\lambda)$ is called characteristic polynomial of the homogeneous ODE L[y]=0.

The equation for finding roos $P(\lambda) = 0$ is called associated characteristic equation.

Solution Approach:

Ivestigating the roos of $P(\lambda)$ yields the following cases:

- 1. $P(\lambda)$ has n different real roots $\lambda_1, \ldots, \lambda_n$.
- 2. $P(\lambda)$ has a complex root λ_k .
- 3. $P(\lambda)$ has a (real or complex) r-multiple root λ_1 ($r \geq 2$).

1

Summary:

If λ is a root of the characteristic polynomial of the homogeneous ODE, then it holds:

1. If λ has algebraic multiplicity $r \geq 1$, then

$$y_1(x) = e^{\lambda x}, \dots, y_r(x) = x^{r-1}e^{\lambda x}$$

are fundamental solutions of the ODE.

2. If $\lambda=a+ib$ is complex and has algebraic multiplicity $r\geq 1$, then

$$z_1(x) = e^{\lambda x}, \dots, z_r(x) = x^{r-1}e^{\lambda x}$$
 and $w_1(x) = e^{\bar{\lambda}x}, \dots, w_r(x) = x^{r-1}e^{\bar{\lambda}x}$

are complex fundamental solutions. It follows that

$$y_1(x) = e^{ax} \cos bx, \dots, y_r(x) = x^{r-1}e^{ax} \cos bx$$

 $y_{r+1}(x) = e^{ax} \sin bx, \dots, y_{2r}(x) = x^{r-1}e^{ax} \sin bx$

are real fundamental solutions of the homogeneous ODE.

Remarks:

- One finds that there exist always n linearly independent solutions $y_k(x)$ $(k=1,\ldots,n)$.
- These solutions form a fundamental system (proof via $W(x) \neq 0$ for solutions of the form $y_k(x) = c_k e^{\lambda_k x}$)

2

Inhomogeneous ODE of Order n

As an example, consider

Preliminary Remarks:

As an example, consider

$$y'' + a(x)y' + b(x)y = g(x).$$

- Let $y_1(x)$ and $y_2(x)$ be lin. independent solutions of the homogeneous equation (g(x) = 0).
- It holds

$$\begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix} \neq 0.$$

• The solution of the homogeneous equation is given by

$$y(x) = C_1 y_1(x) + C_2 y_2(x).$$

Summary: (Solution of the inhomogeneous ODE of 2nd order) Consider the inhomogeneous ODE of 2nd order

$$y'' + a(x)y' + b(x)y = g(x).$$

Then the general solution can be written as

$$y(x) = \left[C_1 - \int \frac{y_2(x)g(x)}{W(x)} dx \right] y_1(x) + \left[C_2 + \int \frac{y_1(x)g(x)}{W(x)} dx \right] y_2(x).$$

Remark: Set $C_3 = C_4 = 0$ since only *some* solution is required.

Generalization: (Solution of the inhomogeneous ODE of nth order)

- For the equation of n^{th} order we obtain lin. independent solutions $y_1(x), \ldots, y_n(x)$ of the homogeneous equation and vary $C_1(x), \ldots, C_n(x)$.
- Correspondingly, one assumes

$$C'_1(x)y_1^{(k)} + \dots + C'_n(x)y_n^{(k)} = 0 \quad (k = 0, \dots, n-2).$$

• Furthermore, we obtain

$$C'_1(x)y_1^{(n-1)} + \dots + C'_n(x)y_n^{(n-1)} = g(x).$$

ullet This yields a lin. system of equations for $C_1'(x),\ldots,C_n'(x)$:

$$\begin{pmatrix} y_1 & y_2 & \dots & y_n \\ y'_1 & y'_2 & \dots & y'_n \\ \vdots & & & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} \end{pmatrix} \begin{pmatrix} C'_1 \\ C'_2 \\ \vdots \\ C'_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ g(x) \end{pmatrix}$$

Remarks: Wronksi-Matrix is regular, thus solvable!

• Integration yields the solution.

Reduction Principle

Potentian (Destrict of Cone of Statement of

Inhomogeneous ODE of Order n

