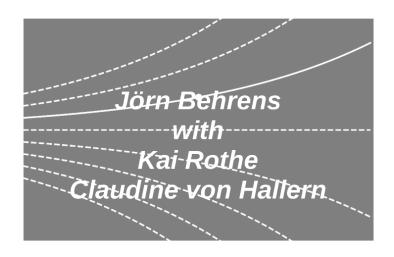
Differential Equations I



Further Methods for Solving linear ODEs

Chapters 6.8-6.9

Recapitulation

 $\label{eq:Summary:} \textbf{Summary:} \\ \textbf{If } \lambda \text{ is a root of the characteristic polynomial of the homogeneous ODE, then it holds:} \\$

1. If λ has algebraic multiplicity $r \geq 1$, then

$$y_1(x) = e^{\lambda x}, \dots, y_r(x) = x^{r-1}e^{\lambda x}$$

are fundamental solutions of the ODE.

2. If $\lambda=a+ib$ is complex and has algebraic multiplicity $r\geq 1$, then

$$z_1(x)=e^{\lambda x},\dots,z_r(x)=x^{r-1}e^{\lambda x}\quad\text{and}\quad w_1(x)=e^{\bar{\lambda} x},\dots,w_r(x)=x^{r-1}e^{\bar{\lambda} x}$$

are complex fundamental solutions. It follows that

$$y_1(x) = e^{ax} \cos bx, \dots, y_r(x) = x^{r-1}e^{ax} \cos bx$$

 $y_{r+1}(x) = e^{ax} \sin bx, \dots, y_{2r}(x) = x^{r-1}e^{ax} \sin bx$

are real fundamental solutions of the homogeneous ODE.

$\textbf{Generalization:} \hspace{0.1cm} (\text{Solution of the inhomogeneous ODE of } n^{th} \hspace{0.1cm} \text{order})$

- For the equation of n^{th} order we obtain lin. independent solutions $y_1(x),\dots,y_n(x)$ of the homogeneous equation and vary $C_1(x),\dots,C_n(x)$.
- Correspondingly, one assumes

$$C_1'(x)y_1^{(k)} + \cdots + C_n'(x)y_n^{(k)} = 0 \quad (k = 0, \dots, n-2).$$

$$C'_1(x)y_1^{(n-1)} + \cdots + C'_n(x)y_n^{(n-1)} = g(x).$$

ullet This yields a lin. system of equations for $C_1'(x),\ldots,C_n'(x)$:

$$\begin{pmatrix} y_1 & y_2 & \dots & y_n \\ y_1' & y_2' & \dots & y_n' \\ \vdots & & & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} \end{pmatrix} \begin{pmatrix} C_1' \\ C_2' \\ \vdots \\ C_n' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ g(x) \end{pmatrix}$$

Integration yields the solution.

Summary:

If λ is a root of the characteristic polynomial of the homogeneous ODE, then it holds:

1. If λ has algebraic multiplicity $r \geq 1$, then

$$y_1(x) = e^{\lambda x}, \dots, y_r(x) = x^{r-1}e^{\lambda x}$$

are fundamental solutions of the ODE.

2. If $\lambda = a + ib$ is complex and has algebraic multiplicity $r \geq 1$, then

$$z_1(x) = e^{\lambda x}, \dots, z_r(x) = x^{r-1}e^{\lambda x}$$
 and $w_1(x) = e^{\bar{\lambda}x}, \dots, w_r(x) = x^{r-1}e^{\bar{\lambda}x}$

are complex fundamental solutions. It follows that

$$y_1(x) = e^{ax} \cos bx, \dots, y_r(x) = x^{r-1}e^{ax} \cos bx$$

 $y_{r+1}(x) = e^{ax} \sin bx, \dots, y_{2r}(x) = x^{r-1}e^{ax} \sin bx$

are real fundamental solutions of the homogeneous ODE.

Generalization: (Solution of the inhomogeneous ODE of nth order)

- For the equation of n^{th} order we obtain lin. independent solutions $y_1(x), \ldots, y_n(x)$ of the homogeneous equation and vary $C_1(x), \ldots, C_n(x)$.
- Correspondingly, one assumes

$$C'_1(x)y_1^{(k)} + \dots + C'_n(x)y_n^{(k)} = 0 \quad (k = 0, \dots, n-2).$$

• Furthermore, we obtain

$$C'_1(x)y_1^{(n-1)} + \dots + C'_n(x)y_n^{(n-1)} = g(x).$$

ullet This yields a lin. system of equations for $C_1'(x),\ldots,C_n'(x)$:

$$\begin{pmatrix} y_1 & y_2 & \dots & y_n \\ y'_1 & y'_2 & \dots & y'_n \\ \vdots & & & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} \end{pmatrix} \begin{pmatrix} C'_1 \\ C'_2 \\ \vdots \\ C'_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ g(x) \end{pmatrix}$$

Remarks: Wronksi-Matrix is regular, thus solvable!

• Integration yields the solution.

ODEs with simple *Inhomogeneities*

• Charakteristic polynomial (r=0): $P(\lambda)=\lambda^2-\omega_0^2$. • Consentences personner $(r-\omega_f)$, t $(\omega_f - \lambda - \omega_g)$.
• Roots of $P(\lambda)$, $\lambda_{12} = \pm \omega_h t$.
• General solution of homogeneous problem: $y_h(t) = C_1 \cos(\omega_h t) + C_2 \sin(\omega_h t)$.
• Ansatz $(\omega \neq \omega_h)$: $y_f(t) = A \cos(\omega t) + B \sin(\omega t)$

 $\Rightarrow y_p(t) = \frac{K}{\omega_0^2 - \omega^2} \sin(\omega t).$

General solution of inhomogeneous problem:

 $y(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t) + \frac{K}{\omega_0^2 - \omega^2} \sin(\omega t).$

 $R_{\rm ex}(x), \quad R_{\rm m}(x)e^{\alpha x}, \quad R_{\rm m}(x)\sin(\beta x), \quad R_{\rm m}(x)\cos(\gamma x)$ $\big(\alpha,\beta,\gamma\in\mathbb{R}\big)$ one may use the following approaches for particular solutions:

g(x)	Ansatz for $y_p(x)$	Ansatz for case of resonance
$R_m(x)$	$T_m(x)$	If a summand of the ansatz is
$R_m(x)e^{\alpha x}$	$T_m(x)e^{\alpha x}$	solution of homogeneous eq. the
$R_m(x)\sin(\beta x)$	$T_m(x) \sin(\beta x)$	approach is multiplied with x so
$R_m(x)\cos(\beta x)$	$+Q_m(x)\cos(\beta x)$	often such that no summand remains as solution to the homog, eq.
Combination of	Combination of	Apply above rule only to that
these functions	these approaches	part of the approach, which
		contains the case of resonance.

• Ansatz: $y_p(t) = At \cos(\omega t) + Bt \sin(\omega t)$

$$\Rightarrow y_p(t) = -\frac{K}{2\omega_0}\cos(\omega_0 t)$$

• A Case of Resonance occurs, since the amplitude of y_p grows like t. The frequency ω of the RHS (external force) corresponds to the eigenfrequency ω_0 of the undamped systems.

Definition: (Resonance)
If the RHS or a summand of the RHS of the ODE

 $y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_0y = g(x)$

is a fundamental solution of the corresponding homogeneous ODE, we call this Resonance.

Remark:

Variation of constants always yields a partikular solution. However, simplification possible, with special right hand sides!

Ansatz:

Let $R_m(x)$ be a polynomial of m^{th} degree, $m \in \mathbb{N}$ and let $\alpha, \beta, \gamma \in \mathbb{R}$. Consider right hand sides (RHS) of the form

$$R_m(x)$$
, $R_m(x)e^{\alpha x}$, $R_m(x)\sin(\beta x)$, $R_m(x)\cos(\gamma x)$.

Then utilize the Approach corresponding to RHS for the particular solution.

Beispiel: (Case of Resonance)

Consider an undamped oscillation problem

$$y'' + \omega_0^2 y = K \sin(\omega t).$$

Remark: For the equation of the form $y'' + ry' + \omega_0^2 y = K \sin(\omega t)$, r > 0, we obtain a damped system.

- Charakteristic polynomial (r=0): $P(\lambda) = \lambda^2 \omega_0^2$.
- Roots of $P(\lambda)$: $\lambda_{1,2} = \pm \omega_0 i$.
- General solution of homogeneous problem: $y_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$.
- Ansatz ($\omega \neq \omega_0$): $y_p(t) = A\cos(\omega t) + B\sin(\omega t)$

$$\Rightarrow y_p(t) = \frac{K}{\omega_0^2 - \omega^2} \sin(\omega t).$$

• General solution of inhomogeneous problem:

$$y(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t) + \frac{K}{\omega_0^2 - \omega^2} \sin(\omega t).$$

Example: (Case of Resonance)

If $\omega = \omega_0$, then $A\cos(\omega t) + B\sin(\omega t)$ is solution of the homogeneous system.

• Ansatz: $y_p(t) = At\cos(\omega t) + Bt\sin(\omega t)$

$$\Rightarrow y_p(t) = -\frac{K}{2\omega_0}\cos(\omega_0 t).$$

• A Case of Resonance occurs, since the amplitude of y_p grows like t. The frequency ω of the RHS (external force) corresponds to the eigenfrequency ω_0 of the undamped systems.

Definition: (Resonance)

If the RHS or a summand of the RHS of the ODE

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0y = g(x)$$

is a fundamental solution of the corresponding homogeneous ODE, we call this Resonance.

Approaches: (Table for diverse right hand sides)

Let $R_m(x)$, $S_m(x)$, $T_m(x)$, and $Q_m(x)$ be polynomials of degree m. For RHS of the form

$$R_m(x)$$
, $R_m(x)e^{\alpha x}$, $R_m(x)\sin(\beta x)$, $R_m(x)\cos(\gamma x)$

 $(\alpha, \beta, \gamma \in \mathbb{R})$ one may use the following approaches for particular solutions:

g(x)	Ansatz for $y_p(x)$	Ansatz for case of resonance
$R_m(x)$	$T_m(x)$	If a summand of the ansatz is
$R_m(x)e^{\alpha x}$	$T_m(x)e^{\alpha x}$	solution of homogeneous eq. the
$R_m(x)\sin(\beta x)$	$T_m(x)\sin(\beta x)$	approach is multiplied with x so
$R_m(x)\cos(\beta x)$	$+Q_m(x)\cos(\beta x)$	often such that no summand remains
		as solution to the homog. eq.
Combination of	Combination of	Apply above rule only to that
these functions	these approaches	part of the approach, which
		contains the case of resonance.

General Warning

- The inhomogeneous linear ODE of nth order has general solution of the form

- * So for we considered: $\alpha_n(x)p^{(n)} + \alpha_{n-1}p^{(n-1)} + \cdots + \alpha_{n0} = g(x),$ where $\alpha_n(x) = n$ are summed. If $\alpha_n(x) \not\in I$, but $\alpha_n(x) \not\in I$ for all $x \in D$, w.l.o.g. over any divide by $\alpha_n(x)$ and obtain the above structure.

 * If $\alpha_n(x) = 0$, the order of the ODE charges and thus the structure (one forefarmental solutions in loss).

- Solution of homogeneous ODE (separation of variables): $y_h(x) = e^{-\frac{x^2}{2}}$.
- Particular solution (variation of constants): $y_p(x)=1.$ General solution: $y(x)=cc^{-\frac{a^2}{2}}+1.$

Observation: (Structure of Equation) If

holds, then this also holds after differentiation, so

y'' + y + xy' = 1.

And $y(x) = ce^{-\frac{x^2}{2}} + 1$ is a solution of this ODE of 2^{nd} order as well.

Caution: (Structure of Equation) When recasting a mathematical model e.g. by differentiating the ODEs

the solution set must remain the same!

Observation: (Structure of Solution)

- The homogeneous linear ODE of $n^{\rm th}$ order has exactly n linearly independent fundamental solutions.
- ullet The inhomogeneous linear ODE of n^{th} order has general solution of the form

$$y(x) = y_h(x) + y_p(x)$$

with $y_h(x)$ linear combination of fundamental solutions and $y_p(x)$ some solution of the inhomogeneous ODE.

• So far we considered:

$$a_n(x)y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0y = g(x),$$

where $a_n(x)=1$ was assumed. If $a_n(x)\neq 1$, but $a_n(x)\neq 0$ for all $x\in D$, w.l.o.g. one may divide by $a_n(x)$ and obtain the above structure.

• If $a_n(x) = 0$, the order of the ODE changes and thus the structure (one fundamental solution is lost).

Observation: (Structure of Equation)

Consider ODE of 1st order

$$y' + xy = x$$

- Solution of homogeneous ODE (separation of variables): $y_h(x) = ce^{-\frac{x^2}{2}}$.
- Particular solution (variation of constants): $y_p(x) = 1$.
- General solution: $y(x) = ce^{-\frac{x^2}{2}} + 1.$

Observation: (Structure of Equation) If

$$y' + xy = x$$

holds, then this also holds after differentiation, so

$$y'' + y + xy' = 1.$$

And $y(x) = ce^{-\frac{x^2}{2}} + 1$ is a solution of this ODE of 2nd order as well.

3

Caution: (Structure of Equation)
When recasting a mathematical model
e.g. by differentiating the ODEs
the solution set must remain the same!

Simulations (detailed for including consists of G of G and G). In this consists of G and G are substituted as G

Differential Equations

General Warning

Fig. the response to the STE of P and to be such to broad to depend for the state of the STE of P and the special to the STE of P and the special to the STE of P and the special to the STE of P and the STE of P and the STE of STE of

Characteristics (Source of Equation) if y' = xy = x holds, then this also holds after differentiation, so y'' = y + xy' = x. And $y(x) = x^{-1}t^2 + 1$ is a substance of this SDDE of 2^{2rt} order as well, $3^{rt} = x^{-1}t^2 + 1$.

Caution: (Structure of Equation)
When recasting a mathematical model
as by differentiating the ODEs
the solution set must remain the samel

ODEs with simple Inhomogeneities

Annual Control of the Control of the

Example (final of Resource): $E_{N-m,n} = \operatorname{Ann}(V - R \log_2 N) = \operatorname{Ann}(n \log_2 N) = \operatorname$

Definition: (Neumann): If the RMS or a summand of the RMS of the GGE: $g^{(n)} + a_{n-1}g^{(n-1)} + \cdots + a_{n}g = g(x)$ is a fundamental solution of the corresponding homogeneous GG.